EE234

Microprocessor Systems

Final Exam
Dec. 12, 2019. (3:10pm — 5:10pm)

Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

Name:

WSJU ID:

Problem Points
1 10
2 10
3 10
4 10
5 10
6 10
7 20
8 20
9 10
Total 110

mailto:daehyun@eecs.wsu.edu

Problem #1 (Bit manipulation, 10 points)

Suppose R# is an 8-bit register. The data stored in R# is treated as an unsigned binary
number. Draw a graph for the following instruction. The x-axis should be the value
stored in R1 and the y-axis should be the value stored in R2.

OR R2, R1, #0x03

Problem #2 (Bit manipulation, 10 points)

Suppose R# is an 8-bit register. The data stored in R# is treated as an unsigned binary
number. We want to calculate the following for given input R; (% is the MOD operation):

R, = 240 + 2 * (R,%16) — R,

R; is stored in register R1 (input) and R, is the result that will be stored in register R2.
The above function can be implemented by a single assembly instruction with a certain
constant C as follows:

[]R2,RLH#C

Find the instruction and the constant. Notice that the instruction is one of the
instructions shown in the last page. Hint: Express R2=y, ...y, with respect to
R1=x, ...x,. Then, find the relationship between R2 and R1.

Problem #3 (Assembly, 10 points)

All the registers R# are 32-bit registers. “int” is a 32-bit signed integer data type. Write
an assembly code for the “for” loop in the following C code.

int x[30]; // given
int y[30];

/I write an assembly code for the following for loop.
for(inti=0;i<30;i++)
y[il = x[il;

e &(x[0]): Ox4000
e &(y[0O]): Ox5000

Problem #4 (Assembly, 10 points)

All the registers R# are 32-bit registers. The following (left) shows an array x of 32-bit
data and an array y of 32-bit data. Each of them has 20 elements. Now, we want to
copy the data as shown in the figure.

Address Data Address Data
31 0 31 0
0x604C y[19] 0x604C 0x1827 | y[19]
0x6004 y[1] 0x6004 OXFF74 | y[1]
0x6000 y[0] 0x6000 OxAACY9 | y[0]
0x404C O0xAAC9 | x[19] I 0x404C 0xAACY9 | x[19]
0x4040 OxFF74 x[18] 0x4040 OxFF74 x[18]
0x4004 0x3522 X[1] 0x4004 0x3522 x[1]
0x4000 0x1827 x[0] 0x4000 0x1827 x[0]

Write an assembly code for the data copy. Basically it does the following:

for(inti=0;i<20;i++)
y[19-i] = X[i];

Problem #5 (Assembly, 10 points)

The “unsigned char” data type is used for an 8-bit (one-byte) data. However, we cannot
access them individually unless they are word-aligned. See the following example.

Address Data Address Data
31 24 23 16 15 87 0 3 24 23 16 15 87 0
OxAA 0x00 OxAA 0x00
X[7] x[6] X[5] x[4] x[5] x[4] X[7] | x[6]
0xFO 0x11 OxEE 0xBC OxEE 0xBC 0xFO 0x11
0x4000 | i3t | o1 | 1 | xio] 0x4000 |] | xjo] | xi3] | x(2]

Suppose you declare “unsigned char x[20];” as shown above (left). Then, the address of
X[0] is 0x4000, that of x[1] is 0x4001, that of x[2] is 0x4002, etc. However, the addresses
like 0x4001 and 0x4002 are not word-aligned (i.e., not integer multiples of 4), so you
cannot access them using something like “LDR R1, =#0x4001” and “LDR R2, [R1]". All
the addresses must be word-aligned (integer multiples of 4).

Write an assembly code to rearrange the given data “unsigned char x[20]” as shown
above (right). Notice that it is just rearranging the data. It does not change the address
of the array, i.e., &(x[0]) is still 0x4000, &(x[1]) is still 0x4001, etc. after the
rearrangement.

Problem #6 (C, 10 points)

All the registers R# are 32-bit registers and everything is based on the 32-bit ARM
architecture. How many bytes will C actually use for the following code (including the
memory space for x in the stack)?

int*** x = new int**[2];

X[0] = new int*[3];
X[1] = new int*[4];

X[0][0] = new int[2];
X[0][1] = new int[3];
X[0][2] = new int[2];
x[1][0] = new int[2];
X[1][3] = new int[5];

Problem #7 (C, 20 points)

All the registers R# are 32-bit registers and everything is based on the 32-bit ARM
architecture. The following map shows a part of the main memory. The data type of
variable “x” is int**. “x” is declared by

int** x = new int*[a];

for(inti=0;i<a;i++)

. . , Address Data
X[i] = new int[b]; 21 0
for given constants “a” and “b”. Currently, the value of 0x5000 0x4000 | x
x is 0x4000 as shown in the figure.
_ o 0x402C 0x4000
(a) What is the value of *x~ PEe OxA02C
(b) What is the value of &x? 0x4024 0x4028
_ 0x4020 0x4024
(c) What is the value of x+2?
0x401C 0x4020
(d) What is the value of *(x+1)? 0x4018 0x401C
0x4014 0x4018
0x4010 0x4014
(e) What is the value of **x? 0x400C 0x4010
0x4008 0x4024
0x4004 0x4014
() What is the value of *((*x) + ((int*) 0x10))? 0x4000 0x400C

(g) What is the value of **(x+2)?

