EE466

VLSI System Design

Final Exam

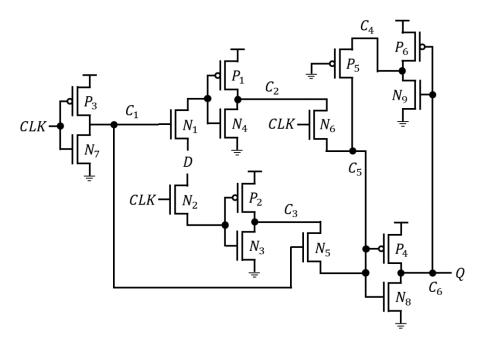
Dec. 14, 2022. (7:30pm - 9:30pm)

Instructor: Dae Hyun Kim (<u>daehyun@eecs.wsu.edu</u>)

Name:

WSU ID:

Problem	Points	
1	80	
2	20	
3	70	
4	40	
5	20	
Total	230	


^{*} Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches

^{*} Not allowed: Electronic devices (smart phones, tablet PCs, laptops, etc.) except calculators and watches

Problem #1 (DFF, 80 points)

The following schematic implements a D FF. Answer the following questions. Assume that all the setup and hold times are positive (≥ 0). You can also assume that T_{CLK} is the clock period and the duty cycle is 50% (i.e., the clock is high for $\frac{T_{CLK}}{2}$ and low for $\frac{T_{CLK}}{2}$.)

Use C_1 to C_6 for the capacitances of the nets shown in the figure. If a net does not have $C_{\#}$, then you can ignore the capacitance of the net. Use $R_{N\#}$ (or $R_{P\#}$) for the resistance the NFET N# (or PFET P#).

For D=0, Q=1, CLK goes high: $C_1 = 0$. N_1 is OFF. C_2 was 1, so C_5 becomes 1 (VDD-Vtn). $C_3 = 1$. N_8 is ON, so $C_6 = 0$, so Q=0. $C_4 = 1$, which pulls up C_5 to VDD.

For D=1, Q=0, CLK goes high: $C_1=0$. N_1 is OFF. C_2 was 0, so C_5 becomes 0. $C_3=0$. P_4 is ON, so $C_6=1$, so Q=1. $C_4=0$.

For D=0, Q=1, CLK goes low: $C_3 = 1$. N_5 is ON. C_5 becomes 1 (VDD-Vtn), so C_6 becomes 0, so Q=0. $C_4 = 1$, which pulls up C_5 to VDD.

For D=1, Q=0, CLK goes low: $C_3=0$. N_5 is ON. C_5 becomes 0, so C_6 becomes 1, so Q=1. $C_4=0$.

(1) Is it (positive-edge-triggered) or (negative-edge-triggered) or (dual-edge-triggered) or (positive-level-sensitive) or (negative-level-sensitive)? (10 points)

Dual-edge-triggered

(2) Estimate the setup time of the FF for D=0 and $CLK=\mathcal{P}$. (10 points)

Suppose D=1 when CLK=0. Then, N_4 is ON, so $C_2 = 0$. Now, if D becomes 0, P_1 should be turned on so that C_2 becomes 1. Thus, D becomes $0 \to \text{Turn on } P_1$ (delay = $R_{N1} \cdot C_{in}$) \to Charge C_2 (delay = $R_{P1} \cdot C_2$). Then, it is safe for CLK to go high.

Thus, the setup time is $R_{N1} \cdot C_{in} + R_{P1} \cdot C_2$ where C_{in} is the input capacitance of the inverter composed of P_1 and N_4 .

(3) Estimate the setup time of the FF for D=1 and CLK=7. (10 points)

Suppose D=0 when CLK=0. Then, P_1 is ON, so $C_2=1$. Now, if D becomes 1, N_4 should be turned on so that C_2 becomes 0. Thus, D becomes 1 \rightarrow Turn on N_4 (delay = $R_{N1} \cdot C_2$). Then, it is safe for CLK to go high.

Thus, the setup time is $R_{N1} \cdot C_{in} + R_{N4} \cdot C_2$ where C_{in} is the input capacitance of the inverter composed of P_1 and N_4 .

(4) Estimate the hold time of the FF for D=0 and $CLK=\nearrow$. (10 points)

CLK goes high $\to C_1$ goes low, then the change of D does not go through P_1 or N_4 or N_5 . Thus, the hold time is $R_{N7} \cdot C_1$.

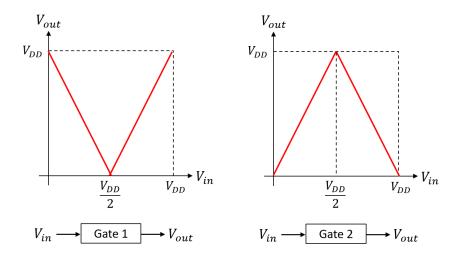
(5) Estimate the hold time of the FF for D=1 and CLK=7. (10 points)

This is the same as (4). $R_{N7} \cdot C_1$.

