Homework Assignment 2

(Due 2:10pm, Oct. 5, email to daehyun.kim@wsu.edu or submit a hardcopy)
You can use the following instructions only for this homework.

- Instructions
- ADD R\$, R\%, R\&
- ADD R\$, R\%, \#imm
- SUB R\$, R\%, R\&
- SUB R\$, R\%, \#imm
- AND R\$, R\%, R\& // logical AND
- AND R\$, R\%, \#imm
- ORR R\$, R\%, R\& // logical OR
- ORR R\$, R\%, \#imm
- EOR R\$, R\%, R\& // logical XOR
- EOR R\$, R\%, \#imm
- CMP R\$, R\%
- CMP R\$, \#imm
- BGE, BLT, BGT, BLE, BEQ, BNE, B
- MOV R\$, R\% // R\$ = R\%
- MOV R\$, \#imm

1. (30 points) Write an assembly code for the following C code .
```
int a, b, c;
switch (a) {
    case 0: b++; break;
    case 1: b--; break;
    case 2: c++; break;
    default: b = 0; c = 1; break;
}
```

- Assume that a is in R0, b is in R1, and c is in R2.
- The exit point (the end of the code) could be just an address label.

CMP R0, \#0
BNE check case 1
ADD R1, R1, \#1
B switch_end
check_case1:
CMP R0, \#1
BNE check_case2
SUB R1, R1, \#1

B switch_end
check_case2:
CMP R0, \#2
BNE check_case3
ADD R2, R2, \#1
B switch_end
default_case:
MOV R1, \#0
MOV R2, \#1
switch_end:
2. (40 points) Write an assembly code for the following C code.

$$
\begin{aligned}
& \text { int } a, b, c ; \\
& \text { for }(a=0 ;(a / 4)<10 ; a=a+2)\{ \\
& b++; \\
& \text { if }(b<c) \\
& b++; \\
& \text { else } \\
& \text { c++; } \\
& \text { if }\left(\left(\begin{array}{c}
\\
\text { (} \% 4)
\end{array}\right.\right. \\
& \text { break; } \\
& \text { \} }
\end{aligned}
$$

- Assume that a is in R0, b is in R1, and c is in R2.
- The exit point (the end of the code) could be just an address label.

MOV R0, \#0 // a = 0
check_for:
MOV R4, R0, LSR \#2 // R4 = a/4
CMP R0, \#10
BGE end for
ADD R1, R1, \#1 // b++
CMP R1, R2
BGE if_else
ADD R1, R1, \#1 // b++
B next_if
if_else:
ADD R2, R2, \#1 // c++
next_if:

AND R4, R4, \#0x03 // c \% 4
CMP R4, \#1
BEQ end_for
ADD R0, R0, \#2 // $\mathrm{a}=\mathrm{a}+2$
B check_for
end_for:
3. (50 points) Write an assembly code for the following C code.

$$
\begin{aligned}
& \text { int } a, b, c ; \\
& \begin{array}{l}
a=1 ; \\
b=2 ; \\
c=3 ; \\
\text { while }(a<10)\{ \\
\text { while }(b<20)\{ \\
\text { if }(c<30) \\
\quad c++; \\
\text { else } \\
\quad c+=2 ; \\
\text { } \\
\text { b++; } \\
\} \\
\text { a++; } \\
\}
\end{array}
\end{aligned}
$$

- Assume that a is in $R 0, b$ is in $R 1, c$ is in $R 2$, and n is in R3.
- The exit point (the end of the code) could be just an address label.

MOV R0, \#1 // $\mathrm{a}=1$
MOV R1, \#2 // b=2
MOV R2, \#3 // c=3
check_whilel:
CMP R0, \#10
BGE end_while1
check_while2:
CMP R1, \#20
BGE end_while2
check_if:
CMP R2, \#30
BLT exe_if
ADD R2, R2, \#2 // c + = 2
B end_if
exe_if:

ADD R2, R2, \#1 // c++ end if:

ADD R1, R1, \#1 // b++
B check_while2
end_while2:
ADD R0, R0, \#1 // a++;
B check_while1
end_while1:

