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Research topics (not limited to):

Big data management, analytics, visualization
Large-scale machine/deep learning
Heterogeneous computing (GPU/FPGA)

Fault tolerance and resilience at extreme scale
Energy-efficient computing

Numerical algorithms, simulation & software
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R&D In ML and Systems Is
Exploding
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“A New Golden Age in Computer Architecture: Empowering the Machine-Learning Revolution”,
https://ieeexplore.ieee.org/document/8259424

Relative Number of ML Arxiv Papers to 2009



New Forces Driving Al Revolution

Compute Abstractions
O PyTorch
T © caffe

TensorFlow

Stochastic Gradient
Descent Q/\
Advances in
Algorithms and (
Models
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Machine learning community
has had an evolving focus on Al Systems

Fast Distributed  Deep Learning Transformers

Algorithms  Algorithms Frameworks Everywhere
2009 2022
ML for  Machine Learning RL for Massive General

Systems Frameworks Systems Models

Integration of

— ..
Communities



What defines good

ML-Systems

Research Todaye



What is Al-Systems Researche

» Good Al and Systems research
» Provides insights to both communities
> Builds on big ideas in prior Al and Systems Research

» Leverages understanding of both domains
» Studies statistical and computational tradeoffs
> |dentify essential abstractions 1o bridge Al and Systems
» Reframes systems problems as learning problems

» More than just great open-source software!
» But software impact offen matters...



Kinds of Al-Systems
Research



Al+S
U/

Advances in systems are enabling
substantial progress in Al

ystems




Al+S
U/

ystems

Developing Systems for: Advancing Al
» Autonomous Vehicles » Dynamic Neural Nets
» Reinforcement Learning » Prediction on
» Secure Machine Learning Compressed Data
» Prediction Serving » Distributed Training

» Experiment Management > Distributed Auto-ML



Advances in Al are being used to address
fundamental challenges in systems.

(N
Al + Systems




Al + Systems

» Reinforcement Learning for Bandit Algorithms for radio
» Pandas code generation ink adaptation
» SQL join planning > Wireless link quality
» Network packet estimation
classification » Multi-task learning for
» Autoscaling straggler mitigation

» VM Selection using Trees ..



Hardware for ML



Key Drivers for Neural Network Success

DARPA Neural Network Study Final
Report (606 pages):

“After partficipating in this Study, my
personal view is that neural networks will
provide the next major advance in
computing technology.”

Dr. Jasper Lupo

DARPA, Washington, DC

June, 1988

IMZAGE
More
Data
More
Complex
Nefts
Faster
Computation
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AlexNet vs Lenetb: 1000x More Compute

Scaling of Peak hardware FLOPS
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https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

General Purpose Hardware Trend

42 Years of Microprocessor Trend Data
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New plot and data collected for 2010-2017 by K. Rupp

42 Years of Microprocessor Trend Data, Karl Rupp

Key Observations
> # Transistors still increasing

» Single Core Performance
Plateauing

» End of Dennard Scaling

» Distributed Computing


https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

Common Fallacy: Moore’s Law is Dead
(It's nof)

10,000,000 e Moore's Law (1975 version) « Transistor Density
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10
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Moore, Gordon E. "No exponential is forever: but ‘Forever’ can be delayed!"
Solid-State Circuits Conference, 2003.

______________________________



't Is becoming increasingly difficult to
push the boundary

Building a 3nm fab costs around $20B. This is still economical given the
$600B ARR for the semi-conductor industry, but it is questionable how much
farther we can push the limit.
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But It has Slowed Down

40 years of Processor Performance
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Domain Specific Accelerators

» John Hennessy and David ACM
Patterson, Ic\ New Golden Age for
G omputer Architecture
A NeW GO|deﬂ Age fOI’ Agriculture Technology
C O m p U Te r AI’C h |Te C -l- U re ’ " 'T::gzxp?ur::tlizaplog::gzng Game
Communications of the L