(6) Estimate the rise delay of the FF for $CLK = \nearrow$. (10 points)

For D=1 and Q=0, $C_2 = 0$ and $C_5 = 1$. If CLK goes high, then C_5 is discharged through N_6 and N_4 . Then, P_4 is turned on and C_6 is charged by P_4 . Thus, the rise delay is approximately $(\mathbf{R}_{N4} + \mathbf{R}_{N6}) \cdot \mathbf{C}_5 + \mathbf{R}_{P4} \cdot \mathbf{C}_6$.

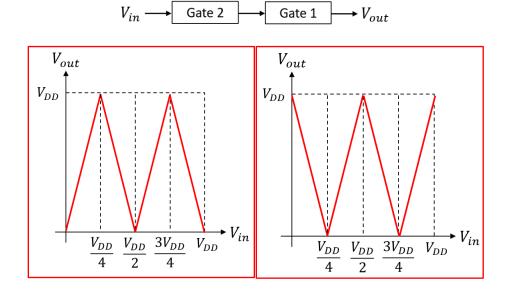
(7) Estimate the fall delay of the FF for $CLK = \mathcal{P}$. (10 points)

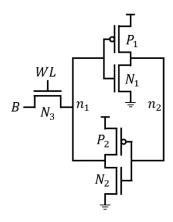

For D=0 and Q=1, $C_2 = 1$ and $C_5 = 0$. If CLK goes high, then C_5 is charged through N_6 and P_1 . Then, N_8 is turned on and C_6 is discharged by N_8 . Thus, the fall delay is approximately $(\mathbf{R}_{P1} + \mathbf{R}_{N6}) \cdot \mathbf{C}_5 + \mathbf{R}_{N8} \cdot \mathbf{C}_6$.

(8) Estimate the power consumption of the FF for D=0 and $CLK=\mathcal{P}$. (10 points)

If CLK goes high, C_1 is discharged. Power = $0.5C_1V_{DD}^2$. $C_2 = 1$, so $0.5C_2V_{DD}^2$. $C_5 = 1$, so $0.5C_5V_{DD}^2$. For the output, $0.5C_6V_{DD}^2$. C_4 is charged too, so $0.5C_4V_{DD}^2$. Thus, the power is $0.5(C_1 + C_2 + C_4 + C_5 + C_6)V_{DD}^2$.

Problem #2 (DC Analysis, 20 points)


The following shows two gates (Gate 1 and Gate 2) and their DC characteristics.


Draw a DC characteristic curve for the following gate. (10 points)

$$V_{in} \longrightarrow Gate 1 \longrightarrow Gate 2 \longrightarrow V_{out}$$

Also, draw a DC characteristic curve for the following gate. (10 points)

Problem #3 (Memory, 70 points)

The figure above shows a 5T SRAM cell. When we write a logic value 1 to the cell, we set B to V_{DD} and \bar{B} to 0V. Similarly, when we write a logic value 0 to the cell, we set B and \bar{B} to 0V and V_{DD} , respectively.

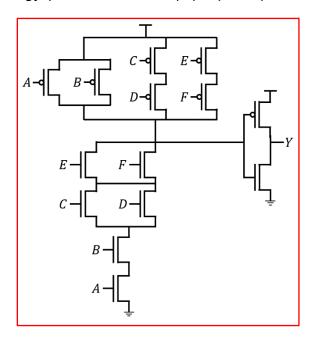
- Threshold voltage of an NFET (or PFET): V_{tn} (or V_{tn}).
- ON resistance of NFET $N_{\#}$ (or PFET $P_{\#}$): $R_{n\#}$ (or $R_{p\#}$).
- Capacitance of node $n_{\#}$: $C_{\#}$.
- (1) Show an inequality to be able to write a logical value 1 to the cell. (10 points)

 $n_1=0$ and $n_2=1$. When, B=1, N_3 and N_2 form a resistive network between V_{DD} and GND. If n_1 can be charged to V_{tn} , then N_1 will be turned on, so n_2 decreases from V_{DD} to $V_{DD}-\delta$, which will start turning off N_2 . Thus, $V_{DD}\cdot \frac{R_{n2}}{R_{n2}+R_{n3}}\geq V_{tn}$.

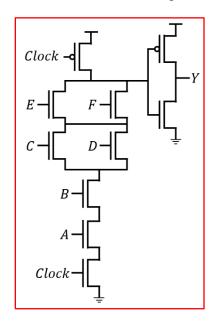
(2) Show an inequality to be able to write a logical value 0 to the cell. (10 points)

 $n_1=1$ and $n_2=0$. When, B=0, N_3 and P_2 form a resistive network between V_{DD} and GND. If n_1 can be discharged to $V_{DD}-\left|V_{tp}\right|$, then P_1 will be turned on, so n_2 increases from 0 to δ , which will start turning off P_2 . Thus, $V_{DD} \cdot \frac{R_{n3}}{R_{n3}+R_{n2}} \leq V_{DD}-\left|V_{tp}\right|$.

