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Problem #1 (Bit manipulation, 10 points) 

Suppose R# is an 8-bit register. The data stored in R# is treated as an unsigned binary 
number. The following instruction performs an arithmetic operation. Explain what it does 
(i.e., briefly explain the meaning of the data stored in R2 in terms of arithmetic 
operations). Here, “arithmetic” means something like addition, subtraction, 
multiplication, division (quotient), division (remainder), square root, transcendental 
functions, etc. 

AND R2, R1, #0x0F 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Problem #2 (Bit manipulation, 10 points) 

Suppose R# is an 8-bit register. The data stored in R# is treated as an unsigned binary 
number. The following instruction performs an arithmetic operation. Draw a graph for 
the following instruction. The x-axis should be the value stored in R1 and the y-axis 
should be the value stored in R2. 

AND R2, R1, #0xF8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Problem #3 (Bit manipulation, 10 points) 

All the data stored in the registers are two’s complement binary numbers. Draw a graph 
for the following instruction. The x-axis should be the value stored in R1 and the y-axis 
should be the value stored in R2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Problem #4 (ARM assembly, 10 points) 

Suppose R# is an 8-bit register. 1) What is the value of the data stored in R2 when the 
program ends? 2) What is the meaning of the code? Explain briefly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Problem #5 (ARM assembly, 10 points) 

Suppose R# is an 8-bit register. Write an assembly code to count the number of 1’s in 
R1. The result must be stored in R2. For example, suppose R1 = 0110 1010 (given). 
Then, R2 will be 0000 0100 (#4) after the execution of your code. Use only the 
instructions shown in the instruction sheet. You can also use subroutines. The 
performance of the code doesn’t matter as long as the code works. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Problem #6 (ARM assembly, 15 points) 

In Code 1, we call subroutine “func2” in the “main” routine. Inside “func2”, we call 
subroutine “func3” without backing-up the data stored in LR. Thus, when “func3” is 
done, we can come back to “func2”, but we cannot return back to the main routine from 
“func2”. 

In Code 2, we call subroutine “func2” in the “main” routine. Inside “func2”, we still call 
subroutine “func3” without backing-up the data stored in LR. Thus, when “func3” is 
done, we come back to “func2”, then we use the unconditional jump instruction (“B”) to 
come back to the main routine. Will Code 2 work? Explain why it can work (or why it 
cannot work). 

 
<Code 1> 

 
<Code 2> 

 

 

 

 

 

 

 

 



Problem #7 (ARM assembly, 15 points) 

Let’s use the 32-bit ARM architecture, i.e., R# is a 32-bit register and the register file 
has 16 registers (and R13 is the stack pointer, R14 is the link register, and R15 is the 
program counter). R5 has a positive number (given to you). Write an assembly code to 
find out whether the number in R5 is a prime number or not. If it is a prime number, set 
R6 to 1. If not, set R6 to 0. Use only the instructions shown in the instruction sheet (but 
do not use LDR and STR). You can also use subroutines. The performance of the code 
doesn’t matter as long as the code works. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Assembly Instructions 

R# is a register. (# = 0 ~ 12) 

Instruction Meaning 

INV  Rd 

Bitwise inversion. 
Before 0 0 0 0 1 1 0 0 
After 1 1 1 1 0 0 1 1 

  

AND Rd, Ra, Rb 
AND Rd, Ra, #imm 
AND Rd, #imm 

Bitwise AND. (Rd = Ra AND Rb), (Rd = Ra AND #imm), (Rd = Rd AND #imm) 
Ra 0 0 0 0 1 1 1 1 
Rb 1 1 1 1 0 1 1 1 
         

Rd 0 0 0 0 0 1 1 1 
  

OR Rd, Ra, Rb 
OR Rd, Ra, #imm 
OR Rd, #imm 

Bitwise OR. (Rd = Ra OR Rb), (Rd = Ra OR #imm), (Rd = Rd OR #imm). 
Ra 0 0 0 0 1 1 0 0 
Rb 1 1 0 1 0 0 1 0 
         

Rd 1 1 0 1 1 1 1 0 
  

EOR Rd, Ra, Rb 
EOR Rd, Ra, #imm 
EOR Rd, #imm 

Bitwise exclusive-OR. (Rd = Ra ⊕ Rb), (Rd = Ra ⊕ #imm), (Rd = Rd ⊕ #imm) 
Ra 0 1 0 1 0 1 0 1 
Rb 1 1 0 1 0 0 1 0 
         

Rd 1 0 0 0 0 1 1 1 
  

LSR Rd, Ra, #imm 
LSR Rd, #imm 

Logical shift right by (#imm) bits. (Rd = Rd >> #imm), (Rd = Rd >> #imm) 
Ex) #imm = 3 

Before 1 0 0 0 1 1 0 1 
After 0 0 0 1 0 0 0 1 

  

LSL Rd, Ra, #imm 
LSL Rd, #imm 

Logical shift left by (#imm) bits. (Rd = Ra << #imm), (Rd = Rd << #imm) 
Ex) #imm = 3 

Before 1 0 0 0 1 1 0 1 
After 0 1 1 0 1 0 0 0 

  
MOV Rd, Ra 
MOV Rd, #imm 

(Rd = Ra) 
(Rd = #imm) 

ADD Rd, Ra, Rb 
ADD Rd, Ra, #imm 
ADD Rd, #imm 

(Rd = Ra + Rb) 
(Rd = Ra + #imm) 
(Rd = Rd + #imm) 

SUB Rd, Ra, Rb 
SUB Rd, Ra, #imm 
SUB Rd, #imm 

(Rd = Ra - Rb) 
(Rd = Ra - #imm) 
(Rd = Rd - #imm) 

CMP Rd, #imm 
CMP Rd, Ra 

Set Z = 1 if Rd == #imm. Otherwise, Z = 0. (Z is the Zero field of the CPSR.) 
Set Z = 1 if Rd == Ra. Otherwise, Z = 0. 
Notice that N != V is Rd < #imm or Rd < Ra. 

BEQ [addr] Branch to [addr] if Z = 1. Ex) CMP R1, R2. BEQ tar → Go to tar if R1 == R2. 
BNE [addr] Branch to [addr] if Z = 0. Ex) CMP R1, R2. BNE tar → Go to tar if R1 != R2. 
BLT [addr] Branch to [addr] if N != V. Ex) CMP R1, R2. BLT tar → Go to tar if R1 < R2. 
LDR Rd, [Ra, #imm] Load the data stored at [Ra + #imm] to Rd. 
STR Rd, [Ra, #imm] Store the data stored in Rd to [Ra + #imm]. 
 