ACM, February 2019




Domain Specific Accelerators

Cerebras Wafer-Scale Engine

Genl WSE Gen2 WSE
Fabrication process 16 nm 7 nm
Silicon area 46,225 mm? 46,225 mm? 10Ps/mW
Transistors 1.2 Trillion 2.6 Trillion
Al-optimized cores 400,000 850,000 °S/mW
71 An11:t -to-12b Unified Neural-
Sparsit Memory on-chip 18 GB 40 GB Circulant-Enabled
Mobile I with 8.1= Higher
obl ) Based 2D Data-Reuse
Memory bandwidth 9 PB/s 20 PB/s
Fabric bandwidth 100 Pb/s 220 Pb/s
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— Tech Giants/Systems —
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Designing an accelerator

1) Accelerators are ONLY the First 80% of the Problem
The remaining 20%: SW development + Full system design

2) HW design shouldn’t be about what can be built, rather what can be programmed
https://eecs.wsu.edu/~dtao/download/Distributed-DL-PyTorch-Zhang.pdf

3) Deploy at scale? Distributed Deep Learning


https://eecs.wsu.edu/~dtao/download/Distributed-DL-PyTorch-Zhang.pdf

Distributed Deep Learning



Distributed Training: What is ite & Whye

» Distributed Training™ ~ Training across multiple devices
» Different local and remote memory speeds / network

» Why do we need distributed fraininge
» Additional memory (memory bandwidth) for larger model
> “Need” to store weights + activations
» Faster training by leveraging parallel computation

» Reduce or eliminate data movement
» Privacy =2 Federated Learning
» Limited bandwidth to edge devices

*Very simplified definition.



Training Large Models

Al and Memory Wall
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https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Faster Processing

Training FLOPs Scaling for SOTA CV, NLP, and Speech Models

le+095
- GPT-3
®
le+083 Transformer:  750x /2 yrs i L
. CV/NLP/Speech: 15x/ 2 yrs ® o
| Moore's Law: 2x [/ 2 yrs Megatron LM
~1e+07—= a Wav2Vec 2.0
0 E
9 i ..
& ot 06 . Scale Training to
— 1€ 3 Xception .
g : o « Multiple Processes
2 i
o .
c . InceptionV3
8 1e+05— ® GPT-1
] o
8\ . Transformer
= . Seq2Seq ResNet ResNext ®
Cle+04+ @ ® ®
= - VGG DenseNet ELMo
1 o ¢
le+03o AlexNet |
] ®
] e
le+023
I I I | I I I I I I I r I I I r I I I r I I I || I I
2012 2013 2014 2015 2016 2017 2018
------------------------------------------------------------------------------------------- YEAR -----omoomocooee oo

___________________________________________________________________________________________________________________________________________


https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

On Dataset Size and Learning

» Datais a aresourcel! (e.g., like processors and memory)
> |s having lots of processors a problem?

» You don’t have to use all the datal
» Though using more data can often help

» More data offen* dominates models and algorithms

" EXPERT OPINION

Contact Editor: Brian Brannon, bbrannon@com puter.or g

PhD Tesla
The Unreasonable

Effectiveness of Data

Alon Halevy, Peter Norvig, and Fernando Pereira, Google
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ldeal Metric of Success for Efficient

Training

/- "
“Learning”

\

Second
\_

*Somewhat of a simplistic linear model. As we will later
see there are many more moving parts to this
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Metrics of Success

» Minimize fraining time to “best model”

> Best model measured in terms of test error

» Other Concernse

» Complexity: Does the approach infroduce addifional fraining
complexity (e.q., hyper-parameters)

» Stability: How consistently does the system train the model¢

» Cost: Will obtaining a fasfer solution cost more money (power)¢



Gradient Descent

1=1
0
wlzwo—aaj(w )
/ ow
Learning rate Aw

Two key elements:

The computed gradient: the direction

' v;,(O) w + The learning rate: how big a step do we take?



Learning rate

Two key elements:
 The computed gradient: the direction

* The learning rate: how big a step do we take?



Synchronous Stochastic Gradient

Descent @
min J (w)

In every iteration of

| N
SGD we load a Mini-batch w N Z_Zl
B

random mini-batch of
training data, and
compute the
gradient.




