Homework Assignment 1

(Due 2:10pm, Sep. 18, scan (or take a photo) and upload it in Canvas)

You can use the following instructions only.

R# is a register. (# = $0 \sim 12$)

Instruction	Meaning	
MVN Rd, Ra	Bitwise inversion. (Rd = Bitwise-NOT Ra)	
	Before 0 0 0 1 1 0 0 After 1 1 1 0 0 1 1 1	
	Bitwise AND. (Rd = Ra AND Rb), (Rd = Ra AND #imm)	
AND Rd, Ra, Rb AND Rd, Ra, #imm	Ra 0 0 0 1 1 1 1	
	Rb 1 1 1 1 0 1 1 1	
	Rd 0 0 0 0 0 1 1 1	
	Bitwis <u>e OR. (Rd = Ra OR Rb), (Rd = Ra O</u> R #imm)	
ORR Rd, Ra, Rb ORR Rd, Ra, #imm	Ra 0 0 0 0 1 1 0 0	
	Rb 1 1 0 1 0 0 1 0	
	Rd 1 1 0 1 1 1 0	
	Bitwise exclusive-OR. (Rd = Ra \oplus Rb), (Rd = Ra \oplus #imm)	
EOR Rd, Ra, Rb EOR Rd, Ra, #imm	Ra 0 1 0 1 0 1 0 1	
	Rb 1 1 0 1 0 1 0	
	Rd 1 0 0 0 1 1 1	
MOV Rd, Ra, LSR #imm	Logical shift right by (#imm) bits. (Rd = Ra >> #imm)	
	Ex) #Imm = 3	
MOV Rd, Ra, LSL #imm	Ex) $\#$ imm = 3	
	Before 1 0 0 0 1 1 0 1	
	After 0 1 1 0 1 0 0 0	
MOV Rd, Ra	(Rd = Ra)	
MOV Rd, #imm	(Rd = #imm)	
ADD Rd, Ra, Rb	(Rd = Ra + Rb)	
ADD Rd, Ra, #imm	(Rd = Ra + #imm)	
SUB Rd, Ra, Rb	(Rd = Ra - Rb)	
SUB Rd, Ra, #Imm	(Ka = Ka - #Imm)	

1. (20 points) The following shows the values in the registers R0-R3.

R0: 1

R1: 2

R2: 3

R3: 4

Show the values of R0-R3 after the following code is executed.

Code:

ADD R0, R0, R1	//R0 = 1 + 2 = 3
SUB R1, R3, R2	// R1 = 4 - 3 = 1
ADD R2, R0, R1	//R2 = 3 + 1 = 4
AND R3, R1, R0	// R3 = 1
EOR R3, R3, R2	$//R3 = (0001) \land (0100) = 0101$

Answer:

R0: 3

R1: 1

R2: 4

R3: 5

2. (20 points) Assume all the number systems are unsigned number systems.

- 1) Represent 85 using the binary number system. 1010101
- 2) Represent 85 using the radix-3 number system. 10011
- 3) Represent 85 using the radix-16 number system. 55
- 4) What is the max. value that can be represented by the 4-digit hex number system? $2^{16} 1 = 65,535$

3. (20 points) $R0 = a_7 a_6 \dots a_0$ and $R1 = b_7 b_6 \dots b_0$. Generate R2 from R0 and R1 (show the instructions). Try to minimize the # instructions.

$$R2 = a_7 b_6 a_5 b_4 a_3 b_2 a_1 b_0$$

AND R3, R0, #10101010b

AND R4, R1, #01010101b

ORR R2, R3, R4

4. (40 points)

1) Use the 8-bit binary number system. Represent 0, 1, 2, ..., 20 using the 8-bit binary number system.

0000 0000

0000 0001

•••

```
0001 0100
```

for that.

2) Find the remainders of ⁰/₄, ¹/₄, ..., ²⁰/₄. Represent them in the 8-bit binary number system.
0
1
2
3
0
1
...
3
0
3) R0 = a₇a₆ ... a₀ is given. When does the remainder of ^{R0}/₄ become 2? Show the condition

```
a_1 a_0 = 10
```