
EE234

Microprocessor Systems

Final Exam

Dec. 12, 2019. (3:10pm – 5:10pm)

Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

 Name:

 WSU ID:

Problem Points
1 10
2 10
3 10
4 10
5 10
6 10
7 20
8 20
9 10

Total 110

mailto:daehyun@eecs.wsu.edu

Problem #1 (Bit manipulation, 10 points)

Suppose R# is an 8-bit register. The data stored in R# is treated as an unsigned binary
number. Draw a graph for the following instruction. The x-axis should be the value
stored in R1 and the y-axis should be the value stored in R2.

OR R2, R1, #0x03

Problem #2 (Bit manipulation, 10 points)

Suppose R# is an 8-bit register. The data stored in R# is treated as an unsigned binary
number. We want to calculate the following for given input 𝑅𝑅1 (% is the MOD operation):

𝑅𝑅2 = 240 + 2 ∗ (𝑅𝑅1%16) − 𝑅𝑅1

𝑅𝑅1 is stored in register R1 (input) and 𝑅𝑅2 is the result that will be stored in register R2.
The above function can be implemented by a single assembly instruction with a certain
constant C as follows:

R2, R1, #C

Find the instruction and the constant. Notice that the instruction is one of the
instructions shown in the last page. Hint: Express R2=𝑦𝑦7 …𝑦𝑦0 with respect to
R1=𝑥𝑥7 … 𝑥𝑥0. Then, find the relationship between R2 and R1.

Problem #3 (Assembly, 10 points)

All the registers R# are 32-bit registers. “int” is a 32-bit signed integer data type. Write
an assembly code for the “for” loop in the following C code.

• &(x[0]): 0x4000
• &(y[0]): 0x5000

Problem #4 (Assembly, 10 points)

All the registers R# are 32-bit registers. The following (left) shows an array 𝑥𝑥 of 32-bit
data and an array 𝑦𝑦 of 32-bit data. Each of them has 20 elements. Now, we want to
copy the data as shown in the figure.

Write an assembly code for the data copy. Basically it does the following:

Problem #5 (Assembly, 10 points)

The “unsigned char” data type is used for an 8-bit (one-byte) data. However, we cannot
access them individually unless they are word-aligned. See the following example.

Suppose you declare “unsigned char x[20];” as shown above (left). Then, the address of
x[0] is 0x4000, that of x[1] is 0x4001, that of x[2] is 0x4002, etc. However, the addresses
like 0x4001 and 0x4002 are not word-aligned (i.e., not integer multiples of 4), so you
cannot access them using something like “LDR R1, =#0x4001” and “LDR R2, [R1]”. All
the addresses must be word-aligned (integer multiples of 4).

Write an assembly code to rearrange the given data “unsigned char x[20]” as shown
above (right). Notice that it is just rearranging the data. It does not change the address
of the array, i.e., &(x[0]) is still 0x4000, &(x[1]) is still 0x4001, etc. after the
rearrangement.

Problem #6 (C, 10 points)

All the registers R# are 32-bit registers and everything is based on the 32-bit ARM
architecture. How many bytes will C actually use for the following code (including the
memory space for x in the stack)?

Problem #7 (C, 20 points)

All the registers R# are 32-bit registers and everything is based on the 32-bit ARM
architecture. The following map shows a part of the main memory. The data type of
variable “x” is int**. “x” is declared by

for given constants “a” and “b”. Currently, the value of
x is 0x4000 as shown in the figure.

(a) What is the value of *x?

(b) What is the value of &x?

(c) What is the value of x+2?

(d) What is the value of *(x+1)?

(e) What is the value of **x?

(f) What is the value of *((*x) + ((int*) 0x10))?

(g) What is the value of **(x+2)?

(h) What is the value of x[0][0]?

(i) What is the value of x[0][1]?

(j) What is the value of x[1][1]?

Problem #8 (C, 20 points)

All the registers R# are 32-bit registers and everything is based on the 32-bit ARM
architecture. “int” is a 32-bit data type.

Write an assembly code for the above C code.

