
Advancing HPC I/O and Storage via
Efficient Data Compression

Dingwen Tao
Indiana University

July 4, 2022

2

Research topics (not limited to):
• Big data management, analytics, visualization
• Large-scale machine/deep learning
• Heterogeneous computing (GPU/FPGA)
• Fault tolerance and resilience at extreme scale
• Energy-efficient computing
• Numerical algorithms, simulation & software

Graduate Students

Undergraduate Students

Thank
You!

3

Storage and I/O Issues in HPC Systems
The compute capability is ever-
growing, but storage capacity
and bandwidth are developing
much more slowly

Fugaku Node (SC ’19)ALCF: Intel AuroraOLCF: IBM/NVIDIA Summit

SUPERCOMPUTER PEAK MEMORY STORAGE BAND
SYSTEM YEAR CLASS FLOPS (PF) SIZE (MS) -WIDTH (SB) MS/SB PF/SB

Cray Jaguar 2008 1 PFLOPS 1.75 PFLOPS 360 TB 240 GB/s 1.5k 7.3k
Cray Blue Waters 2012 10 PFLOPS 13.3 PFLOPS 1.5 PB 1.1 TB/s 1.3k 13.3k
Cray CORI 2017 10 PFLOPS 30 PFLOPS 1.4 PB 1.7 TB/s (**) 0.8k 17k
IBM Summit 2018 100 PFLOPS 200 PFLOPS > 10 PB (*) 2.5 TB/s > 4k 80k

(*) when using burst buffer (**) counting only DDR4 source: F. Cappello (ANL)

SUPERCOMPUTER PEAK MEMORY STORAGE BAND
SYSTEM YEAR CLASS FLOPS (PF) SIZE (MS) -WIDTH (SB) MS/SB PF/SB

Fujitsu Fugaku 2020 "ExaScale" 537 PFLOPS (*) 4.85 PB > 1.5 TB/s (**) > 3.23k 358k
AMD Frontier 2021 ExaScale 1.6 EFLOPS 9.2 PB (a) 10 TB/s > 0.92k 160k
Intel Aurora (#) future ExaScale > 2 EFLOPS > 10 PB (a) >= 25 TB/s > 0.40k 80k

(*) Rpeak, Top-500 as of November 2020 (**) DDN Newsroom
(a) aggregated memory (CPU DDR + GPU HBM)

OCLF: AMD Frontier

4

Trend of HPC Systems: Heterogeneity

OLCF: IBM/NVIDIA Summit Figure from X. Sun (IIT)

More and more
heterogeneous systems
• CPU + GPU (80% in TOP 10)

• Memory/storage hierarchy

• SmartNIC (FPGA, DPU)

• …

Rank
Name Year

CPU Accelera- Rmax Rpeak Manufac

(Prev.) Cores tor Cores [PFlop/s] Interconnect -turer Country & Site

1 Frontier 2021 8,730,112 8,138,240 1,102.0 1,685.7 Slingshot-11 HPE United States; DOE/SC/Oak Ridge
National Laboratory

2 (1) Fugaku 2020 7,630,848 0 442.0 537.2 Tofu
interconnect D Fujitsu Japan; RIKEN Center for

Computational Science

3 LUMI 2022 1,110,144 1,034,880 151.9 214.4 Slingshot-11 HPE Finland; EuroHPC/CSC

4 (2) Summit 2018 2,414,592 2,211,840 148.6 200.8 Infiniband EDR IBM United States; DOE/SC/Oak Ridge
National Laboratory

5 (3) Sierra 2018 1,572,480 1,382,400 94.6 125.7 Infiniband EDR IBM/NVIDIA United States; DOE/NNSA/LLNL

6 (4) Sunway
TaihuLight 2016 10,649,600 0 93.0 125.4 Sunway NRCPC China; National Supercomputing

