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Problem #1 (Kogge-Stone Adder, 10 points). 

For the 1024-bit Kogge-Stone adder, show one of the critical paths to calculate 𝑆𝑆139. 
What is the delay of the critical path? Use the following delay values for logic gates. 

• 2-, 3-, 4-input AND, OR: d 
• XOR: 3d 

𝑆𝑆139 = 𝑝𝑝139⨁𝐶𝐶139 

𝐶𝐶139 = 𝑔𝑔138:0 + 𝑝𝑝138:0 ∙ 𝐶𝐶0 

𝑔𝑔138:0 = 𝑔𝑔138:11 + 𝑝𝑝138:11 ∙ 𝑔𝑔10:0 

𝑔𝑔138:11 = 𝑔𝑔138:75 + 𝑝𝑝138:75 ∙ 𝑔𝑔74:11 

𝑔𝑔138:75 = 𝑔𝑔138:107 + 𝑝𝑝138:107 ∙ 𝑔𝑔106:75 

𝑔𝑔138:107 = 𝑔𝑔138:123 + 𝑝𝑝138:123 ∙ 𝑔𝑔122:107 

𝑔𝑔138:123 = 𝑔𝑔138:131 + 𝑝𝑝138:131 ∙ 𝑔𝑔130:123 

𝑔𝑔138:131 = 𝑔𝑔138:135 + 𝑝𝑝138:135 ∙ 𝑔𝑔134:131 

𝑔𝑔138:135 = 𝑔𝑔138:137 + 𝑝𝑝138:137 ∙ 𝑔𝑔136:135 

𝑔𝑔138:137 = 𝑔𝑔138 + 𝑝𝑝138 ∙ 𝑔𝑔137 

𝑝𝑝138 = 𝐴𝐴138⨁𝐵𝐵138 

Delay: 3d + (2d * 8) + 2d + 3d = 24d 

(actually, it is 23d because computing C139 takes one cycle) 

 

 

 

 

 

 

 



Problem #2 (Carry-Lookahead Adder, 10 points). 

For the 1024-bit Carry-lookahead adder, show one of the critical paths to calculate 𝑆𝑆139. 
What is the delay of the critical path? Use the following delay values for logic gates. 

• 2-, 3-, 4-input AND, OR: d 
• XOR: 3d 

𝑆𝑆139 = 𝑝𝑝139⨁𝐶𝐶139 

𝐶𝐶139 = 𝑔𝑔138 + 𝑝𝑝138 ∙ 𝑔𝑔137 + 𝑝𝑝138 ∙ 𝑝𝑝137 ∙ 𝑔𝑔136 + 𝑝𝑝138 ∙ 𝑝𝑝137 ∙ 𝑝𝑝136 ∙ 𝐶𝐶136 

𝐶𝐶136 = 𝑔𝑔135:132 + 𝑝𝑝135:132 ∙ 𝑔𝑔131:128 + 𝑝𝑝135:132 ∙ 𝑝𝑝131:128 ∙ 𝐶𝐶128 

𝐶𝐶128 = 𝑔𝑔127:64 + 𝑝𝑝127:64 ∙ 𝑔𝑔63:0 + 𝑝𝑝127:64 ∙ 𝑝𝑝63:0 ∙ 𝐶𝐶0 

𝑔𝑔63:0 = 𝑔𝑔63:48 + 𝑝𝑝63:48 ∙ 𝑔𝑔47:32 + 𝑝𝑝63:48 ∙ 𝑝𝑝47:32 ∙ 𝑔𝑔31:16 + 𝑝𝑝63:48 ∙ 𝑝𝑝47:32 ∙ 𝑝𝑝31:16 ∙ 𝑔𝑔15:0 

𝑔𝑔15:0 = 𝑔𝑔15:12 + 𝑝𝑝15:12 ∙ 𝑔𝑔11:8 + 𝑝𝑝15:12 ∙ 𝑝𝑝11:8 ∙ 𝑔𝑔7:4 + 𝑝𝑝15:12 ∙ 𝑝𝑝11:8 ∙ 𝑝𝑝7:4 ∙ 𝑔𝑔3:0 

