EE234

Microprocessor Systems

Midterm Exam

Oct. 18, 2024. (2:10pm – 3pm)

Instructor: Dae Hyun Kim (<u>daehyun@eecs.wsu.edu</u>)

Name:

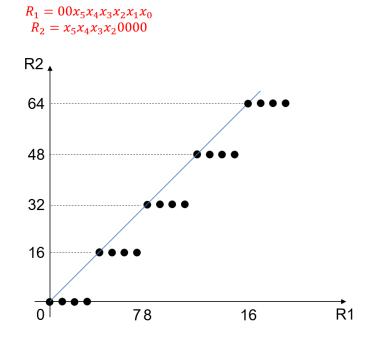
WSU ID:

Problem	Points	
1	10	
2	20	
3	20	
4	20	
5	20	
Total	90	

Problem #1 (Bit manipulation, 10 points)

R# is an <u>8-bit register</u>. The data stored in R# is treated as an <u>unsigned binary number</u>. R1 has an input data x in the range of $0 \le x \le 63$. The following two instructions perform an arithmetic operation. <u>Explain</u> what it does (i.e., briefly explain the meaning of the data stored in R2 in terms of arithmetic operations) <u>or draw a graph</u> of (R1 vs. R2). Here, "arithmetic" means something like addition, subtraction, multiplication, division (quotient), division (remainder), square root, transcendental functions, etc. <u>Ignore</u> <u>overflow/underflow exceptions in the operations</u>.

AND R2, R1, #0xFC


MOV R2, R2, LSL #2

X in R1 = $00x_5x_4x_3x_2x_1x_0$.

R2 after AND = $00x_5x_4x_3x_200$.

Y in R2 after MOV = $x_5 x_4 x_3 x_2 0000$.

Thus, $Y = 4 \cdot \{X - (X \mod 4)\}.$

Problem #2 (ARM assembly, 20 points)

main: MOV R6, #0 MOV R1, #1 loop1: CMP R1, #6 BGT loop1 end ADD R2, R1, #1 loop2: CMP R2, #6 BGT loop2_end MOV R3, #0 MOV R4, #1 loop3: CMP R4, R2 BGT loop3_end ADD R3, R3, R1 ADD R4, R4, #1 B loop3 loop3_end: ADD R6, R6, R3 ADD R2, R2, #1 B loop2 loop2 end: ADD R1, R1, #1 B loop1 loop1 end:

What is the value of the data stored in R6 when the above program ends?

int s = 0; for (int j = 1 ; j <= 6 ; j++) { for (int k = j+1 ; k <= 6 ; k++) { t = 0; for (m = 1 ; m <= k ; m++) t = t + j; // t = j*k s = s + t; // s = s + (j*k) } } s: R6 j: R1 k: R2 t: R3 m: R4

s = (1*2 + 1*3 + ... + 1*6) + (2*3 + ... + 2*6) + ... + (4*5 + 4*6) + (5*6) = 1*20 + 2*18 + 3*15 + 4*11 + 5*6 = 20 + 36 + 45 + 44 + 30 = 175.

Problem #3 (ARM assembly, 20 points)

Translate the following C code into an assembly code.

```
int a, b, c, d;
...
while ( (a != 10) && (b < 5) && (c > 7) ) {
    b++;
    while ( (d > 6) || (d < 12) ) {
        c++;
        d--;
    }
    if ( a <= b ) {
        break;
    }
}
```

- Use the assembly instructions listed in the last page only.
- a is in R0, b is in R1, c is in R2, and d is in R3.
- The exit point (the end of the if statement) could be just an address label.

wh_1: CMP R0, #10 BNE wh 2 B wh_end wh_2: CMP R1, #5 BLT wh_3 B wh_end wh 3: CMP R2, #7 BGT wh_body B wh_end wh_body: ADD R1, R1, #1 wh_4 CMP R3, #6 BGT wh_body2 CMP R3, #12 BLT wh_body2 B if wh body2: ADD R2, R2, #1 SUB R3, R3, #1 Bwh4 if: CMP R0, R1 BLE wh_end B wh_1 wh_end:

Problem #4 (ARM assembly, 20 points)

main:	// Addresses
MOV R0, #0	// 0x00
MOV R1, #1	// 0x04
label1:	
CMP R1, #11	// 0x08
BGE end	// 0x0C
BL sub1	// 0x10
BL sub2	// 0x14
ADD R1, R1, #1	// 0x18
B label1	// 0x1C
sub1:	
MOV R2, #0	// 0x20
MOV R3, #0	// 0x24
label2:	
CMP R2, R1	// 0x28
BGE sub1_end	// 0x2C
ADD R3, R3, R1	// 0x30
ADD R2, R2, #1	// 0x34
B label2	// 0x38
sub1 end:	
BX LR	// 0x3C
sub2:	II OKOO
	// 0x40
BX LR	// 0x44
271211	// UX44
end:	
	// 0x48

The address column shows the addresses of the instructions.

1. What is the value of the data stored in R0 when the above program ends?

(Hint: Translate the code into a C code, and then analyze it.)

R0	R1	R2	R3	LR
0	1	0	0	
1	2	1	1	
		0	0	
		1	2	
1+4	3	2	4	
		0	0	
		1	3	
		2	6	

	1+4+9	4	3	9			
Answer: $1+4+9++100 = 1^{2} + 2^{2} + 3^{2} + + 10^{2} = 385$.							

2. What is the value of R14 (LR) when the above program ends?

0x18

Problem #5 (ARM assembly, 20 points)

Write an assembly code to compute x^4 . Assume *x* is an unsigned integer and stored in R0. Store x^4 in R1. Use the assembly instructions listed in the last page only.

```
// R0 = x
// R1 = x^4
// R2 = t
// R3 = k
 MOV R2, #0
 MOV R3, #0
loop1:
 CMP R3, R0
 BGE loop1 end
 ADD R2, R2, R0
 ADD R3, R3, #1
 B loop1
loop1_end:
 MOV R1, #0
 MOV R3, #0
loop2:
 CMP R3, R2
 BGE loop2_end
 ADD R1, R1, R2
 ADD R3, R3, #1
 B loop2
loop2 end:
```