
Computer Systems

Dae Hyun Kim

EECS
Washington State University

Primary Hardware Components
o CPU (Central Processing Unit)

o Main memory

o Disk drives
 Hard disk drive (HDD)
 Solid state drive (SSD)

o Input
 Keyboard, mouse, ...

o Output
 Monitor, printer, ...

Primary Software Components
o Operating System

o Compiler

o Linker

o Loader

o Application

How Each Component Works

Hardware – CPU
o Pins
 Input (signals going into the CPU)
 Output (signals coming out from the CPU)
 Power (VDD, GND)

• VDD: High voltage (e.g., 1V)
• GND: Low voltage (e.g., 0V)

Hardware – CPU
o A very simple, conceptual model for CPU operations

1. Place an input data on its data signal pins (input).
2. Place an instruction on its instruction signal pins (input).
3. Provide a clock (then the CPU will run the instruction).
4. Read the data placed on its data signal pins (output).

Time

①②
Instruction: I1

Data: D1

③ ③

Process I1, D1

①②
I2
D2

③

①②
I3
D3

Process I2, D2

③

①②
I4
D4

Process I3, D3

Output 1
is ready

④

Output 2
is ready

④

Output 3
is ready

④

Hardware – CPU
o How do the instructions and data look like?
 10010001000101010101010001000011

o What is it?
 1 0010001 00 010101010101 00010 00011

 Add 1,365 and the value stored in the source register.
• (A register is a temporary memory space. We will study that later.)

 Store the result in the destination register.

o If an instruction is given, how can we find out what it means?
 00000100110101111110001110000011

64bit
data

ADD Some
code

Immediate
(value 1,365)

Source
Register

Destination
Register

Hardware – CPU
o Instruction Set Architecture (ISA)
 The ISA of a CPU defines

• All the instructions the CPU can perform (addition, subtraction, ...)
• The formats of the instructions and their machine codes (0110001...)

Hardware – CPU
o Yes, we can run a program like that.

o However, we want to automate the whole process. How?
 Instructions, data: Store them in memory.
 Tell the CPU to fetch the instruction stored at a certain memory address

and run it.
 Then, tell the CPU where the next instruction is.

Hey, CPU, run the instruction stored @ 0x0000.

CPU fetches the instruction from the memory and run it.

Hey, CPU, run the instruction stored @ 0x0004.

CPU fetches the instruction from the memory and run it.

Hey, CPU, run the instruction stored @ 0x0008.

Hardware – Memory (DRAM)
o Pins
 Input (signals going into the memory)
 Output (signals coming out from the memory)
 Power (VDD, GND)

• VDD: High voltage (e.g., 1V)
• GND: Low voltage (e.g., 0V)

Hardware – Memory
o Abstract model

Address

Data
(input)

Control
(write/read/...)

Data
(output)

Bit 0 (LSB, Least Significant Bit)

...

Bit 31 (MSB, Most Significant Bit)

...

0x0000
Address

0x0004
0x0008
0x000C
0x0010
0x0014

0xFFFC

0 1 1 0 0 1

Clock

Word

Hardware – Memory
o How to calculate the size of a given memory chip
 Word (data) width: 𝑤𝑤 (bits)
 # words: 𝑘𝑘

 Size: 𝑘𝑘 � 𝑤𝑤 (bits) =𝑘𝑘�𝑤𝑤
8

(Bytes)

 Example
• 𝑤𝑤 = 32

• 𝑘𝑘 = 216

4
= 214

• 𝑠𝑠 = 219 bits = 216 Bytes = 26 KBytes = 32 KBytes

o If the address bus has 32 bits, what’s the max. memory capacity it
can support?
 Answer: 4GB

Bit 0 (LSB, Least Significant Bit)

...

Bit 31 (MSB, Most Significant Bit)

...

0x0000
Address

0x0004
0x0008
0x000C
0x0010
0x0014

0xFFFC

0 1 1 0 0 1

Hardware – CPU and Memory (DRAM)
o Now, we know how a CPU chip and a memory chip look like.
o Let’s connect them.

o Finally, we can automatically run a program.
 Load your program and data into the main memory.
 Then

CPU DRAM

Address, control

Data (write)

Data (read)

Hey, CPU, run the instruction stored @ 0x0000.

CPU fetches the instruction from the memory and run it.

