EE466

VLSI System Design

Midterm Exam

Nov. 11, 2022. (4:20pm - 5:35pm)

Instructor: Dae Hyun Kim (<u>daehyun@eecs.wsu.edu</u>)

Name:

WSU ID:

Problem	Points	
1	10	
2	10	
3	10	
4	10	
5	20	
6	10	
7	10	
Total	80	

^{*} Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches

^{*} Not allowed: Electronic devices (smart phones, tablet PCs, laptops, etc.) except calculators and watches

Problem #1 (Kogge-Stone Adder, 10 points)

For the 128-bit Kogge-Stone adder, show one of the critical paths to calculate S_{77} . What is the delay of the critical path? Use the following delay values for logic gates.

- 2-input AND, OR: d
- XOR: 2d

$$S_{77} = p_{77} \oplus C_{77}$$

$$C_{77} = g_{76:0} + p_{76:0} \cdot C_0$$

$$g_{76:0} = g_{76:13} + p_{76:13} \cdot g_{12:0}$$

$$g_{76:13} = g_{76:45} + p_{76:45} \cdot g_{44:13}$$

$$g_{76:45} = g_{76:61} + p_{76:61} \cdot g_{60:45}$$

$$g_{76:61} = g_{76:69} + p_{76:69} \cdot g_{68:61}$$

$$g_{76:69} = g_{76:73} + p_{76:73} \cdot g_{72:69}$$

$$g_{76:73} = g_{76:75} + p_{76:75} \cdot g_{74:73}$$

$$g_{76:75} = g_{76} + p_{76} \cdot g_{75}$$
 Delay: 2d (for p_{76}) + d (for $p_{76} \cdot g_{75}$) + d (for $g_{76} + p_{76} \cdot g_{75}$)
$$g_{76:73} \cdot +2d, g_{76:69} \cdot +2d, g_{76:61} \cdot +2d, g_{76:45} \cdot +2d, g_{76:13} \cdot +2d, g_{76:0} \cdot +d, C_{77} \cdot +d, S_{77} \cdot +2d$$

Answer: 18d

Problem #2 (Kogge-Stone Adder, 20 points)

Count the # following gates required to implement the 16-bit Kogge-Stone adder (including the generation of C_{16}).

- 2-input AND gates:
- 2-input OR gates:
- 2-input XOR gates:

```
g_i = A_i \cdot B_i: one AND \rightarrow 16 ANDs
```

$$p_i = A_i \oplus B_i$$
: one XOR \rightarrow 16 XORs

 $C_i = g_{i-1:0} + p_{i-1:0} \cdot C_0$: one OR and one AND \rightarrow 16 ORs and 16 ANDs

 $s_i = p_i \oplus C_i$: one XOR gate \rightarrow 16 XOR gates

The rest of them will be for the generation of group generation and propagation signals. Notice that generating a $g_{i:k}$ from its parents requires one AND and one OR gates, and generating a $p_{i:k}$ from its parents requires one AND gate.

 $g_{i+1:i}$ and $p_{i+1:i}$: 2 ANDs and 1 OR (for i=0 to 14)

 $g_{i+3:i}$ and $p_{i+3:i}$: 2 ANDs and 1 OR (for i=0 to 12)

 $g_{i+7:i}$ and $p_{i+7:i}$: 2 ANDs and 1 OR (for i=0 to 8)

 $g_{i+15:i}$ and $p_{i+15:i}$: 2 ANDs and 1 OR (for i=0)

 $g_{2:0}$ and $p_{2:0}$: 2 ANDs and 1 OR

 $g_{4:0}$ and $p_{4:0}$: 2 ANDs and 1 OR

 $g_{5:0}$ and $p_{5:0}$: 2 ANDs and 1 OR

 $g_{6:0}$ and $p_{6:0}$: 2 ANDs and 1 OR

 $g_{8:0}$ and $p_{8:0}$: 2 ANDs and 1 OR

 $g_{9:0}$ and $p_{9:0}$: 2 ANDs and 1 OR

 $g_{
m 10:0}$ and $p_{
m 10:0}$: 2 ANDs and 1 OR

 $g_{11:0}$ and $p_{11:0}$: 2 ANDs and 1 OR

 $g_{12:0}$ and $p_{12:0}$: 2 ANDs and 1 OR

 $g_{13:0}$ and $p_{13:0}$: 2 ANDs and 1 OR

 $g_{\rm 14:0}$ and $p_{\rm 14:0} :$ 2 ANDs and 1 OR

AND: 16 + 16 + 15*2 + 13*2 + 9*2 + 1*2 + 11*2 = 130

OR: 16 + 15*1 + 13*1 + 9*1 + 1*1 + 11*1 = 65

XOR: 32

Problem #3 (Carry-Lookahead Adder, 10 points)

For the 128-bit Carry-lookahead adder, show one of the critical paths to calculate S_{77} . What is the delay of the critical path? Use the following delay values for logic gates.