(h) What is the value of x[0][0]?

(i) What is the value of x[0][1]?

() What is the value of x[1][1]?

Problem #8 (C, 20 points)

All the registers R# are 32-bit registers and everything is based on the 32-bit ARM
architecture. “int” is a 32-bit data type.

struct MyData {
int x[4];
int y[2];
I3

MyData src[3][3]; // given
MyData** des = new MyData*[3];

for(inti=0;i<3;i++)
des[i] = new MyData[3];

for(inta=0;a<3;a++){
for (intb=0;b<3;b++){
des[a][b].x[1] = src[a][b].x[1];
}
}

Write an assembly code for the above C code.

e &(src[0][0].x[0]): Ox8000
e The value stored in “des”: 0x4000

Problem #9 (Interrupts, 10 points)

An ARM C source handles keyboard inputs using interrupts and an interrupt handler
function H. Whenever a key input is received, the system generates an interrupt and H
is called to process the input. The runtime of executing H for a key input is 1,000 clock
cycles. The system clock frequency is 100MHz (period: 10ns). If two key inputs k, and
ks are received while H is being executed to process a key input k,, the CPU stores k,
and k5 in its input buffer (queue). When H finishes processing k;, H is immediately
executed again to process k,, then executed again to process k;. The size of the
keyboard buffer is 20, i.e., it can store maximum 20 key inputs while H is being
executed. If the buffer is full, any additional key inputs are ignored (discarded).

Suppose you press 100 keys periodically (i.e., you press a key at time 0, a key at time
T, a key at time 2T, ..., a key at time 99T). Calculate the minimum T that does not cause
discarded keystrokes for the 100 keyboard inputs (this is finding the maximum
keystroke speed).

Assembly Instructions

R# is a register. (# =0~ 12)

Instruction Meaning
Bitwise inversion.
Before [0 [0 |0 |0|1]1]0]0
INV- Rd After 1]1/1]12]0j0|1]1
Bitwise AND. (Rd = Ra AND Rb), (Rd = Ra AND #imm)
Ra|0O|0|O0]O[1|1]1]1
AND Rd, Ra, Rb Rb|1[1]1]1]0]1 1
AND Rd, Ra, #imm
Rd|0O|J0|0]O]|O0O|1]1]1
Bitwise OR. (Rd = Ra OR Rb), (Rd = Ra OR #imm)
Ra|0|0|0]|O]|1|1]0]0O
OR Rd, Ra, Rb Rb[1[1[of1]o0f0]1]0
OR Rd, Ra, #imm
Rd|1]1|0]1]1|1]1]0O
Bitwise exclusive-OR. (Rd = Ra @ Rb), (Rd = Ra @ #imm)
Ra|O|1|0]1]|0|1]0]1
EOR Rd, Ra, Rb Rb[1]1]of1]o]o]1]0
EOR Rd, Ra, #imm
Rd|1]0|0]O]|O0O|1]1]1

LSR Rd, Ra, #imm

Logical shift right by (#imm) bits. (Rd = Ra >> #imm)
EX) #imm = 3

Before |1 |0|0|0|1]1]0]1
After |0]|0J0]1]0|0]|0]1

LSL Rd, Ra, #imm

Logical shift left by (#imm) bits. (Rd = Ra << #imm)
EX) #imm = 3

Before |1 |0|0|0|1]1]0]1
After |0]1]1|0]1]0]|0]0O

MOV Rd, Ra (Rd = Ra)

MOV Rd, #imm (Rd = #imm)
ADD Rd, Ra, Rb (Rd = Ra + Rb)
ADD Rd, Ra, #imm (Rd = Ra + #imm)
SUB Rd, Ra, Rb (Rd = Ra- Rb)
SUB Rd, Ra, #imm (Rd = Ra - #imm)
MUL Rd, Ra, Rb (Rd = Ra * Rb)

MUL Rd, Ra, #imm

(Rd = Ra * #imm)

Set Z = 1 if Rd == #imm. Otherwise, Z = 0. (Z is the Zero field of the CPSR.)

oy Re SetZ = 1if Rd == Ra. Otherwise, Z = 0.

' Notice that N !=V is Rd < #imm or Rd < Ra.
BEQ [addr] Branch to [addr] if Z = 1. Ex) CMP R1, R2. BEQ tar — Go to tar if R1 == R2.
BNE [addr] Branch to [addr] if Z = 0. Ex) CMP R1, R2. BNE tar — Go to tar if R1 1= R2.
BLT [addr] Branch to [addr] if N I= V. Ex) CMP R1, R2. BLT tar — Go to tar if R1 < R2.

LDR Rd, [Ra, #imm]

Load the data stored at [Ra + #imm] to Rd.

STR Rd, [Ra, #imm]

Store the data stored in Rd to [Ra + #imm].