Parallelization Opportunities

Data Parallelism: Distribute the

processing of data to multiple PEs. W

|

S

@)

|
3| e
i

Q

2

S

=

Model Parallelism: Break the

B
model and distribute processing 1 0 oJ (wo)
. wh=w — LY
of every layer to multiple PEs B 4 - ow
. .y B
For either approach it is also om0 & Z 0T (wV)
possible to use synchronous or B — Ow

asynchronous updates



Bulk Synchronous Parallel (BSP) Execution

Compute Communlcate i Compute

\\//=w

=

Machine |

Machine 2

Machine 3

2
Barrier



Bulk Synchronous Parallel (BSP) Execution

Compute . Communicate | Compute
Machine | — lteration m\\ // teration >
Machine 2 — lteration lteration M
Machine 3 - lteration m lteration F
v v
Barrier Barrier

Enable more frequent coordination on parameter values

43



Asynchronous Execution

Compute Communicate Compute
Machine | — lteration - lteration
Machine 2 — iteration - |teration
Machine 3 - lteration - lteratior >

Enable more frequent coordination on parameter values, but
often results in generalization loss. Today we will only focus on
synchronous training.



Synchronous Data Parallel



PO
P1

P2

Parallel and

Data parallelism

e o S0
uka N S
o e S
::a:::iasy il

a. Not work for large models
b. High allreduce overhead

Pipeline parallelism
input

F‘r» 3| oo

PO P1 P2

Pros:
a. Make large model training feasible
b. No collective, only P2P

Cons:

a. Bubbles in pipeline

b. Removing bubbles leads to stale
weights

distributed training

Model parallelism

.1./ [> D%%O
Pros:

a. Make large model training
feasible

input

Cons:
b. Communication for each
operator (or each layer)



Synchronous Data Parallelism

» Compute the entire model
on each processor

» Distribute the batch evenly
across each processor:

» 1024 batch distributed
over 16 PEs: 64 images
per GPU

» Communicate gradient
updates through allreduce

BN N\

8w — _J —




All Reduce
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All Reduce

Tk]gfere are many different all reduce algorithms, each with their own trade
offs.

For simplicity, assume our model has 4 layers, and is trained on P=4 machines

Machine D Machine C




Machine D Machine C




Parameter Server

Sends (P-1) * N Data
> P Machines
> N Parameters

Machine D Machine C



Parameter Server

Sends (P-1) * N Data
> P Machines
> N Parameters

Machine D Machine C




Machine B

Parameter Server

- D

Machine A i
Communicate (P-1) * N Data

> P Machi
. / >NPaarCarlr?eeter

Machine D

Machine C




Machine B

Parameter Server
)

Machine A Communicate (P-1) * N Data

> P Machines

> N Parameters




*9
Comm (P-1) * N Data
> P Machines
> N Parameters

Parameter Server

[ Machine A }

Il

—]
s

Issues?
» High fan-in on Machine A
» (P-1) * N Bandwidth for Machine A




Parameter Server All Reduce

Machine D Machine C




Send each entry to parameter server for that entry.
> Key 12> A

> Key2>B
> Key 32> C
> Key4 > D

Machine D Machine C




Each machine sends N/P data to all other machines.
(P-1) * N/P

» P Machines

» N Parameters

Machine D Machine C




Machine A Machine B

Compute local sum on each machine

Machine D Machine C

S3




Machine A Machine B

Each machine broadcasts® the sum (N/P data size) to all other machines.
(P-1) * N/P

» P Machines

» N Parameters

Machine D

Machine C

S3

* Technically All Gather based on MPlI communication definition



Machine A Machine B

Total Communication per machine:

2* (P-1) * N/P (roughly independent of P)
» P Machines

» N Parameters

Machine D




Parameter Server All-Reduce

» Same amount of total data fransmitted as before, but spread
evenly across all machines instead of just one

Machine A H Machine B

e

» Same high fan-in (P-1)

» Reduced Inbound Bandwidth = 2*(P-1)N/P
» Previously 2*(P-1)*N for the parameter server




Ring All Reduce

Send messages in a ring to reduce fan-in.

Machine D Machine C




< Note this depicts a partial
sum and not a bigger message.

Ring All Reduce

Machine D Machine C




Ring All Reduce

Machine D




Ring All Reduce

Machine D




Machine A Machine B

Ring All Reduce

Each machine sends N/P data to next machine each of (p-1) rounds:
(P-1) * N/P (doesn’t depend on P!)
» Fan-in Per Round:

> 1 (doesn’t depend on P)

Machine D Machine C




Machine A Machine B

Ring All Reduce

Broadcast stage* repeats process sending messages forwarding
sums (same communication costs).