Hey, CPU, run the instruction stored @ 0x0004.

CPU fetches the instruction from the memory and run it.

Hey, CPU, run the instruction stored @ 0x0008.

Hardware – CPU and Memory (DRAM)
o CPUs are fast (high-speed).
 Running an instruction takes one clock cycle (~300ps).

o Memory is slow (low-speed).
 Loading a data takes several hundreds of clock cycles.

o Question
 Why can’t we integrate a large amount of memory in a CPU?

o Solution
 Let’s have a small, but fast memory inside a CPU.

Hardware – CPU
o Register File (RF)
 A register is a memory space that can store a word.
 A register file is a set of registers.

o The input/output behavior of an RF is very similar to that of the
abstract model of a general memory chip.

o Since RF should be very fast, RF has only a few registers (16~32).

R15
R14
R13

R1
R0

...

Hardware – CPU
o Comparison with vs. without RF
 Instructions: Add data1 (stored @ memory address 0x4000), data2 (@

0x4004), data3 (@ 0x4008), and data4 (@0x400C), then store the result
@ 0x5000.

 Let’s assume that a memory instruction takes 200 clock cycles.

Without RF (1,803 cycles) With RF (1,003 cycles)

Load data @ 0x4000 to R1
Load data @ 0x4004 to R2
Add the two and store to R3

Load data @ 0x4008 to R1
Load data @ 0x400C to R2
Add the two and store to R4

Add R3, R4 and store to R1

Store R5 @ 0x5000

Load data @ 0x4000
Load data @ 0x4004
Add the two
Store @ 0x8000

Load data @ 0x4008
Load data @ 0x400C
Add the two
Store @ 0x8004

Load data @ 0x8000
Load data @ 0x8004
Add the two
Store @ 0x5000

+200 cycles
+200
+1
+200

+200
+200
+1
+200

+200
+200
+1
+200

+200
+200
+1

+200
+200
+1

+1

+200

Hardware – CPU and Memory (DRAM)
o Summary
 A CPU has a Register File (RF) consisting of 16~32 registers.
 To perform a task in a CPU, you should

• Load the data from the memory
• Store it in the RF
• Perform a task (addition, subtraction, ...) on the registers
• Store the result back to the RF
• Store the result back to the memory (if necessary)

 RFs are small, RFs should be used only for temporary space.
 All the instructions and data should be stored in the main memory.

• We will study this later.
• For now, we will assume that a program and its data are stored in the memory.

 A CPU has an instruction set architecture (ISA).
• We will study this later.

 How to run a program automatically
• Hey, CPU, the next instruction is @ X. Do it. Then, the next instruction is @ Y. ...

Software – Application Programming
o Let’s make a small program that adds two values stored @ 0x4000

and @ 0x4004 and store the result @ 0x5000.

o How would you do it?
 Make a pseudo code.

 Translate it into a machine code. (You need an ISA reference for this.)

o Now, it is very error-prone, inefficient, and hard to maintain.

Load data @ 0x4000 to R1
Load data @0x4004 to R2
Add the two and store to R3
Store R3 @ 0x5000

Load data @ 0x4000 to R1
Load data @0x4004 to R2
Add the two and store to R3
Store R3 @ 0x5000

00011000100110110001010101111000
00011000100110101001010101001011
00010111110000011010101111111000
01100100001011100000111100000000

Software – Assembly
o An assembly language is a human-friendly programming language

that makes the machine code programming much easier.

o An assembly code has a kind of one-to-one correspondence with a
machine code.

o The translator (from an assembly code to a machine code) is an
assembler.
 The backward translator is a disassembler.

LDR R1, #0x4000
(Load data @ 0x4000 to R1) 00011000100110110001010101111000

Assembly Machine code

Software – Application Programming
o Yes, coding with an assembly language looks much easier than

coding directly with the machine language.

o However, should we need to remember all the instructions and the
syntax?
 Yes, we do...
 But we can remember only 20~30 instructions.

• ADD (addition)
• SUB (subtraction)
• MUL (multiplication)
• AND (logical AND)
• OR (logical OR)
• EOR (logical exclusive-OR)
• LSR/LSL (logical shift right/left)
• MOV (move data)
• CMP (compare)
• LDR/STR (load/store)

Software – High-Level Programming Languages and
Compilers
o Unfortunately, assembly programming is still extremely hard, time-

consuming, error-prone, unportable, and human-unfriendly.

o High-level programming languages (C/C++, ...)
 Easy
 Efficient
 Human-friendly
 High-performance
 Portable (independent of CPUs)

• Different CPUs have different ISAs.
• Assembly languages are dependent on CPUs.