- 2-, 3-, 4-input AND, OR: d
- XOR: 2d

$$S_{77} = p_{77} \oplus C_{77}$$

$$C_{77} = g_{76} + p_{76} \cdot C_{76}$$

$$C_{76} = g_{75:72} + p_{75:72} \cdot g_{71:68} + p_{75:72} \cdot p_{71:68} \cdot g_{67:64} + p_{75:72} \cdot p_{71:68} \cdot p_{67:64} \cdot C_{64}$$

$$C_{64} = g_{63:0} + p_{63:0} \cdot C_{0}$$

$$g_{63:0} = g_{63:48} + p_{63:48} \cdot g_{47:32} + p_{63:48} \cdot p_{47:32} \cdot g_{31:16} + p_{63:48} \cdot p_{47:32} \cdot p_{31:16} \cdot g_{15:0}$$

$$g_{15:0} = g_{15:12} + p_{15:12} \cdot g_{11:8} + p_{15:12} \cdot p_{11:8} \cdot g_{7:4} + p_{15:12} \cdot p_{11:8} \cdot p_{7:4} \cdot g_{3:0}$$

$$g_{3:0} = g_{3} + p_{3} \cdot g_{2} + p_{3} \cdot p_{2} \cdot g_{1} + p_{3} \cdot p_{2} \cdot p_{1} \cdot g_{0}$$

$$p_{3} = A_{3} \oplus B_{3}$$

Delay: 2d (for p_3) + 2d (for $g_{3:0}$) + 2d (for $g_{15:0}$) + 2d (for $g_{63:0}$) + d (for G_{64}) + 2d (for G_{76}) + 2d (for G_{77})

Answer: 15d

Problem #4 (Carry-Lookahead Adder, 20 points)

Count the # following gates required to implement the 16-bit Carry-Lookahead adder (including the generation of C_{16}).

- 2,3,4-input AND gates (i.e., # 2-input ANDs + # 3-input ANDs + # 4-input ANDs):
- 2,3,4-input OR gates:
- 2-input XOR gates:

$$g_i = A_i \cdot B_i$$
: one AND \rightarrow 16 ANDs

$$p_i = A_i \oplus B_i$$
: one XOR \rightarrow 16 XORs

$$s_i = p_i \oplus C_i$$
: one XOR \rightarrow 16 XORs

In each level-1 carry-lookahead unit (there are four L-1 units, i=0,4,8,12)

- $g_{i+1:i} = g_{i+1} + p_{i+1} \cdot g_i$
- $\bullet \quad p_{i+1:i} = p_{i+1} \cdot p_i$
- $g_{i+2:i} = g_{i+2} + p_{i+2} \cdot g_{i+1} + p_{i+2} \cdot p_{i+1} \cdot g_i$
- $p_{i+2:i} = p_{i+2} \cdot p_{i+1} \cdot p_i$
- $g_{i+3:i} = g_{i+3} + p_{i+3} \cdot g_{i+2} + p_{i+3} \cdot p_{i+2} \cdot g_{i+1} + p_{i+3} \cdot p_{i+2} \cdot p_{i+1} \cdot g_i$
- $p_{i+3:i} = p_{i+3} \cdot p_{i+2} \cdot p_{i+1} \cdot p_i$
- $\bullet \quad C_{i+1} = g_i + p_i \cdot C_i$
- $C_{i+2} = g_{i+1:i} + p_{i+1:i} \cdot C_i$
- $C_{i+3} = g_{i+2:i} + p_{i+2:i} \cdot C_i$

In each level-2 carry-lookahead unit (there is one L-2 unit)

- $C_4 = g_{3:0} + p_{3:0} \cdot C_0$
- $C_8 = g_{7:4} + p_{7:4} \cdot g_{3:0} + p_{7:4} \cdot p_{3:0} \cdot C_0$
- $C_{12} = g_{11:8} + p_{11:8} \cdot g_{7:4} + p_{11:8} \cdot p_{7:4} \cdot g_{3:0} + p_{11:8} \cdot p_{7:4} \cdot p_{3:0} \cdot C_0$
- $g_{15:0} = g_{15:12} + p_{15:12} \cdot g_{11:8} + p_{15:12} \cdot p_{11:8} \cdot g_{7:4} + p_{15:12} \cdot p_{11:8} \cdot p_{7:4} \cdot g_{3:0}$
- $\bullet \quad p_{15:0} = p_{15:12} \cdot p_{11:8} \cdot p_{7:4} \cdot p_{3:0}$

In a level-3 unit

•
$$C_{16} = g_{15:0} + p_{15:0} \cdot C_0$$

Answer:

AND: 16 + 48 + 10 + 1 = 75

OR: 24 + 4 + 1 = 29

XOR: 16 + 16 = 32

Problem #5 (Ripple-Carry Adder, 10 points)

For the 128-bit ripple-carry adder, estimate the delay of the critical path to compute S_{127} . Use the following delay values for logic gates.

