

EE 234 Microprocessor Systems

Dae Hyun Kim

EECS
Washington State University

Fall 2020

Course Website

- https://learn.wsu.edu
- https://realdigital.org
- Email
 - daehyun.kim@wsu.edu
 - daehyun@eecs.wsu.edu
- Grading
 - https://eecs.wsu.edu/~daehyun/teaching/2020_EE234/grade/
 - https://eecs.wsu.edu/~daehyun/teaching/2020_EE234/grade/XXXXX
 (your own secret code)
 - (send me your 5-letter code (all uppercase) by email)

Themes

- Assembly programming
- How microprocessors work (basic computer architecture)
- From assembly to C/C++
- At the end of this semester, you will be able to
 - Understand how a microprocessor works.
 - Code ARM assembly programs.
 - Understand a basic computer architecture.
 - Understand computer systems.
 - Convert an assembly code to a C/C++ code and vice versa.

References

- M. A. Mazidi, "ARM Assembly Language Programming & Architecture (ARM Books) (Volume 1)", 2016, ISBN 978-0997925906
 - ARM assembly language reference
- D. Patterson, "Computer Organization and Design", 5E, 2013, ISBN 978-0124077263 (MIPS) or 978-0128017333 (ARM) or 978-0128122754 (RISC-V)
 - (Ch. 1 Ch. 4)
- https://realdigital.org

Schedule

Week	Contents
1 (8/24, 26, 28)	Digital systems (logic circuits, embedded systems, VLSI/ASIC, CPU, memory, etc.)
2 (8/31, 9/2, 4)	Computer systems, arithmetic & logical operations
3 (9/9, 11)	Arithmetic & logical operations
4 (9/14, 16, 18)	Assembly programming (arithmetic, logical, memory, I/O)
5 (9/21, 23, 25)	Assembly programming (arithmetic, logical, memory, I/O)
6 (9/28, 30, 10/2)	Assembly programming (branch, jump, comparison)
7 (10/5, 7, 9)	Assembly programming (branch, jump, comparison), Midterm 1
8 (10/12, 14, 16)	C programming
9 (10/19, 21, 23)	Function call, memory management, stack
10 (10/26, 28, 30)	Function call, memory management, stack
11 (11/2, 4, 6)	Pointer in C
12 (11/9, 13)	Pointer in C, Midterm 2
13 (11/16, 18, 20)	Structure, pointer, array
14 (11/23 – 27)	Break
15 (11/30, 12/2, 4)	Structure, pointer, array, project due
16 (12/7, 9, 11)	Compiler, linker, loader
Dec. 15	Final exam (10am – 1pm)

Grading

- Homework assignments: 10%
- Lab assignments (assembly programming): 25%
- Project: 15%
- Midterms 1, 2: 30% (15% each)
- Final: 20%
- All the exams are open-book (you can use whatever you want. Laptops, calculators, books, notes, PPTs, etc.)

Assignments

- Homework & lab assignments
 - Late submission penalty
 - -5%/day
 - maximum -50%
- Labs are very important parts of this course.
 - Lab assignments will be ARM assembly & C programming.
 - No worries! You will learn ARM assembly programming step by step.
 - You will use only basic features of C.
 - You will need a blackboard (https://realdigital.org).
 - TAs will be available only during their office hours.

