Homework Assignment 2

(Due 2:10pm, Sep. 27, email to daehyun.kim@wsu.edu or submit a hardcopy)
You can use the following instruction only for this homework.

- Instructions
- ADD R\$, R\%, R\&
- ADD R\$, R\%, \#imm (\#imm is a constant)
- AND R\$, R\%, R\& // logical AND
- AND R\$, R\%, \#imm (\#imm is a constant)
- ORR R\$, R\%, R\& // logical OR
- ORR R\$, R\%, \#imm (\#imm is a constant)
- EOR R\$, R\%, R\& // logical XOR
- EOR R\$, R\%, \#imm (\#imm is a constant)

1. (20 points) Generate the following output signal Y from the input signal A using the instruction above. You can assume that A and Y are 4-bit registers.

- $A=a_{3} a_{2} a_{1} a_{0}$ (stored in R0)
- $Y=01 a_{1} \overline{a_{0}}$ (store Y in R2)

AND R2, R0, \#0x7 // R2 $=0 a_{2} a_{1} a_{0}$
ORR R2, R2, \#0x4 // R2 = $01 a_{1} a_{0}$
EOR R2, R2, \#0x1 // R2 = $01 a_{1} \overline{a_{0}}$
2. (30 points) Generate the following output signal Y from the input signals A and B using the instruction above. You can assume that A, B, and Y are 4-bit registers.

- $A=a_{3} a_{2} a_{1} a_{0}$ (stored in R0)
- $B=b_{3} b_{2} b_{1} b_{0}$ (stored in R1)
- $Y=\left\{a_{3} \& b_{3}\right\}\left\{a_{2} \mid b_{2}\right\}\left\{a_{1}\right\}\left\{b_{0}\right\}$ (store Y in R2). In other words, if $Y=y_{3} y_{2} y_{1} y_{0}$, then
- $y_{3}=a_{3}$ AND b_{3}
- $y_{2}=a_{2}$ OR b_{2}
- $y_{1}=a_{1}$
- $y_{0}=b_{0}$

AND R3, R0, R1 // R3 $=\left\{a_{3} \& b_{3}\right\} X X X$
AND R3, R3, \#0x8 // R3 $=\left\{a_{3} \& b_{3}\right\} 000$
ORR R4, R0, R1 // R4 = $X\left\{a_{2} \mid b_{2}\right\} X X$

AND R4, R4, \#0x4 // R4 $=0\left\{a_{2} \mid b_{2}\right\} 00$
ORR R2, R3, R4 // R2 = \{a, \& $\left.b_{3}\right\}\left\{a_{2} \mid b_{2}\right\} 00$
AND R3, R0, \#0x2 // R3 = $00 a_{1} 0$
ORR R2, R3, R2 // R2 $=\left\{a_{3} \& b_{3}\right\}\left\{a_{2} \mid b_{2}\right\} a_{1} 0$
AND R3, R1, \#0x1 // R3 = $000 b_{0}$
ORR R2, R3, R2 // R2 $=\left\{a_{3} \& b_{3}\right\}\left\{a_{2} \mid b_{2}\right\} a_{1} b_{0}$
3. (50 points) Generate the following output signal Y from the input signals A and B using the instruction above. You can assume that A, B, and Y are 4-bit registers.

- $A=a_{3} a_{2} a_{1} a_{0}$ (stored in R0)
- $B=b_{3} b_{2} b_{1} b_{0}$ (stored in R1)
- $\quad Y=A+2$ if B is an even number and $A+1$ if B is an odd number. (store Y in R2) - (You don't need to worry about overflows.)

ORR R3, R1, \#0xE // R3 = $111 b_{0}$
EOR R3, R3, \#0xF // R3 = $000 \overline{b_{0}}$
ADD R2, R0, \#0x1 // R2 = $A+1$
ADD R2, R2, R3 $/ / \mathrm{R} 2=A+\overline{b_{0}}$

If B is even, b_{0} is 0 (i.e., $\overline{b_{0}}=1$). In this case, we add 2 to A.
If B is odd, b_{0} is 1 (i.e., $\overline{b_{0}}=0$). In this case, we add 1 to A.
Thus, we first add 1 to A unconditionally, and then add $\overline{b_{0}}$ to A.