- 2-input AND, OR: d
- XOR: 2d

Use the following expressions for the computation of each carry signal.

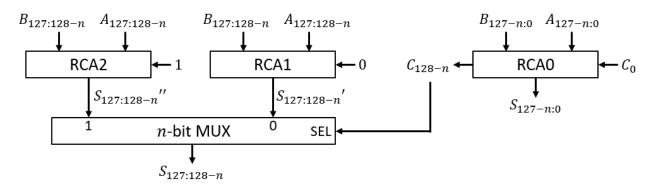
- $g_i = A_i \cdot B_i$
- $p_i = A_i \oplus B_i$
- $C_{i+1} = g_i + p_i \cdot C_i$
- $S_i = p_i \oplus C_i$

 p_0 : 2d

 C_1 : +2d

 C_2 : +2d

. . .


C₁₂₇: +2d

 S_{127} : +2d

Answer: 258d

Problem #6 (Ripple-Carry Adder, 20 points)

We want to design a 128-bit adder as follows. First, we split it into n bits (MSBs) and 128-n bits (LSBs). Then, we add $A_{127-n:0}$, $B_{127-n:0}$, and C_0 using a (128-n)-bit ripple-carry adder (RCA0). At the same time, we add $A_{127:128-n}$, $B_{127:128-n}$, 0 in an n-bit RCA (RCA1), and also add $A_{127:128-n}$, $B_{127:128-n}$, 1 in another n-bit RCA (RCA2). The following shows a schematic of this adder.

Use the following delay values for logic gates.

- 2-input AND, OR: d
- XOR: 2d
- MUX: 3d

Use the following expressions for the computation of each carry signal.

- $g_i = A_i \cdot B_i$
- $p_i = A_i \oplus B_i$
- $\bullet \quad C_{i+1} = g_i + p_i \cdot C_i$
- $S_i = p_i \oplus C_i$
- (1) Calculate the delay of C_{128-n} . (Note: It should include n.)

 p_0 : 2d

 C_1 : +2d

. . .

 C_{128-n} : +2d

Answer: $2d + 2d^*(128-n) = 258d - 2dn$

(2) Calculate the delay of S_{127} '. (Note: It should include n.)

 p_{128-n} : 2d

 C_{129-n} : +2d

...

C₁₂₇: +2d

 S_{127} : +2d

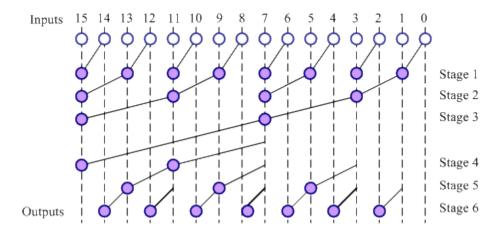
Answer: $2d + 2d^*(n-1) + 2d = 2d + 2dn$

(3) Calculate the delay of S_{127} for n=64. (Note: the delay of S_{127}'' is equal to that of S_{127}' .)

Delay of C_{64} : 130d

Delay of *S*₁₂₇': 130d

Answer: 130d + 3d (MUX) = 133d


(4) Calculate the delay of S_{127} for n > 64. (Note: It should include n.)

If n>64, S_{127} is the critical path, so the delay is 2d + 2dn + 3d = 5d + 2dn.

Problem #7 (Prefix Adder, 10 points)

Count the # following gates required to implement the 16-bit Brent-Kung adder shown below (including the generation of C_{16}).

- 2-input AND gates:
- 2-input OR gates:
- 2-input XOR gates:

 $g_i = A_i \cdot B_i$: one AND \rightarrow 16 ANDs

 $p_i = A_i \oplus B_i$: one XOR \rightarrow 16 XORs

 $C_i = g_{i-1:0} + p_{i-1:0} \cdot C_0$: one OR and one AND \rightarrow 16 ORs and 16 ANDs

 $s_i = p_i \oplus C_i$: one XOR gate \rightarrow 16 XOR gates

Each purple circle generates $g_{i:k}$ and $p_{i:k}$ from two group generation and propagation signals. Thus, each purple circle has two ANDs and 1 OR (one AND for $p_{i:k}$, and one AND and one OR for $g_{i:k}$).

There are 26 purple circles => 26*(2 ANDs and 1 OR) = 52 ANDs and 26 ORs

AND: 16 + 16 + 52 = 84

OR: 16 + 26 = 42

XOR: 32