𝑔𝑔3:0 = 𝑔𝑔3 + 𝑝𝑝3 ∙ 𝑔𝑔2 + 𝑝𝑝3 ∙ 𝑝𝑝2 ∙ 𝑔𝑔1 + 𝑝𝑝3 ∙ 𝑝𝑝2 ∙ 𝑝𝑝1 ∙ 𝑔𝑔0 

𝑝𝑝3 = 𝐴𝐴3⨁𝐵𝐵3 

Delay: 3d + (2d * 6) + 3d = 18d 

 

 

 

 

 

 

 

 

 

 

 

 



Problem #3 (Conditional Sum Adder, 10 points) 

Complete the following table. 

 

 

 

 

 

 

 

 



Problem #4 (Carry-Lookahead Adder, 10 points) 

For the 256-bit carry-lookahead adder, the input is 𝐴𝐴255:0 and 𝐵𝐵255:0 and the output is 
𝑆𝑆255:0 and 𝐶𝐶256. We can calculate the delay of each sum bit 𝑆𝑆𝑘𝑘 using the techniques we 
studied. How many among the 256 sum bits have the longest delay? You can estimate 
the number (i.e., the number doesn’t need to be very accurate. Just a good estimation 
will be enough to get 10 points). Use the following assumptions for the delay calculation. 

• 2-, 3-, 4-input AND, OR: d 
• XOR: 2d 

First of all, we need 64 1st-level carry-lookahead units (CLUs), 16 2nd-level CLUs, four 
3rd-level CLUs, and one 4th-level CLUs. 

The carry signals generated in the 1st-level CLUs: 𝐶𝐶4,𝐶𝐶8,𝐶𝐶12,𝐶𝐶20, … 

The carry signals generated in the 2nd-level CLUs: 𝐶𝐶16,𝐶𝐶32,𝐶𝐶48,𝐶𝐶80, … 

The carry signals generated in the 3rd-level CLUs: 𝐶𝐶64,𝐶𝐶128,𝐶𝐶192,𝐶𝐶320, … 

The carry signals generated in the 4th-level CLUs: 𝐶𝐶256,𝐶𝐶512, … 

Thus, the longest delay comes from the forward paths → 𝐶𝐶64,𝐶𝐶128,𝐶𝐶192 → 
𝐶𝐶80,𝐶𝐶96,𝐶𝐶112,𝐶𝐶144,𝐶𝐶160,𝐶𝐶176,𝐶𝐶208,𝐶𝐶224,𝐶𝐶240 

Each of the above nine carry signals will be used in the 1st-level CLUs to generate the 
sum bits. Thus, 9*4 = 36 sum bits have the longest delay. 

 

 

 

 

 

 

 

 

 

 



Problem #5 (Hybrid Adder, 20 points) 

 

The figure above shows an 𝑛𝑛-bit carry-select adder. We split it into two groups, the first 
(𝑛𝑛 − 𝑘𝑘) bits and the second 𝑘𝑘 bits as shown. The 𝑘𝑘-bit adder is a ripple-carry adder and 
the two (𝑛𝑛 − 𝑘𝑘)-bit adders are carry-lookahead adders. We want to find the optimal 
value of 𝑘𝑘 to minimize the total delay. Answer the following questions using the following 
assumptions. 

• Delay of a 2-, 3-, and 4-input AND (or OR) gate: 𝑑𝑑 
• Delay of a full adder (FA): 2𝑑𝑑 
• Delay of an XOR gate: 2𝑑𝑑 
• Delay of a 1-bit MUX: 2𝑑𝑑 

(1) Since the delay of an FA is 2𝑑𝑑, the delay of the carry-out signal 𝐶𝐶𝑘𝑘 is _2𝑘𝑘𝑑𝑑_____. 

(2) The delay of a 𝑔𝑔𝑖𝑖 signal is _𝑑𝑑______. 

