Homework Assignment 2

(Due 2:10pm, Sep. 27, email to daehyun.kim@wsu.edu or submit a hardcopy)

You can use the following instruction only for this homework.

- Instructions
 - o ADD R\$, R%, R&
 - o ADD R\$, R%, #imm (#imm is a constant)
 - o AND R\$, R%, R& // logical AND
 - o AND R\$, R%, #imm (#imm is a constant)
 - ORR R\$, R%, R& // logical OR
 - ORR R\$, R%, #imm (#imm is a constant)
 - o EOR R\$, R%, R& // logical XOR
 - o EOR R\$, R%, #imm (#imm is a constant)
- 1. (20 points) Generate the following output signal Y from the input signal A using the instruction above. You can assume that A and Y are 4-bit registers.
 - $A = a_3 a_2 a_1 a_0$ (stored in R0)
 - $Y = 01a_1\overline{a_0}$ (store Y in R2)

AND R2, R0, #0x7 // R2 =
$$0a_2a_1a_0$$

ORR R2, R2, #0x4 // R2 = $01a_1a_0$
EOR R2, R2, #0x1 // R2 = $01a_1\overline{a_0}$

- 2. (30 points) Generate the following output signal Y from the input signals A and B using the instruction above. You can assume that A, B, and Y are 4-bit registers.
 - $A = a_3 a_2 a_1 a_0$ (stored in R0)
 - $B = b_3 b_2 b_1 b_0$ (stored in R1)
 - $Y = \{a_3 \& b_3\}\{a_2 | b_2\}\{a_1\}\{b_0\}$ (store Y in R2). In other words, if $Y = y_3 y_2 y_1 y_0$, then
 - o $y_3 = a_3$ AND b_3
 - $y_2 = a_2 \text{ OR } b_2$
 - $y_1 = a_1$
 - o $y_0 = b_0$

AND R3, R0, R1 // R3 =
$$\{a_3 \& b_3\}XXX$$

AND R3, R3, #0x8 // R3 = $\{a_3 \& b_3\}000$
ORR R4, R0, R1 // R4 = $X\{a_2|b_2\}XX$

```
AND R4, R4, #0x4  // R4 = 0\{a_2|b_2\}00

ORR R2, R3, R4  // R2 = \{a_3\&b_3\}\{a_2|b_2\}00

AND R3, R0, #0x2  // R3 = 00a_10

ORR R2, R3, R2  // R2 = \{a_3\&b_3\}\{a_2|b_2\}a_10

AND R3, R1, #0x1  // R3 = 000b_0

ORR R2, R3, R2  // R2 = \{a_3\&b_3\}\{a_2|b_2\}a_1b_0
```

- 3. (50 points) Generate the following output signal Y from the input signals A and B using the instruction above. You can assume that A, B, and Y are 4-bit registers.
 - $A = a_3 a_2 a_1 a_0$ (stored in R0)
 - $B = b_3 b_2 b_1 b_0$ (stored in R1)
 - Y = A + 2 if B is an even number and A + 1 if B is an odd number. (store Y in R2) • (You don't need to worry about overflows.)

ORR R3, R1, #0xE // R3 = 111
$$b_0$$

EOR R3, R3, #0xF // R3 = $000\overline{b_0}$
ADD R2, R0, #0x1 // R2 = $A + 1$
ADD R2, R2, R3 // R2 = $A + \overline{b_0}$

If B is even, b_0 is 0 (i.e., $\overline{b_0} = 1$). In this case, we add 2 to A.

If B is odd, b_0 is 1 (i.e., $\overline{b_0} = 0$). In this case, we add 1 to A.

Thus, we first add 1 to A unconditionally, and then add $\overline{b_0}$ to A.