Center in Wuxi

7 (5) Perlmutter 2021 761,856 663,552 70.9 93.8 Slingshot-10 HPE United States;
DOE/SC/LBNL/NERSC

8 (6) Selene 2020 555,520 483,840 63.5 79.2 Infiniband HDR Nvidia United States; NVIDIA
Corporation

9 (7) Tianhe-2A 2018 4,981,760 4,554,752 61.4 100.7 TH Express-2 NUDT China; National Super Computer
Center in Guangzhou

10 Adastra 2022 319,072 297,440 46.1 61.6 Slingshot-11 HPE France; GENCI-CINES

5

Data Management Issues for Scientific Applications
application data scale bottleneck reduce by

HACC 20 PB
use up filesystem

(26 PB in total) 10×
cosmology simulation one-trillion-particle Mira@ANL in need

CESM 50% vs 20%
5h30m

to store 10×
climate simulation storage in hardware NSF Blue Waters in need

budget, 2017 vs 2013 1-TBps I/O

APS-U 10
2 PB

saturate

connection 100×
High-Energy X-Ray Brain Initiatives 100 GBps bandwidth in need
Beams Experiments

application data scale bottleneck reduce by

HACC 20 PB
use up filesystem

(26 PB in total) 10×
cosmology simulation one-trillion-particle Mira@ANL in need

CESM 50% vs 20%
5h30m

to store 10×
climate simulation storage in hardware NSF Blue Waters in need

budget, 2017 vs 2013 1-TBps I/O

APS-U 10
2 PB

saturate

connection 100×
High-Energy X-Ray Brain Initiatives 100 GBps bandwidth in need
Beams Experiments

application data scale bottleneck reduce by

HACC 20 PB
use up filesystem

(26 PB in total) 10×
cosmology simulation one-trillion-particle Mira@ANL in need

CESM 50% vs 20%
5h30m

to store 10×
climate simulation storage in hardware NSF Blue Waters in need

budget, 2017 vs 2013 1-TBps I/O

APS-U 10
2 PB

saturate

connection 100×
High-Energy X-Ray Brain Initiatives 100 GBps bandwidth in need
Beams Experiments

6

Our Solution – Error-Bounded Lossy Compression

2:1 (FP-type) 10:1 or higher

lossless on scientific datasets reduction ratio in need

industry
lossy compressor (JPEG)

high in reduction rate,
but not suitable for HPC

need diverse
compression modes

1) absolute error bound (infinity-norm)
2) pointwise relative error bound
3) RMSE error bound (2-norm)
4) fixed bitrate
5) satisfying post-analysis requirements

SZ Di and Cappello 2016, Tao et al. 2017,
Xin et al. 2018, Tian et al. 2020

> prediction-based lossy compressor framework for scientific data
> strictly control the global upper bound of compression error
> implemented on CPU, GPU, FPGA
> integrated in I/O libraries (HDF5, ADIOS, PnetCDF)

Lossy compression for scientific data at varying reduction ratio
(10:1 to 250:1, left to right)

Figure from P. Lindstrom (LLNL)

Floating point data set
(numerical simulation
of the brain):

Random
(noise)

Source: Leonardo Bautista Gomez (BSC)

MantissaSign+
Exponent

7

2017 Gordon Bell Award: 18.9-Pflops Nonlinear Earthquake
Simulation on Sunway TaihuLight: Enabling Depiction of 18-Hz and 8-
Meter Scenarios

Designed a lossy compression scheme: On-The-Fly (OTF) compression

Benefit from lossy compression:
• 24%+ computational performance improved
• 2X maximum problem size that can be solved

Lossy Compression Does Improve Performance!

On-the-Fly compression, explored 3 methods:
M1: Directly conversion to half precision IEEE 754 standard. However, dynamic
is too large for 5 bits of exponent, for some variables.
M2: Determines the required exponent bit-width according to the recorded
maximum dynamic range and uses the rest bits for mantissa.
M3: Normalize all the values of the same array to the range between 1 and 2,
which corresponds to an exponent value of zero.