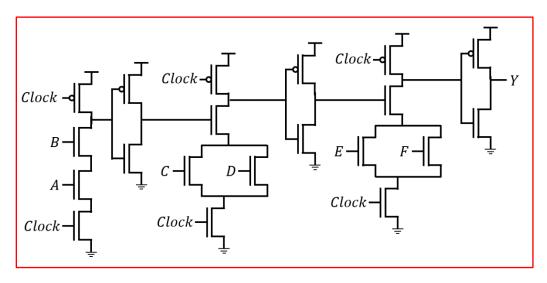
(3) Suppose the cell has a logical value 0. We write a logical value 1 to the cell and then write a logical value 0 to the cell. Estimate the total energy consumption (use C_1 and C_2). (10 points)


$$(C_1 + C_2)V_{DD}^2$$

Answer the following questions. Correct: +4 points, Wrong: -4 points, No answer: 0 points, Min: 0 points. You can ignore the parasitic capacitances of the transistors.


- (4) If we increase the width of P_1 , the delay for writing 1 to the cell goes down. (Yes / No)
- (5) If we increase the width of N_1 , the delay for writing 1 to the cell goes down. (Yes / No)
- (6) If we increase the width of P_2 , the delay for writing 1 to the cell goes down. (Yes / No)
- (7) If we increase the width of N_2 , the delay for writing 1 to the cell goes down. (Yes / No)
- (8) If we increase the width of N_3 , the delay for writing 1 to the cell goes down. (Yes / No)
- (9) If we increase the width of P_1 , the delay for writing 0 to the cell goes down. (Yes / No)
- (10) If we increase the width of N_1 , the delay for writing 0 to the cell goes down. (Yes / No)
- (11) If we increase the width of P_2 , the delay for writing 0 to the cell goes down. (Yes / No)
- (12) If we increase the width of N_2 , the delay for writing 0 to the cell goes down. (Yes / No)
- (13) If we increase the width of N_3 , the delay for writing 0 to the cell goes down. (Yes / No)

Problem #4 (Logic Design, 40 points)


(1) Design $Y = \{A \cdot B \cdot (C + D)\} \cdot (E + F)$. Available input: A, B, C, D, E, F. Use the static CMOS design methodology (draw a schematic). (10 points)

(2) Design Y using the dynamic CMOS design methodology (draw a schematic). Available input: $A, B, C, D, E, F, clock, \overline{clock}$. You can ignore charge sharing. (10 points)

(3) Now, you have a design constraint, "the number of NFETs connected in series in any discharging path from any (internal) output to the ground should be less than or equal to three." Design Y using the domino logic technique (draw a schematic). Available input: $A, B, C, D, E, F, clock, \overline{clock}$. Ignore charge sharing. Try to minimize # TRs in your design. (20 points)

Problem #5 (Energy, 20 points)

The following shows two different designs for $Y = A \cdot B \cdot D$.

C is the capacitance of each net. You can ignore parasitic capacitances inside the gates.

A, B, and D switch from 0 to 1 or from 1 to 0, or just stay at 0 or 1. The probabilities of $0\rightarrow 0$ (staying at 0), $0\rightarrow 1$, $1\rightarrow 0$, and $1\rightarrow 1$ (staying at 1) are all equal (25%). Compare the energy consumption of (a) and (b).

For (a)

n stays at 0:
$$(A,B)=(0,0)\rightarrow(0,0)$$
, $(0,1)$, $(1,0)$. $(0,1)\rightarrow(0,0)$, $(0,1)$, $(1,0)$. $(1,0)\rightarrow(0,0)$, $(0,1)$, $(1,0)$. = 9/16

n stays at 1:
$$(A,B)=(1,1)\rightarrow(1,1)$$
. = 1/16

n switches from 0 to 1: (A,B) switches from (0,0), (0,1), (1,0) to (1,1). = 3/16

n switches from 1 to 0: (A,B) switches from (1,1) to (0,0), (0,1), (1,0). = 3/16.

Y switches from 0 to 1: (n,D) switches from (0,0), (0,1), (1,0) to (1,1).

Y switches from 1 to 0: (n,D) switches from (1,1) to (0,0), (0,1), (1,0).

$$(n,D)$$
: $(0,0) \rightarrow (1,1)$: $3/16 * 1/4 = 3/64$

$$(n,D)$$
: $(0,1)\rightarrow (1,1)$: $3/16 * 1/4 = 3/64$

$$(n,D)$$
: $(1,0) \rightarrow (1,1)$: $1/16 * 1/4 = 1/64$

Thus, Y switches from 0 to 1 with the probability of 7/64. Similarly, Y switches from 1 to 0 with the probability of 7/64. Y's switching probability: 14/64.

n's switching probability: 6/16.

Thus, the energy consumption is $\left(\frac{14}{64} + \frac{6}{16}\right) \cdot C \cdot V_{DD}^2 = \frac{38}{64} C V_{DD}^2$

For (b)

Y switches from 0 to 1: (A,B,D): (0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), $(1,1,0) \rightarrow (1,1,1)$. = 7/64

Similarly, Y switches from 1 to 0: = 7/64.

Thus, the energy consumption is $\left(\frac{7}{64} + \frac{7}{64}\right) \cdot C \cdot V_{DD}^2 = \frac{14}{64}CV_{DD}^2$