
EE234

Microprocessor Systems

Midterm Exam

Oct. 25, 2019. (3:10pm – 4pm)

Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

 Name:

 WSU ID:

Problem Points
1 10
2 10
3 10
4 10
5 10
6 15
7 15

Total 80

mailto:daehyun@eecs.wsu.edu

Problem #1 (Bit manipulation, 10 points)

Suppose R# is an 8-bit register. The data stored in R# is treated as an unsigned binary
number. The following instruction performs an arithmetic operation. Explain what it does
(i.e., briefly explain the meaning of the data stored in R2 in terms of arithmetic
operations). Here, “arithmetic” means something like addition, subtraction,
multiplication, division (quotient), division (remainder), square root, transcendental
functions, etc.

AND R2, R1, #0x0F

The first four bits of R1 are set to 0, so it performs the modulo-16 operation, i.e., R2 has
the remainder of R1 % 16.

Problem #2 (Bit manipulation, 10 points)

Suppose R# is an 8-bit register. The data stored in R# is treated as an unsigned binary
number. The following instruction performs an arithmetic operation. Draw a graph for
the following instruction. The x-axis should be the value stored in R1 and the y-axis
should be the value stored in R2.

AND R2, R1, #0xF8

The three rightmost bits of R1 are set to zero, so it performs 8 × �𝑅𝑅1
8
� where ⌊ ⌋ is the

floor function (the largest integer less than or equal to).

Problem #3 (Bit manipulation, 10 points)

All the data stored in the registers are two’s complement binary numbers. Draw a graph
for the following instruction. The x-axis should be the value stored in R1 and the y-axis
should be the value stored in R2.

Logically shifting R1 to the right by one bit and then to the left by one bit just sets the
LSB to zero. If R1 is a positive number or zero, R2 = R1 if R1 is even and R2 = R1 – 1 if
R1 is odd. If R1 is a negative number, R2 = R1 if the LSB of R1 is zero. However, if R1
is a negative number and its LSB is 1, it is also subtracting 1. For example, suppose R1
= 1𝑋𝑋1 where 𝑋𝑋 is a string of zeros and ones. The absolute value of this number is 𝑋𝑋� + 1.
If the LSB is set to zero (=1𝑋𝑋0), its absolute value becomes 𝑋𝑋� + 2. Thus, the graph will
look like this:

Problem #4 (ARM assembly, 10 points)

Suppose R# is an 8-bit register. 1) What is the value of the data stored in R2 when the
program ends? 2) What is the meaning of the code? Explain briefly.

For given R1, R3 is 0000000𝑥𝑥0 and R4 is 000000𝑥𝑥10. Then, R4 is shifted to the right by
one bit and ORed with R3, so R3 is 0000000(𝑥𝑥0|𝑥𝑥1) where | is logical OR. Then, R3 is
inverted, so R3 becomes 1111111(𝑥𝑥0|𝑥𝑥1)���������. Then, R3 is ANDed with 0x01, so R3
becomes 0000000(𝑥𝑥0|𝑥𝑥1)���������. As a result, R3 is #1 if 𝑥𝑥0 = 0 and 𝑥𝑥1 = 0 (otherwise, R3 is
#0). Then, it is added to R2. We repeat this for all the numbers from 250 to 1. Thus, R2
has 62.

The meaning of this code is to count the number of the multiples of 4 in the range of [1,
250].

Problem #5 (ARM assembly, 10 points)

Suppose R# is an 8-bit register. Write an assembly code to count the number of 1’s in
R1. The result must be stored in R2. For example, suppose R1 = 0110 1010 (given).
Then, R2 will be 0000 0100 (#4) after the execution of your code. Use only the
instructions shown in the instruction sheet. You can also use subroutines. The
performance of the code doesn’t matter as long as the code works.

Problem #6 (ARM assembly, 15 points)

In Code 1, we call subroutine “func2” in the “main” routine. Inside “func2”, we call
subroutine “func3” without backing-up the data stored in LR. Thus, when “func3” is
done, we can come back to “func2”, but we cannot return back to the main routine from
“func2”.

In Code 2, we call subroutine “func2” in the “main” routine. Inside “func2”, we still call
subroutine “func3” without backing-up the data stored in LR. Thus, when “func3” is
done, we come back to “func2”, then we use the unconditional jump instruction (“B”) to
come back to the main routine. Will Code 2 work? Explain why it can work (or why it
cannot work).

<Code 1>

<Code 2>

Yes, it will work. When we come back from func3 to func2, we don’t have the return
address to go back to the main routine (which is the ADD instruction). However, we
have the address label “func1” for the ADD instruction, so we can directly jump to the
instruction (although this is not recommended in real applications because this does not
support subroutine calls from a different subroutine.)

Problem #7 (ARM assembly, 15 points)

Let’s use the 32-bit ARM architecture, i.e., R# is a 32-bit register and the register file
has 16 registers (and R13 is the stack pointer, R14 is the link register, and R15 is the
program counter). R5 has a positive number (given to you). Write an assembly code to
find out whether the number in R5 is a prime number or not. If it is a prime number, set
R6 to 1. If not, set R6 to 0. Use only the instructions shown in the instruction sheet (but
do not use LDR and STR). You can also use subroutines. The performance of the code
doesn’t matter as long as the code works.

