Homework Assignment 1

(Due 2:10pm, Sep. 18, scan (or take a photo) and upload it in Canvas)

You can use the following instructions only.

R# is a register. (# = $0 \sim 12$)

Instruction	Meaning							
MVN Rd, Ra	Bitwise inversion. (Rd = Bitwise-NOT Ra) Before 0 0 0 1 1 0 0 After 1 1 1 1 0 0 1 1							
AND Rd, Ra, Rb AND Rd, Ra, #imm	Bitwise AND. (Rd = Ra AND Rb), (Rd = Ra AND #imm) Ra 0 0 0 1 1 1 1 Rb 1 1 1 1 0 1 1 Rd 0 0 0 0 0 1 1 1							
ORR Rd, Ra, Rb ORR Rd, Ra, #imm	Bitwise OR. (Rd = Ra OR Rb), (Rd = Ra OR #imm) Ra 0 0 0 1 1 1 0 0 Rb 1 1 0 1 1 1 1 0 Rd 1 1 0 1 1 1 1 0							
EOR Rd, Ra, Rb EOR Rd, Ra, #imm	Bitwise exclusive-OR. (Rd = Ra ⊕ Rb), (Rd = Ra ⊕ #imm) Ra							
MOV Rd, Ra, LSR #imm	Logical shift right by (#imm) bits. (Rd = Ra >> #imm) Ex) #imm = 3 Before 1 0 0 0 1 1 0 1 After 0 0 0 1 0 0 0 1							
MOV Rd, Ra, LSL #imm	Logical shift left by (#imm) bits. (Rd = Ra << #imm) Ex) #imm = 3 Before 1 0 0 0 1 1 0 1 After 0 1 1 0 0 0 0							
MOV Rd, Ra MOV Rd, #imm	(Rd = Ra) (Rd = #imm)							
ADD Rd, Ra, Rb ADD Rd, Ra, #imm SUB Rd, Ra, Rb SUB Rd, Ra, #imm	(Rd = Ra + Rb) (Rd = Ra + #imm) (Rd = Ra - Rb) (Rd = Ra - #imm)							

1	(20	noints)	The fol	lowing	shows	the va	lues i	n the	registers	R0-R3
1	. (20	pomisj	1110 101	10 Willig	SHOWS	uic va	iucs i	ii tiiC	registers	10 10

R0: 1

R1: 2

R2: 3

R3: 4

Show the values of R0-R3 after the following code is executed.

ADD R0, R0, R1

SUB R1, R3, R2

ADD R2, R0, R1

AND R3, R1, R0

EOR R3, R3, R2

Answer:

R0:

R1:

R2:

R3:

- 2. (20 points) Assume all the number systems are unsigned number systems.
 - 1) Represent 85 using the binary number system.
 - 2) Represent 85 using the radix-3 number system.
 - 3) Represent 85 using the radix-16 number system.
 - 4) What is the max. value that can be represented by the 4-digit hex number system?
- 3. (20 points) $R0 = a_7 a_6 \dots a_0$ and $R1 = b_7 b_6 \dots b_0$. Generate R2 from R0 and R1 (show the instructions). Try to minimize the # instructions.

$$R2 = a_7 b_6 a_5 b_4 a_3 b_2 a_1 b_0$$

4. (40 points)

- 1) Use the 8-bit binary number system. Represent 0, 1, 2, ..., 20 using the 8-bit binary number system.
- 2) Find the remainders of $\frac{0}{4}$, $\frac{1}{4}$, ..., $\frac{20}{4}$. Represent them in the 8-bit binary number system.
- 3) $R0 = a_7 a_6 \dots a_0$ is given. When does the remainder of $\frac{R0}{4}$ become 2? Show the condition for that.