8

Core R&D Team
Argonne National Laboratory

Franck Cappello (lead), Sheng Di (lead)

Washington State University
Dingwen Tao (lead), Jiannan

Tian, Sian Jin, Chengming Zhang,
Cody Rivera

University of California, Riverside
Xin Liang (lead), Kai Zhao, Jinyang Liu

Clemson University
Jon Calhoun (lead), Robert

Underwood, Griffin Dube
https://github.com/szcompressor

SZ compression framework family tree.

SZ: A Lossy Compression Framework for Scientific Data
Established in 1963, the R&D 100 Awards is the only S&T (science and technology) awards
competition that recognizes new commercial products, technologies and materials for their
technological significance that are available for sale or license. The R&D 100 Awards have long
been a benchmark of excellence for industry sectors as diverse as telecommunications, high-
energy physics, software, manufacturing, and biotechnology. This 2021 R&D 100 winner is listed
below, along with its respective category.

SZ

PRODUCTION

GENERIC

CPU

SZ1.4 SZ2.1 SZ3 SZx

GPU

cuSZ
(cuda)

KSZ
(KoKKos)

SPECIALIZED

Seismic
Imaging

Interp-SZ

Quantum
Chemistry

PaSTRI-SZ

X-Ray
Crystallography

Roibin-SZ

Material
MD

MMD-SZ

RESEARCH

GENERIC

Automatic
Par-Tuning

SZauto

FPGA

waveSZ

Vectorized

vecSZ

SPECIALIZED

Critical Point
Preserving

cpSZ

DNN

DeepSZ

HPC use-cases:
• Reducing storage footprint
• Accelerating I/O & communication
• Accelerating visualization
• Reducing streaming intensity
• Running larger problems
• Checkpoint/restart

AI use-cases:
• DNN model compression
• DNN training data compression
• Reducing DNN memory consumption
• Accelerating distributed training
• …

$6M from DOE
$1M from NSF
$1M from Aramco

https://github.com/szcompressor

Significantly Improving Lossy Compression for Scientific Data Sets
Based on Multidimensional Prediction and Error-Controlled Quantization

Published in 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS’17)

10

Background Introduction Design Evaluation Conclusion

SZ Framework (Error-BoundWorkflow)

initial data +
parameters

prediction
linear (1D), or

multidimensional

quantization
linear-scaling,

of prediction errors

variable-length
(Huffman code)
low entropy

lossily comp
-ressed data

lossless×

input lossy output
with strict
error control

decorre
-lation coding

approxi
-mation

October 5, 2020 · PACT ’20, Virtual Event · cuSZ · 5 / 20

SZ Compression Pipeline

prediction quantization coding

BackUp (!-Predictor)

! Gaussian-like, with signum altering to Manhattan distance to the (polarized) current point (!).

G5×5 =

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

 !5×5 =

−1 4 −6 4 −1
4 −16 24 −16 4

−6 24 −36 24 −6
4 −16 24 −16 4

−1 4 −6 4 !

! Works for arbitrary dimension: from line to cube, to hypercube…

(! − 1,") (!,")

(!," − 1)(! − 1," − 1) −

+

+

(! − 1,", #) (!,", #)

(!," − 1, #)(! − 1," − 1, #)

(! − 1,", # − 1) (!,", # − 1)

(!," − 1, # − 1)(! − 1," − 1, # − 1)
−

−

−

+

+

+

+

October 5, 2020 · PACT ’20, Virtual Event · cuSZ · 1 / 1

BackUp (!-Predictor)

! Gaussian-like, with signum altering to Manhattan distance to the (polarized) current point (!).

G5×5 =

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

 !5×5 =

−1 4 −6 4 −1
4 −16 24 −16 4

−6 24 −36 24 −6
4 −16 24 −16 4

−1 4 −6 4 !

