
Suppose R# is an 8-bit register. The data stored in R# is treated as an unsigned
binary number. We want to calculate the following for given input 𝑅𝑅1 (% is the MOD
operation):

𝑅𝑅2 = 2 � 𝑅𝑅1 if 𝑅𝑅1 ≤ 127
𝑅𝑅2 = 2 � (𝑅𝑅1 − 128) if 𝑅𝑅1 ≥ 128

𝑅𝑅1 is stored in register R1 (input) and 𝑅𝑅2 is the result that will be stored in register R2.
The above function can be implemented by two assembly instructions with two
constants C1 and C2 as follows:

R2, R1, #C1
R2, R2, #C2

Find the instructions and the constants. Notice that the instructions must be the ones
shown in the instruction page.



Suppose R# is an 8-bit register. The data stored in R# is treated as an unsigned
binary number. We want to calculate the following for given input 𝑅𝑅1 (% is the MOD
operation):

𝑅𝑅2 = 85 − 𝑅𝑅1 +
2 ∗ 𝑅𝑅1%256 + 𝑅𝑅1%64 + 𝑅𝑅1%16 + 𝑅𝑅1%4 − 𝑅𝑅1%128 + 𝑅𝑅1%32 + 𝑅𝑅1%8 + 𝑅𝑅1%2

𝑅𝑅1 is stored in register R1 (input) and 𝑅𝑅2 is the result that will be stored in register 
R2. The above function can be implemented by one assembly instruction with a
constant C as follows:

R2, R1, #C1

Find the instruction and the constant. (Don’t care about overflows.)



Now, let’s use the 32-bit ARM architecture, i.e., R# is a 32-bit register and
int is a 32-bit signed integer. How will the main memory look like after
the following code is executed? Draw a figure for the main memory.



Use the 32-bit ARM architecture. Write an assembly code for the following C code.
The starting address of array x is 0x5000.



Use the 32-bit ARM architecture.

int x[4][8];

The address of x[0][0], i.e., &(x[0][0]), is 0x6000.

What is the address of x[1][2]?

What is the address of x[3][5]?



int x[8];

for ( int i = 0 ; i < 8 ; i++ )
x[i] = i;


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6