Machine D Machine C

* Technically All Gather based on MPlI communication definition



Machine A Machine B

Ring All Reduce

Machine D Machine C




Machine A Machine B

Ring All Reduce

Machine D Machine C




Machine A Machine B

Ring All Reduce

Machine D




Machine A Machine B

Ring All Reduce

Machine D




Ring All-Reduce

> Simplified communication topology with low fan-in

L Machine A J_{ Machine B }

Machine D Machine C

» Overall communication

> Same total communication: 2*(P-1)*N, but
Each Machine communicates
> Fan-in is constant (doesn't depend on P)

> lIssue: Number of communication rounds (P-1)




Double Binary Tree All-Reduce

» Two overlaid binary reduction trees NCCLiztency

-~ T N " " T —_ e e e e ]

| 1 | 3 \ 5 | 7 |9 \11]13|15|17\19|21|23\25|27|29\31| [0 | 2[4 l| 68 |10\12|14|16\18[20]22\24[26|28|30|

Allreduce, 8 bytes

51200

25600 == NCCL 2.4 — Trees

s NCCL 2.3 — RiNgS
12800
6400
3200
1600

800

400
rrrrrrr L e
13 200 —
—
R
~~~~~~~ o}—@ 100

96 192 384 768 1536 3072 6144 12288 24576

GPUs

» Double the fan-in = Log(p) rounds of communication
» Currently used on Summit super-computer and latest NCCL

https://devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-4/



https://devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-4/

Complexity Summary

Tcomm — (CY—FPNB)

a latency Bottleneck

B bandwidth
N message size Mf
P #processes

T
Parameter Server

=
- o

Parameter Server Ring All-reduce

Great Reference: T. Rajeev, R. Rabenseifner, and W. Gropp. "Optimization of collective communication

operations in MPICH." The International Journal of High Performance Computing Applications, 2005. /5



Data Parallel Training Complexity
Analysis

» Question: Comm time of ring allreduce is independent of

the number of processors. So what limits scalabilitye




Limits of Data Parallel Scaling

» The maximum limit of processors that you can use is P=B

» But this often leads to very low utilization of the hardware
and would not yield speed up

1042
i > Why does this
PR happene
; Best Workload » Remember
& sl / | roofline modele
: /
1 2 4 3 16 32 64 128 256 512 1024 2048

Batch Size—
One epoch training time of AlexNet computed on an Intel KNL system



Limits of Data Parallel Scaling

» The maximum limit of processors that you can use is P=B

» But this often leads to very low ufilization of the hardware
and would not yield speed up
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Scaling Data Parallel Training

1024
If we want to keep scaling g
synchronous SGD then we
. . ( )  — \
have to keep increasing

the batch size.
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MPI ALLREDUCE
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Naively increasing Batch size leads to
perfect results but ...
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Bigger isn't Always Better

» Motivation for larger batch sizes
» More opportunities for parallelism = but is it usefule
» Recall (1/n variance reduction):

1
— L X 19 L 19 279
n;VH (Yi, [ (2450 ‘B‘éve (Yi, [ (2350))

» |s a variance reduction helpful?

» Onlyif it let’'s you take bigger steps (move faster)
» Does it affect the final prediction accuracy?¢



Problems with Large Batch Training

» Larger Batch leads to sub-optimal generalization

» A common belief is that large batch training gets attracted to "sharp

minimas”

0.6

o
()}

o
S
L

Top-1 Test Accuracy

o
N

o
o
1

AlexNet-BN for ImageNet

—— Batch=512
Batch=8192
2'0 4'0 6I0 8|0 l(I)O
Epochs

Flat Mlnlmum

Trammg Function

[ Testmg Function

Keskar et al., On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima, ICLR’16.
Z Yao, A. Gholaml Q. Lei, K. Keutzer, M. Mahoney. Hessian-based Analysis of Large Batch Training and Robustness to Adversaries, NeurlPS’18.
Glnsburg Boris, Igor Gitman, and Yang You. "Large Batch Training of Convolutional Networks with LARS." arXiv:1708.03888, 2018.



