EE234

Microprocessor Systems

Final Exam

Dec. 12, 2019. (3:10pm - 5:10pm)

Instructor: Dae Hyun Kim (<u>daehyun@eecs.wsu.edu</u>)

Name:

WSU ID:

Problem	Points	
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	20	
8	20	
9	10	
Total	110	

Problem #1 (Bit manipulation, 10 points)

Suppose R# is an <u>8-bit register</u>. The data stored in R# is treated as an <u>unsigned binary</u> <u>number</u>. Draw a graph for the following instruction. The x-axis should be the value stored in R1 and the y-axis should be the value stored in R2.

OR R2, R1, #0x03

Problem #2 (Bit manipulation, 10 points)

Suppose R# is an <u>8-bit register</u>. The data stored in R# is treated as an <u>unsigned binary</u> <u>number</u>. We want to calculate the following for given input R_1 (% is the MOD operation):

$$R_2 = 240 + 2 * (R_1\%16) - R_1$$

 R_1 is stored in register R1 (input) and R_2 is the result that will be stored in register R2. The above function can be implemented by a single assembly instruction with a certain constant C as follows:

R2, R1, #C

<u>Find the instruction and the constant</u>. Notice that the instruction is one of the instructions shown in the last page. Hint: Express $R2=y_7 \dots y_0$ with respect to $R1=x_7 \dots x_0$. Then, find the relationship between R2 and R1.

Problem #3 (Assembly, 10 points)

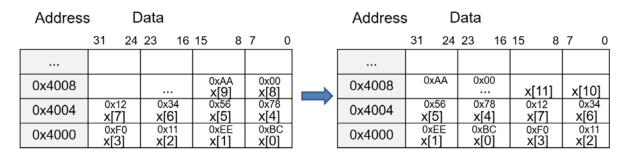
All the registers R# are 32-bit registers. "int" is a 32-bit signed integer data type. Write an assembly code for the "for" loop in the following C code.

```
int x[30]; // given
int y[30];
// write an assembly code for the following for loop.
for ( int i = 0 ; i < 30 ; i++ )
  y[i] = x[i];</pre>
```

- &(x[0]): 0x4000
- &(y[0]): 0x5000

Problem #4 (Assembly, 10 points)

All the registers R# are 32-bit registers. The following (left) shows an array x of 32-bit data and an array y of 32-bit data. Each of them has 20 elements. Now, we want to copy the data as shown in the figure.



Write an assembly code for the data copy. Basically it does the following:

for (int i = 0 ; i < 20 ; i++) y[19-i] = x[i];

Problem #5 (Assembly, 10 points)

The "unsigned char" data type is used for an 8-bit (one-byte) data. However, we cannot access them individually unless they are word-aligned. See the following example.

Suppose you declare "unsigned char x[20];" as shown above (left). Then, the address of x[0] is 0x4000, that of x[1] is 0x4001, that of x[2] is 0x4002, etc. However, the addresses like 0x4001 and 0x4002 are not word-aligned (i.e., not integer multiples of 4), so you cannot access them using something like "LDR R1, =#0x4001" and "LDR R2, [R1]". All the addresses must be word-aligned (integer multiples of 4).

Write an assembly code to rearrange the given data "unsigned char x[20]" as shown above (right). Notice that it is just rearranging the data. It does not change the address of the array, i.e., &(x[0]) is still 0x4000, &(x[1]) is still 0x4001, etc. after the rearrangement.

Problem #6 (C, 10 points)

All the registers R# are 32-bit registers and everything is based on the 32-bit ARM architecture. How many <u>bytes</u> will C actually use for the following code (including the memory space for x in the stack)?

```
int*** x = new int**[2];
x[0] = new int*[3];
x[1] = new int*[4];
x[0][0] = new int[2];
x[0][1] = new int[3];
x[0][2] = new int[2];
x[1][0] = new int[2];
x[1][3] = new int[5];
```

Problem #7 (C, 20 points)

All the registers R# are 32-bit registers and everything is based on the 32-bit ARM architecture. The following map shows a part of the main memory. The data type of variable "x" is int**. "x" is declared by

int** x = new int*[a]; for (int i = 0 ; i < a ; i++) x[i] = new int[b];

for given constants "a" and "b". Currently, the value of x is 0x4000 as shown in the figure.

- (a) What is the value of *x?
- (b) What is the value of &x?
- (c) What is the value of x+2?
- (d) What is the value of *(x+1)?
- (e) What is the value of **x?
- (f) What is the value of *((*x) + ((int*) 0x10))?
- (g) What is the value of **(x+2)?
- (h) What is the value of x[0][0]?
- (i) What is the value of x[0][1]?
- (j) What is the value of x[1][1]?