(3) The delay of a 𝑝𝑝𝑖𝑖 signal is _2𝑑𝑑______. 

(4) The delay of a 𝑔𝑔𝑖𝑖:𝑖𝑖−3 signal is _4𝑑𝑑_______. 

(5) The delay of a 𝑔𝑔𝑖𝑖:𝑖𝑖−15 signal is _6𝑑𝑑_______. 

(6) The delay of a 𝑔𝑔𝑖𝑖:𝑖𝑖−(4𝑚𝑚−1) signal is _(2𝑚𝑚 + 2)𝑑𝑑_____. 

(7) The delay of a 𝐶𝐶4𝑚𝑚−1 (or 𝐶𝐶2∙4𝑚𝑚−1 or 𝐶𝐶3∙4𝑚𝑚−1) signal is _(2𝑚𝑚 + 2)𝑑𝑑_____. 

(8) The delay of a 𝐶𝐶4𝑚𝑚−2 (or 𝐶𝐶2∙4𝑚𝑚−2 or 𝐶𝐶3∙4𝑚𝑚−2) signal is _(2𝑚𝑚 + 4)𝑑𝑑_____. 

(9) The delay of a 𝐶𝐶4𝑡𝑡 (𝑡𝑡 is a generally large integer) signal is _(2𝑚𝑚 + 2(𝑚𝑚− 1))𝑑𝑑 =
(4𝑚𝑚− 2)𝑑𝑑__.  

(10) The delay of a 𝐶𝐶4𝑡𝑡+1 (or 𝐶𝐶4𝑡𝑡+2 or 𝐶𝐶4𝑡𝑡+3) signal is _(4𝑚𝑚)𝑑𝑑____. 



(11) The delay of a 𝑆𝑆4𝑡𝑡+1 (or 𝑆𝑆4𝑡𝑡+2 or 𝑆𝑆4𝑡𝑡+3) signal is _(4𝑚𝑚 + 2)𝑑𝑑___. 

(12) If (𝑛𝑛 − 𝑘𝑘) can be represented approximately by 4𝑚𝑚, 𝑚𝑚 is _log4(𝑛𝑛 − 𝑘𝑘)_ (represent it 
using 𝑛𝑛 and 𝑘𝑘). 

(13) Thus, the delay of an (𝑛𝑛 − 𝑘𝑘)-bit CLA is approximately {4 log4(𝑛𝑛 − 𝑘𝑘) + 2}𝑑𝑑. 

 

Hint. note: The longest delay of the whole carry-select adder is minimized when the 
longest delay of the (𝑛𝑛 − 𝑘𝑘)-bit adder is equal to the delay of 𝐶𝐶𝑘𝑘. This requires solving 
the following equation (expressing 𝑘𝑘 with respect to 𝑛𝑛). 

2 log4(𝑛𝑛 − 𝑘𝑘) = 𝑘𝑘 − 1 

We can’t solve it analytically, but we can numerically. 

For 𝑛𝑛 = 64, optimal 𝑘𝑘 is approximately 6. 

For 𝑛𝑛 = 256, optimal 𝑘𝑘 is approximately 8. 

For 𝑛𝑛 = 1,024, optimal 𝑘𝑘 is approximately 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Problem #6 (Wallace Tree, 10 points) 

(1) If you multiply two 3-bit unsigned binary numbers, how many carry-save-adder 
stages do you need to reduce the number of partial product rows down to two? 

 

Answer: 1 

 

(2) Repeat it for two 4-bit unsigned binary numbers. 

 

Answer: 2 

 

(3) Repeat it for two 5-bit unsigned binary numbers. 

 

Answer: 3 (I didn’t show the third stage.) 

 

 

 

 

 

 

 

 

 



Problem #7 (Modified Booth Encoding, 10 points) 

Use the modified Booth encoding technique to calculate the following multiplication (see 
page 9 in the multiplier lecture notes). Assume that all the numbers are unsigned. 

 

 

 