Generalization Gap Problem
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Larger batch sizes harm generalization
performance.
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ImageNet top-1 validation error
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Why<¢ Large Batch Reduces Noise and
may Get Trapped in Local Minima

Objective function Update rule
1 — 1
L(H) — Nzl(xuyzae) 6t+1 :et_ntﬁ Z v9l(xay70t)
1=1 (z,y)eB

Small batch gradient descent acts as a reqularizer

Loss

Sharp Minima
Hypothesis

Parameter values along some direction

Active Research problem: Addressing the generalization gap for large batch sizes.



Solution: Linear Scaling Rule

» Scale the learning rate linearly with the batch size

%
N
(t+1) (1) V1= 1
0 — 0\ —n —E —E VoL(y;, f(x;;0))
k— |B;| _o(t)

» Addresses generalization performance by taking larger
steps (also improves training convergence)

» Sub-problem: Large learning rates can be destabilizing in
the beginning. Why?
» Gradual warmup solution: increase learning rate scaling from
constant to linear in first few epochs

» Doesn't help for very large k...



>

>

Data Parallelism Summary

An efficient parallel training method where the comm fime is
independent of processors with ring allreduce

Very easy to implement. Only requires allreduce operation before
updating parameters

Very challenging to scale. Using large batch fraining is not an option
as it hurts generalization performance.

» Existing solutions often require a lot of tuning (outside of ResNet-50 on
ImageNet)

Does not work for large models such as GPT-3 which are too large to
fit in one GPU

Processes are never idle



Pipeline Parallelism

Really a form of model parallelism



Parallel and distributed fraining

Pipeline parallelism

PO
P1

P2

Data parallelism

|nput

2

input

input

2

Pros:

a. Easy to realize

Cons:

2

5

3
O
3

&
o3
e

a. Not work for large models
b. High allreduce overhead

input

|‘=‘|1—~.

Pros:

2

PO

B

P1

&

P2

a. Make large model training feasible
b. No collective, only P2P

Cons:

a. Bubbles in pipeline

b. Removing bubbles leads to stale

weights

Model parallelism
input

| .1./ [> D%%O

Pros:
a. Make large model training
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Pipeline Parallelism Bubble where

Time / processes are idle

50 BRARIIRL A TN
P]
P?
P3
""""" Bubble

Forward and backward passes of
x| | X : -

model replica0 for micro-batch x
Me Memory consumption for the weights
Ma Memory consumption for the activations




GPipe [NeurlPS'19]:
Reduce Bubble with Micro-Batching

flush 1"2/’93 4 1,‘2/,a3 4
PO|OLINL20 3N 0 b1 ,2 |3
P1 mggg. 0,1 ,2 3
P2 ( 3 o172 | 3 proportional
P3 0fR2ME 0T 172737 to N

» GPipe reduces the bubble size by breaking the batch size
iInfo smaller pieces to reduce the idle time of the processes

» Pro: Reduces bubble size in an easy to implement manner

» Con: Significantly increases activation memaory Bubble
Forward and backward passes of

model replica0 for micro-batch x
_______________________________________ , Me Memory consumption for the weights
Slide: Courtesy of Shigang Li ! Ma Memory consumption for the activations



PioeDream[SOSP'19]:
Use Async Updates to remove Bubble

34 234
PipeDream oo (I3 o @ 18 2 B4/ ¢ -l
(SOSP'19)  p1 012 03 1[4 215 6 4 |7
PipeDream-2BW P2 01 02 1 3 2 |4 5 4 1|6 5 |7
(ICML'21) 0l 0 f1 122 [373)4] 4[5/ 5 (6] 6
N\ PipeDream PipeDream-2BW
asynchronous apply gradients apply gradients

with stale weights

» Pipedream uses asynchronous training: Avoid any idling by
always doing a forward/backward pass irrespective of
stale gradients/weights

> Pro: No bubble

» Con: As with other async methods this does affect model
accuracy and convergence, and as such has not been
Gdop’red in industry.



Asynchronous Methods

» General advice: Training methods that adversely affect
generalization are not adopted, unless there is a 10x