Data	
31 0	
0x4000	x
0x4000	
0x402C	
0x4028	
0x4024	
0x4020	
0x401C]
0x4018]
0x4014	1
0x4010]
0x4024]
0x4014]
0x400C]
	31 0 0x4000 0x4000 0x402C 0x402R 0x402R 0x402R 0x402R 0x402R 0x402R 0x402R 0x401C 0x401R 0x401R 0x401R 0x401R 0x401R 0x401R 0x401R 0x401R

Problem #8 (C, 20 points)

All the registers R# are 32-bit registers and everything is based on the 32-bit ARM architecture. "int" is a 32-bit data type.

```
struct MyData {
    int x[4];
    int y[2];
};
MyData src[3][3]; // given
MyData** des = new MyData*[3];
for ( int i = 0 ; i < 3 ; i++ )
    des[i] = new MyData[3];
for ( int a = 0 ; a < 3 ; a++ ) {
    for ( int b = 0 ; b < 3 ; b++ ) {
        des[a][b].x[1] = src[a][b].x[1];
    }
}</pre>
```

Write an assembly code for the above C code.

- &(src[0][0].x[0]): 0x8000
- The value stored in "des": 0x4000

Problem #9 (Interrupts, 10 points)

An ARM C source handles keyboard inputs using interrupts and an interrupt handler function *H*. Whenever a key input is received, the system generates an interrupt and *H* is called to process the input. The runtime of executing *H* for a key input is 1,000 clock cycles. The system clock frequency is 100MHz (period: 10ns). If two key inputs k_2 and k_3 are received while *H* is being executed to process a key input k_1 , the CPU stores k_2 and k_3 in its input buffer (queue). When *H* finishes processing k_1 , *H* is immediately executed again to process k_2 , then executed again to process k_3 . The size of the keyboard buffer is 20, i.e., it can store maximum 20 key inputs while *H* is being executed. If the buffer is full, any additional key inputs are ignored (discarded).

Suppose you press 100 keys periodically (i.e., you press a key at time 0, a key at time T, a key at time 2T, ..., a key at time 99T). Calculate the minimum T that does not cause discarded keystrokes for the 100 keyboard inputs (this is finding the maximum keystroke speed).

Assembly Instructions

R# is a register. (# = 0 ~ 12)

Instruction	Meaning		
Instruction	ě – – – – – – – – – – – – – – – – – – –		
INV Rd	Bitwise inversion.		
	Before 0 0 0 0 1 1 0 0		
	After 1 1 1 1 0 0 1 1		
AND Rd, Ra, Rb AND Rd, Ra, #imm	Bitwise AND. (Rd = Ra AND Rb), (Rd = Ra AND #imm)		
	Ra 0 0 0 1 1 1 1 1		
	Rb 1 1 1 1 0 1 1 1		
	Rd 0 0 0 0 1 1 1		
	Bitwise OR. (Rd = Ra OR Rb), (Rd = Ra OR #imm)		
OR Rd, Ra, Rb	Ra 0 0 0 1 1 0 0		
	Rb 1 1 0 1 0 0 1 0		
OR Rd, Ra, #imm			
	Rd 1 1 0 1 1 1 0		
	Bitwise exclusive-OR. (Rd = Ra \oplus Rb), (Rd = Ra \oplus #imm)		
	$\begin{bmatrix} Ra & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$		
EOR Rd, Ra, Rb	Rb 1 0		
EOR Rd, Ra, #imm			
, ,	Rd 1 0 0 0 1 1 1 1		
	Logical shift right by (#imm) bits. (Rd = Ra >> #imm)		
	Ex) #imm = 3		
LSR Rd, Ra, #imm	Before 1 0 0 0 1 1 0 1		
	After 0 0 0 1 0 0 1		
	Lesielshittetter (Warm) bite (Del De Warm)		
	Logical shift left by (#imm) bits. (Rd = Ra << #imm) Ex) #imm = 3		
ISI Del De Himm			
LSL Rd, Ra, #imm	Before 1 0 0 1 1 0 1 After 0 1 1 0		
MOV Rd, Ra	(Rd = Ra)		
MOV Rd, #imm	(Rd = #imm)		
ADD Rd, Ra, Rb	(Rd = Ra + Rb)		
ADD Rd, Ra, #imm	(Rd = Ra + #imm)		
SUB Rd, Ra, Rb	(Rd = Ra - Rb)		
SUB Rd, Ra, #imm	(Rd = Ra - #imm)		
MUL Rd, Ra, Rb	(Rd = Ra * Rb)		
MUL Rd, Ra, #imm	(Rd = Ra * #imm)		
	Set $Z = 1$ if $Rd == #imm$. Otherwise, $Z = 0$. (Z is the Zero field of the CPSR.)		
CMP Rd, #imm	Set $Z = 1$ if $Rd == Ra$. Otherwise, $Z = 0$.		
CMP Rd, Ra	Notice that N != V is Rd < #imm or Rd < Ra.		
BEQ [addr]	Branch to [addr] if Z = 1. Ex) CMP R1, R2. BEQ tar \rightarrow Go to tar if R1 == R2.		
BNE [addr]	Branch to [addr] if Z = 0. Ex) CMP R1, R2. BNE tar \rightarrow Go to tar if R1 != R2.		
BLT [addr]	Branch to [addr] if N != V. Ex) CMP R1, R2. BLT tar \rightarrow Go to tar if R1 < R2.		
LDR Rd, [Ra, #imm]			
STR Rd, [Ra, #imm]	Store the data stored in Rd to [Ra + #imm].		