! Works for arbitrary dimension: from line to cube, to hypercube…

(! − 1,") (!,")

(!," − 1)(! − 1," − 1) −

+

+

(! − 1,", #) (!,", #)

(!," − 1, #)(! − 1," − 1, #)

(! − 1,", # − 1) (!,", # − 1)

(!," − 1, # − 1)(! − 1," − 1, # − 1)
−

−

−

+

+

+

+

October 5, 2020 · PACT ’20, Virtual Event · cuSZ · 1 / 1

2×
Error Bound

2×
Error Bound

2×
Error Bound

2×
Error Bound

First-Phase
Predict Value

Real
Value←

→ Error
Bound

2D Lorenzo Predictor

3D Lorenzo Predictor

Error-Bounded Uniform Quantization Code

We may need much less than 256
intervals (that 8 bits can represent).

Very centrally
distributed

Huffman Coding

11

Experimental data (floating point-single precision-FP32)
• Climate: ATM (CESM): 3D dataset from climate simulation
• Weather: hurricane: 3D dataset from Hurricane Isabel simulation

Climate Hurricane

Climate and Severe Weather Datasets

ZFP: Best mode “fixed-accuracy“
E.g., bit-rate = 8 bits/value (CR = 4)
• SZ: 14dB higher than ZFP on ATM
• SZ: 11dB higher than ZFP on Hurricane
PSNR is logarithmic scale

12

2D X-ray datasets from Argonne Photon
Source (APS) instrument
• Data Source: X-ray instrument
• Dimension Size: 2560×2560
• Data Size: 40 GB
• File Number: 1518

Instrument Datasets

0

500

1000

1500

2000

2500

0

50
0

10
00

15
00

20
00

25
00

1e-4

5e-5

0

- 5e-5

- 1e-4

13

original raw data

original raw data

SZ-2.0 (PSNR=29, SSIM=0.6867) ZFP (PSNR=21.3, SSIM=0.3762)

SZ-2.0 (PSNR=51, SSIM=0.9966) ZFP (PSNR=22.5, SSIM=0.8893)

Downsamping + interpolation
(PSNR=18.1, SSIM=0.4345)

Downsamping + interpolation
(PSNR=17.7, SSIM=0.7681)

Hurricane
(CR=66:1)

Cosmology
(CR=58:1)

Visualization with SZ

14

Climate

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

SZ ZFP
OurSol

SZ ZFP
OurSol

SZ ZFP
OurSol

El
ap

se
d

Ti
m

e(
s)

Number of Cores

compression time
data writing time

819240962048

 0
 200
 400
 600
 800

 1000
 1200

El
ap

se
d

Ti
m

e(
s)

SZ ZFP
OurSol

SZ ZFP
OurSol

SZ ZFP
OurSol

Number of Cores
819240962048

decompression time
data reading time

Data dumping time

Data loading time

Speedup of 58 on 64 nodes

Speedup of 16
on 64 cores

SZ-2.0SZ-1.4 Cosmology

Parallel Evaluation

cuSZ: An Efficient GPU Based Error-Bounded Lossy
Compression Framework for Scientific Data

Published in 2020 International Conference on Parallel Architectures and Compilation Techniques (PACT’20)

16

Background Introduction Design Evaluation Conclusion

SystemWorkflowDiagram of cuSZ

-10
-6

-4
-3

-4
-2

1
-1

3
4

3
4

-1
3

4
10 0

0
2

5
7

1

0
2

5
-2

1
-3

-1
-4

3

3
2

5
- 0

- 0
- 2

- 5
- 7

- 1

- 0
- 2

- 5
-2

1
-1

4
3

4

3
4

10

root

1

1

0

1

0

0 0

1

1

1 0

0

1

0

0

1 0

0

0

...

