
Suppose R# is an 8-bit register. The data stored in R# is treated as an unsigned
binary number. We want to calculate the following for given input 𝑅𝑅1 (% is the MOD
operation):

𝑅𝑅2 = 2 � 𝑅𝑅1 if 𝑅𝑅1 ≤ 127
𝑅𝑅2 = 2 � (𝑅𝑅1 − 128) if 𝑅𝑅1 ≥ 128

𝑅𝑅1 is stored in register R1 (input) and 𝑅𝑅2 is the result that will be stored in register R2.
The above function can be implemented by two assembly instructions with two
constants C1 and C2 as follows:

R2, R1, #C1
R2, R2, #C2

Find the instructions and the constants. Notice that the instructions must be the ones
shown in the instruction page.

Suppose 𝑅𝑅1 = 𝑥𝑥7𝑥𝑥6 … 𝑥𝑥0. If 𝑅𝑅1 ≤ 127, 𝑥𝑥7 is 0, so 𝑅𝑅2 is just 2 � 𝑅𝑅1.
However, if 𝑅𝑅1 ≥ 128 (i.e., 𝑥𝑥7 = 1), we should subtract 128 from 𝑅𝑅1, which is setting
𝑥𝑥7 to 0. Thus, 𝑥𝑥7 should always be set to zero => masking. Thus, the first instruction is

AND R2, R1, #0x7F.
Now, we multiply it by 2. It can be “MUL R2, R2, #2” or “LSL R2, R2, #1”.

Suppose R# is an 8-bit register. The data stored in R# is treated as an unsigned
binary number. We want to calculate the following for given input 𝑅𝑅1 (% is the MOD
operation):

𝑅𝑅2 = 85 − 𝑅𝑅1 +
2 ∗ 𝑅𝑅1%256 + 𝑅𝑅1%64 + 𝑅𝑅1%16 + 𝑅𝑅1%4 − 𝑅𝑅1%128 + 𝑅𝑅1%32 + 𝑅𝑅1%8 + 𝑅𝑅1%2

𝑅𝑅1 is stored in register R1 (input) and 𝑅𝑅2 is the result that will be stored in register
R2. The above function can be implemented by one assembly instruction with a
constant C as follows:

R2, R1, #C1
Find the instruction and the constant. (Don’t care about overflows.)

Suppose 𝑅𝑅1 = 𝑥𝑥7𝑥𝑥6 … 𝑥𝑥0. 85 is 01010101 in binary form.
(𝑅𝑅1%256) is just 𝑥𝑥7𝑥𝑥6 … 𝑥𝑥0. (𝑅𝑅1%64) is 00𝑥𝑥5𝑥𝑥4 … 𝑥𝑥0. (𝑅𝑅1%16) is 0000𝑥𝑥3𝑥𝑥2𝑥𝑥1𝑥𝑥0.
Thus, [{(𝑅𝑅1%256)+...+ (𝑅𝑅1%4)} − { 𝑅𝑅1%128 + ⋯+ (𝑅𝑅1%2)}] is 𝑥𝑥70𝑥𝑥50𝑥𝑥30𝑥𝑥10.

𝑅𝑅2 + 𝑅𝑅1 = 2 ∗ 𝑥𝑥70𝑥𝑥50𝑥𝑥30𝑥𝑥10 + 01010101
Suppose 𝑅𝑅2 = 𝑦𝑦7𝑦𝑦6 …𝑦𝑦0. Then,

Thus, 𝑅𝑅2 = 𝑥𝑥7𝑥𝑥6𝑥𝑥5𝑥𝑥4𝑥𝑥3𝑥𝑥2𝑥𝑥1𝑥𝑥0.
Answer: EOR (XOR) R2, R1, #85 // 85 is 01010101

𝑦𝑦7𝑦𝑦6𝑦𝑦5𝑦𝑦4𝑦𝑦3𝑦𝑦2𝑦𝑦1𝑦𝑦0
+ 𝑥𝑥7𝑥𝑥6𝑥𝑥5𝑥𝑥4𝑥𝑥3𝑥𝑥2𝑥𝑥1𝑥𝑥0
𝑥𝑥7 0 𝑥𝑥5 0 𝑥𝑥3 0 𝑥𝑥1 0

+ 𝑥𝑥7 1 𝑥𝑥5 1 𝑥𝑥3 1 𝑥𝑥1 1

𝑦𝑦7𝑦𝑦6𝑦𝑦5𝑦𝑦4𝑦𝑦3𝑦𝑦2𝑦𝑦1𝑦𝑦0
+ 0 𝑥𝑥6 0 𝑥𝑥4 0 𝑥𝑥2 0 𝑥𝑥0
𝑥𝑥7 1 𝑥𝑥5 1 𝑥𝑥3 1 𝑥𝑥1 1

Now, let’s use the 32-bit ARM architecture, i.e., R# is a 32-bit register and
int is a 32-bit signed integer. How will the main memory look like after
the following code is executed? Draw a figure for the main memory.

I just randomly chose 0x6000 for the starting
address. It doesn’t matter what number you
choose for that, but it should be an integer
multiple of 4.

0x6024 ...

0x6020 ...

0x601C 7

0x6018 6

0x6014 5

0x6010 4

0x600C 3

0x6008 2

0x6004 1

0x6000 0

... ...

Address
031

Data

x[0]

x[4]

x[7]

Use the 32-bit ARM architecture. Write an assembly code for the following C code.
The starting address of array x is 0x5000.

LDR R1, =#0x5000
MOV R2, #0 // i

loop:
STR R2, [R1] // x[i] = i
ADD R2, R2, #1 // i++
ADD R1, R1, #4 // the address for the next x[i]. It is increased by 4 (bytes).

CMP R2, #8
BNE loop // if (i < 8), go back to the loop

// done

* Notice that we cannot use something like STR R2, [R1, R3] for the offset.
The instruction format is STR R#, [R#, #imm] where #imm is a constant. Thus,
I am increasing R1 itself to access the next element.

Use the 32-bit ARM architecture.

int x[4][8];

The address of x[0][0], i.e., &(x[0][0]), is 0x6000.

What is the address of x[1][2]?
The address of x[1][0] is 0x6000 + 8*(4 bytes) = 0x6000 + 32 = 0x6020.
Thus, the address of x[1][2] is 0x6020 + 2*(4 bytes) = 0x6028.

What is the address of x[3][5]?
The address of x[3][0] is 0x6000 + 8*(4 bytes)*3 = 0x6000 + 96 = 0x6060.
Thus, the address of x[3][5] is 0x6060 + 5*(4 bytes) = 0x6074.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5