Software – High-Level Programming Languages and
Compilers
o Application programming

Compile

Source code

Compiler

Object code

Link Linker

Pre-compiled library

Executable file (machine chode)

Software – Operating System
o If you run a single program, managing the program is easy. Just load

your program to the main memory starting from 0x0000 and run it
from 0x0000.

B ...
BNE ...

ADD ...
LDR ...
LDR ...

...

0x0000
0x0004
0x0008

0x01C4
0x01C8

Software – Operating System
o What if you want to
 run multiple programs at the same time?
 manage input/output devices
 manage the main memory dynamically (on-the-fly)
 ...

o Operating system (OS)
 Process management
 Memory management
 Storage management
 I/O device management
 File system
 Security
 ...

Software – Operating System
o An I/O device has a special communication protocol.
 OS has device drivers.
 Application programmers don’t need to develop device drivers.

o Multiple programs ask for resources (storage, memory, CPU, ...).
 OS manages them intelligently to maximize the system performance,

usability, etc.

o How does an OS manage the main memory?

Software – Operating System
o Running multiple programs
 Load them into the memory.
 Then

OS

Program 1
0x00020000

0x00028000

Program 2

0x00028004

0x000340FC

Program 30x00068004
0x00068FF0

Run Program 1 for some time

Run Program 2 for some time

Run Program 3 for some time

Run Program 1 for some time

...

Software – Operating System
o An issue when you run multiple programs
 Some codes use relative memory addresses.

 If Instr 1 is located at 0x0000
• Instr 6 is @ 0x0014
• Instr 9 is @ 0x0020

 If Instr 1 is located at 0x4000
• Instr 6 is @ 0x4014
• Instr 9 is @ 0x4020

 The relative memory addresses are determined when the program is
loaded into the memory.

Go to Instr 6 if ...
LDR ...
LDR ...Instr 1

Instr 2
Instr 3

Go to Instr 9 if ...
Go to Instr 20

Instr 4
Instr 5

ADD ...Instr 6
SUB ...
ADD ...

Instr 7
Instr 8

ADD ...Instr 9
SUB ...Instr 10

Software – Loader
o Solution
 The compiled machine code has relative memory addresses.
 When the program is loaded into the memory, fill in the relative addresses.

• Who does it? Loader

Go to Instr 6 if ...
LDR ...
LDR ...Instr 1

Instr 2
Instr 3

Go to Instr 9 if ...
Go to Instr 20

Instr 4
Instr 5

ADD ...Instr 6
SUB ...
ADD ...

Instr 7
Instr 8

ADD ...Instr 9
SUB ...Instr 10

Compiled code Loaded code

Go to 0x4054 if ...
LDR ...
LDR ...0x4040

0x4044
0x4048

Go to 0x4060 if ...
Go to 0x408C

0x404C
0x4050

ADD ...0x4054
SUB ...
ADD ...

0x4058
0x405C

ADD ...0x4060
SUB ...0x4064

Software
o Summary
 Machine language: 00011000001010101101100001010101
 Assembly language: ADD R1, R2, R3
 High-level programming language: a = b + c;

• Compiler
• Linker

 Loader
 Operating system

	Computer Systems
	Primary Hardware Components
	Primary Software Components
	How Each Component Works
	Hardware – CPU
	Hardware – CPU
	Hardware – CPU
	Hardware – CPU
	Hardware – CPU
	Hardware – Memory (DRAM)
	Hardware – Memory
	Hardware – Memory
	Hardware – CPU and Memory (DRAM)
	Hardware – CPU and Memory (DRAM)
	Hardware – CPU
	Hardware – CPU
	Hardware – CPU and Memory (DRAM)
	Software – Application Programming
	Software – Assembly
	Software – Application Programming
	Software – High-Level Programming Languages and Compilers
	Software – High-Level Programming Languages and Compilers
	Software – Operating System
	Software – Operating System
	Software – Operating System
	Software – Operating System
	Software – Operating System
	Software – Loader
	Software