speed improvement.

» Otherwise, there are so many moving parts that can go
wrong in fraining NNs, that most often practitioners stay
away from async methods unless absolutely necessary
» For example training very large rec systems.



Pipeline Parallelism Summary

> Slightly more involved algorithm than data parallel method but with
the advantage of only requiring point to point communication

> |deal for large scale training to thousands of processes where point-
to-point communication is much cheaper than collective operations
such as allreduce or all-gather

» Requires special handling of bubble that results in idle processes



Model Parallelism

AKA Operator Parallelism



Parallel and distributed fraining

Pipeline parallelism
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Model Parallelism

Divide the model across machines and replicate the data.
» Supports large models and activations
» Requires communication within single evaluation

> How to best divide a model?

> Split across layers

» Only one set of layers active a time 2>
poor work balance

» This is basically pipeline parallelism
> Split individual layers

» which dimension?
> Weights or spatial > depends on operation

Machine |

Machine 3

¢ duiydely

p Sulyde



The AlexNet Architecture
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The Actual AlexNet Architecture

From the paper “ImageNet Classification with Deep Convolutional Neural Networks™

224

3\
T‘:
“*-—--:::_‘::\ 3\
3
>7 128 )
__________ I}
27 3\
3
Max. 128
pooling

192 192 128 2048 2048 \dense
FAVERNRN 13 13
Bt T3 13 dense | |dense
i 1000
192 192 128 Max |
Max pooling 2048 2048

pooling



Training on Multiple GPUs

> Limited by GPU memory using Nvidia GTX 580 (3GB RAM)

> 60M Parameters ~ 240 MB

» Need to cache activation maps for backpropagation
» Batch size = 128
> 128 * (227*227*3 + 55*55%96*2 + 96*27*27*2 + 256*27*27*2 + 256*13%13*2 +
13%13*384*2 + 256*13*13 + 6*6*256 + 4096 + 4096 + 1000) *4 Bytes ~

782MB Activations . s

» That is assuming no i 3 ng;f
overhead and single o] [ iy = %
precision values L e Ry

Overlapping
Max POOL

& 4 ‘“i/

9216 1000
Softmax

4096 4096

Image from https://neurohive.io/en/popular-networks/alexnet-imagenet-classification-with-deep-convolutional-neural-networks/



Model Parallelism: Comm Analysis

It helps to think of the operations in maftrix form. Consider an FC layer

d;

Data Parallelism: Partition input across
different Processors (batch dimension)

Model Parallelism: Partition weights

across different Processes (W dimension) e

Let’s discuss the communication details, step by step

* G

* d;

B/P

*——o

Py

B/P

_> Pl
Y
) Po
P1
Y
Requires

communication



Comm Analysis: Forward Pass

di B . B
o @ L . ® o —@ .
d,/P PO d'/P
p Po
. %k 0 ®
d; P, > —_—> P,
P, Py
W X YIocaI Y

Requires All Gather
communication

* Requires an all gather communication so that L Bd,
all processes get each others activation data Z <5(P — 1) >

« Same cost as all reduce without the 2x factor i—1 P

* Ignoring latency term for notational simplicity



Backward Pass: Weights e

VVT*VY=VX

PO, Pl d,/P
*

XT

Vi
» No communication needed as every processor only needs

the gradient of its own parameters

» This makes model parallelism very effective for cases where the
model size is large



v, * XT
Backward Pass: Inpufts W
d, B &
di/P
° P, * d E: + — > Ej
° Py
W' Vy Vy
Requires All Reduce
communication
V local

« Aggregating activation delta requires an 9 Z ( Bd )
allreduce operation



Comm Complexity Analysis

In Model Parallelism we need two forms of communication:

1. All Gather operation so that all processors get all the
activations

2. Allreduce operation for backpropagating activation
gradients

L
T omm (model) Z ( di) -+ 22 (B(P — 1)357;)
— =2

All Gather All Reduce



Model vs Data Parallelism®@

> When does it make sense to use Model vs Data
Parallelism?@