fixed‑length representation
DEFLATED UNUSED

•

•

•

t0
t1
t2

tn

concatenatingto dense format

S LS
it idt ffman code

quant.code bitwidth ... Huff‑code
508 00000110 ... 00001010
509 00000101 ... 00000100
510 00000011 ... 00000100
511 00000010 ... 00000001
512 00000010 ... 00000011
513 00000011 ... 00000101
514 00000011 ... 00000000
515 00000110 ... 00001100

range freq.
|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ 442‑‑ 512 76%
|‑‑‑‑‑+ 512‑‑ 582 24%
|+ 582‑‑ 652 0.14%
|+ 652‑‑ 722 0.073%
|+ 722‑‑ 793 0.026%
|+ 793‑‑ 863 0.0095%
|+ 863‑‑ 933 0.0021%
|+ 933‑‑1024 0.00014%

f oating oint re resentationoriginal data in nits of ePREQUANTIZATION (no RAW)
on E UANT AT N set

! rediction res ts in nit eig tprediction (no RAW) in nits of e nc angedPOSTQUANTIZATION (no RAW)

histograming build and canonize
Huffman codebook

memcpy fixed‑length
Huffman code

deflating Huffman codes

DUAL‑QUANTIZATION
ANDPREDICTION

CUSTOMIZED
HUFFMANENCODING

October 5, 2020 · PACT ’20, Virtual Event · cuSZ · 7 / 20

System Design
Challenges
Ø Tight data dependency—loop-carried read-after-write (RAW)—hinders parallelization.
Ø Host-device communications due to only considering CPU/GPU suitableness.

17

Background Introduction Design Evaluation Conclusion

Loop-Carried Read-After-Write (P+Q) Procedure in SZ

! Lossless compression and decompression (codec) are
mutually reversed procedures.

! Simlarly, SZmakes to-be-decompressed
(reconstructed) data show during compression and
make it under error control.

! Error control is conducted during quantization and
reconstruction:

e◦/(2 · eb)× (2 · eb)− e◦ ≤ eb.

! This introduces loop-carried read-after-write
dependency.

dk−2 − p◦
k−2 = e◦k−2 !!" q◦

k−2 !!" e◦!k−2 !!" d◦!
k−2

dk−1 − p◦
k−1 = e◦k−1 !!" q◦

k−1 !!" e◦!k−1 !!" d◦!
k−1

dk − p◦
k = e◦k !!" q◦

k !!" e◦!k !!" d◦!
k

≡≡ ≡≡ ≡≡

q•
k !!" e•k !!" d•

k

prediction quantization reconstruction

w
/loop

carried
raw

SZ
com

pression

decompression

October 5, 2020 · PACT ’20, Virtual Event · cuSZ · 8 / 20

Fully Parallelized P+Q

Background Introduction Design Evaluation Conclusion

Fully Parallelized (P+Q) Procedure in cuSZ

! Prioritize error control.
! Error control happens at the very beginning,

prequantization:

d◦/(2 · eb)× (2 · eb)− d◦ ≤ eb,

! And postquantization is corresponding to quantization
in SZ.

dk°299K d±
k°2 ° p±

k°2 = ±±k°2 ¥ q±
k°2 ¥ ±±?k°2 99K d±?

k°2

dk°199K d±
k°1 ° p±

k°1 = ±±k°1 ¥ q±
k°1 ¥ ±±?k°1 99K d±?

k°1

dk 99K d±
k ° p±

k = ±±k ¥ q±
k ¥ ±±?k 99K d±?

k

¥¥

q•
k

¥¥ ¥¥

¥ ±•k 99K d•
k

prequant postquant (unnecessary) cu
S

Z
co

m
p

ressio
n

decompression

October 5, 2020 · PACT ’20, Virtual Event · cuSZ · 9 / 20

18

Background Introduction Design Evaluation Conclusion

Mixture of Different Parallelisms

compression se
qu

en
tia

l

co
ar
se
-

gr
ai
ne

d

fin
e-

gr
ai
ne

d

at
om

ic

dual-quantization •
histogram • •

build Huffman tree •
canonize codebook • • •

Huffman encode (fix-length) •
deflate (fix- to variable-length) •

decompression
inflate (Huffman decode) •

reversed dual-quantization •

Table 2: Parallelism used for cuSZ’s subprocedures (kernels) in
compression and decompression.