• &(src[0][0].x[0]): 0x8000
• The value stored in “des”: 0x4000

Problem #9 (Interrupts, 10 points)

An ARM C source handles keyboard inputs using interrupts and an interrupt handler
function 𝐻𝐻. Whenever a key input is received, the system generates an interrupt and 𝐻𝐻
is called to process the input. The runtime of executing 𝐻𝐻 for a key input is 1,000 clock
cycles. The system clock frequency is 100MHz (period: 10ns). If two key inputs 𝑘𝑘2 and
𝑘𝑘3 are received while 𝐻𝐻 is being executed to process a key input 𝑘𝑘1, the CPU stores 𝑘𝑘2
and 𝑘𝑘3 in its input buffer (queue). When 𝐻𝐻 finishes processing 𝑘𝑘1, 𝐻𝐻 is immediately
executed again to process 𝑘𝑘2, then executed again to process 𝑘𝑘3. The size of the
keyboard buffer is 20, i.e., it can store maximum 20 key inputs while 𝐻𝐻 is being
executed. If the buffer is full, any additional key inputs are ignored (discarded).

Suppose you press 100 keys periodically (i.e., you press a key at time 0, a key at time
𝑇𝑇, a key at time 2𝑇𝑇, ..., a key at time 99𝑇𝑇). Calculate the minimum 𝑇𝑇 that does not cause
discarded keystrokes for the 100 keyboard inputs (this is finding the maximum
keystroke speed).

Assembly Instructions

R# is a register. (# = 0 ~ 12)

Instruction Meaning

INV Rd

Bitwise inversion.
Before 0 0 0 0 1 1 0 0
After 1 1 1 1 0 0 1 1

AND Rd, Ra, Rb
AND Rd, Ra, #imm

Bitwise AND. (Rd = Ra AND Rb), (Rd = Ra AND #imm)
Ra 0 0 0 0 1 1 1 1
Rb 1 1 1 1 0 1 1 1

Rd 0 0 0 0 0 1 1 1

OR Rd, Ra, Rb
OR Rd, Ra, #imm

Bitwise OR. (Rd = Ra OR Rb), (Rd = Ra OR #imm)
Ra 0 0 0 0 1 1 0 0
Rb 1 1 0 1 0 0 1 0

Rd 1 1 0 1 1 1 1 0

EOR Rd, Ra, Rb
EOR Rd, Ra, #imm

Bitwise exclusive-OR. (Rd = Ra ⊕ Rb), (Rd = Ra ⊕ #imm)
Ra 0 1 0 1 0 1 0 1
Rb 1 1 0 1 0 0 1 0

Rd 1 0 0 0 0 1 1 1

LSR Rd, Ra, #imm

Logical shift right by (#imm) bits. (Rd = Ra >> #imm)
Ex) #imm = 3

Before 1 0 0 0 1 1 0 1
After 0 0 0 1 0 0 0 1

LSL Rd, Ra, #imm

Logical shift left by (#imm) bits. (Rd = Ra << #imm)
Ex) #imm = 3

Before 1 0 0 0 1 1 0 1
After 0 1 1 0 1 0 0 0

MOV Rd, Ra
MOV Rd, #imm

(Rd = Ra)
(Rd = #imm)

ADD Rd, Ra, Rb
ADD Rd, Ra, #imm

(Rd = Ra + Rb)
(Rd = Ra + #imm)

SUB Rd, Ra, Rb
SUB Rd, Ra, #imm

(Rd = Ra - Rb)
(Rd = Ra - #imm)

MUL Rd, Ra, Rb
MUL Rd, Ra, #imm

(Rd = Ra * Rb)
(Rd = Ra * #imm)

CMP Rd, #imm
CMP Rd, Ra

Set Z = 1 if Rd == #imm. Otherwise, Z = 0. (Z is the Zero field of the CPSR.)
Set Z = 1 if Rd == Ra. Otherwise, Z = 0.
Notice that N != V is Rd < #imm or Rd < Ra.

BEQ [addr] Branch to [addr] if Z = 1. Ex) CMP R1, R2. BEQ tar → Go to tar if R1 == R2.
BNE [addr] Branch to [addr] if Z = 0. Ex) CMP R1, R2. BNE tar → Go to tar if R1 != R2.
BLT [addr] Branch to [addr] if N != V. Ex) CMP R1, R2. BLT tar → Go to tar if R1 < R2.
LDR Rd, [Ra, #imm] Load the data stored at [Ra + #imm] to Rd.
STR Rd, [Ra, #imm] Store the data stored in Rd to [Ra + #imm].