Teomm(model) :Z( 1)Bgi)+2i<5(P1)Bgi>

L d2
T omm(data) Z ( - )

1=1

» Model parallelism reduces the quadratic complexity of d,

> Itis useful for layers with very large weights d,>> 1

> It makes sense to use an integrated/hybrid data and model parallelism



Model Parallelism Summary

» Has better comm complexity for large FC layers than Data
parallel approach

» Makes training large models feasible by breaking it into
smaller parts

» However, requires blocking collective communication
during both forward pass (all gather), as well as backwards
pass (all reduce)

> Slightly harder to implement than data/pipeline parallel



Infegrated Model and Data Parallelism
BIP,, ) di-1 . B/P,
ilPe Por /P
For a linear graph we can |« dl < dlpl s
find The OpTimql hYbrid :i'ffdrer Pio | Pu | P2 rrl;e(:t(r;:lljl P10, P1y, P12
method for analyzing the v e W X
communication
complexity, coupled with ;
o . d/P; ow ran rocesses are
hardware utilization [1] p ;ttmdkt —.. oD inderad:
peturn | o0 ||| ey ]| mem P=P.xP.
TR sized
groups XT
Vw Vy
di/P; i B/Pc‘
o
B2 |
on Pr matmul
sized
VX o VX intermediate WT VY

______________________________________________________________________________________________________________________________________________________________________________________



General Hybrid Methods

For a general computational graph we need to decide on:
» How many processes 1o assign for DP
» Which axes to break the model: operator vs pipeline

» How to efficiently map the GPUs to the resulting execution
graph

> ...

For a general non-linear graph this leads to a combinatorically
large search space



Spatial Parallelism



Spatial Parallel Training

» The general idea is to break the input into smaller pieces
and distribute the work among different processors

» Need to exchange boundary points for spatial convolutions

64 px 64 + 1+ 1 px I
| | | | L
Teomm (domain) = Z (a + ﬁBX%/VXék;L/Q)
GPU1  GPU2 '

GPU1  GPU2 L -
+) (o + BBY} Vi /2)

GPU3 GPU4

GPU3 GPU4

L
+2) <alog(P) + B%Wﬂ)

__________________________________________________________________________________________________________________________________



Communication Complexity

L
| 64 + 1+ 1 px | Tcomm(dOma’I;’n) _ Z (Oé _|_ 5BX%/[/X6 ;1/2) EXChang|ng hOFIZOﬂtal
— pixels
L
GPU1  GPU2 4 Z (a + BBY3, YEEL, /2) Exchanging vertical pixels
1=0
L P-1
GPU3 | GPU4 +2 Z <alog(P) + BT\Wi\) All reduce Cost

~
I
)

(same as before)

_______________________________________________________________________________________________________________________________________________________________

' Peter Jin, Boris Ginsburg, and Kurt Keutzer. "Spatially Parallel Convolutions" ICLR Workshop Track, 2018.
i Gholami, Amir, Ariful Azad, Peter Jin, Kurt Keutzer, and Aydin Buluc. "Integrated model, batch, and domain parallelism in training neural networks." SPAA, 2018. !



Useful for High Resolution Training

» Domain parallel scaling on V100 GPUs
> 3x3 Conv, Batch=32, Channel=64

Resolution GPUs Fwd. wall-clock Bwd. wall-clock
128 x 128 1 2.56 ms (1.0x) 6.63 ms (1.0x)
2 1.52 ms (1.7x) 3.50 ms (1.9%)
4 1.23 ms (2.1 %) 2.33 ms (2.8 %)
256 X 256 1 10.02 ms (1.0x)  26.81 ms (1.0x)
2 5.34 ms (1.9%) 11.79 ms (2.3 %)
4 3.11 ms (3.2 %) 6.96 ms (3.9x)
512 x 512 1 45.15ms (1.0x) 126.11 ms (1.0x)
2 20.18 ms (2.2x)  60.15 ms (2.1x)
4 10.65 ms (4.2x) 26.76 ms (4.7x%)

. Peter Jin, Boris Ginsburg, and Kurt Keutzer. "Spatially Parallel Convolutions" ICLR Workshop Track, 2018
. Figure from: Dumoulin, V., Visin, F.. A guide to convolution arithmetic for deep learning. arXiv:1603.07285, 2016.



Spatial Parallelism Summary

> A litfle harder to implement since you need 1o exchange
the boundary poinfts

» Only effective for high resolution input data
» Limits the number of processors that can be effectively utilized

G P U 1 il G P U 2

GPU3 GPU4
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