Worth noting: in canonizing codebook
! problem size>max. block size (1024)
! utilize cooperative groups and grid.sync()
! ^_syncthreads(): not able
! cudaDeviceSynchronize(): expensive

October 5, 2020 · PACT ’20, Virtual Event · cuSZ · 12 / 20

Adaptive Parallelism

Background Introduction Design Evaluation Conclusion

Tuning Coarse-GrainedHuffmanCodec (Degree of Parallism)

chunk
size

26

27

28

29

210

211

212

213

214

215

216

hacc
1071.8mb 280,953,867 f32

#thread deflate inflate

. . .

. . .

. . .

. . .

. . .

1.4e5 4.6 2.8
6.9e4 5.1 5.1
3.4e4 13.6 12.1
1.7e4 63.1 35.0
8.6e3 65.8 28.1
4.3e3 45.9 14.3

cesm
24.7mb 6,480,000 f32

#thread deflate inflate

1.0e5 11.3 25.0
5.1e4 15.5 37.8
2.5e4 67.1 41.6
1.3e4 55.6 30.7
6.3e3 48.2 19.6

. . .

. . .

. . .

. . .

. . .

. . .

hurricane
95.4mb 25,000,000 f32

#thread deflate inflate

. . .

. . .

9.8e4 5.1 11.0
4.9e4 10.2 9.4
2.4e4 64.6 34.2
1.2e4 57.3 27.7
6.1e3 50.7 17.8

. . .

. . .

. . .

. . .

nyx
512mb 134,217,728 f32

#thread deflate inflate

. . .

. . .

. . .

. . .

1.3e5 4.7 5.9
6.6e4 5.7 6.3
3.3e4 25.1 16.1
1.6e4 69.7 52.4
8.2e3 72.4 42.6
4.1e3 50.0 23.1

. . .

qmcpack
601.5mb 157,684,320 f32

#thread deflate inflate

. . .

. . .

. . .

. . .

1.5e5 4.7 5.1
7.7e4 5.2 6.2
3.8e4 12.9 11.1
1.9e4 72.7 40.3
9.6e3 75.9 29.0
4.8e3 56.0 16.1

. . .

Table 3: Throughputs (in GB/s) versus different numbers of threads launched on V100. The optimal thread number in terms of
inflating and deflating throughput is shown in bold.

October 5, 2020 · PACT ’20, Virtual Event · cuSZ · 13 / 20

Threads # Tuning

Background Introduction Design Evaluation Conclusion

Canonical Codebook andHuffman Encoding

ca·non·i·cal adj.

[Schwartz and Kallick 1964]

! codebook transformed to a compact manner
! no tree in decoding
! tree build time: 4–7ms

update: 0.8ms
! canonize for 200 us (1024 symbols)

update: incoporated in tree-building

! Encoding/decoding is done in a coarse-grained
manner.

! AGPU thread is assigned to a data chunk.
! Tune degree of parallelism to keep every thread busy.

October 5, 2020 · PACT ’20, Virtual Event · cuSZ · 11 / 20

Background Introduction Design Evaluation Conclusion

Canonical Codebook andHuffman Encoding

ca·non·i·cal adj.

[Schwartz and Kallick 1964]

! codebook transformed to a compact manner
! no tree in decoding
! tree build time: 4–7ms

update: 0.8ms
! canonize for 200 us (1024 symbols)

update: incoporated in tree-building

! Encoding/decoding is done in a coarse-grained
manner.

! AGPU thread is assigned to a data chunk.
! Tune degree of parallelism to keep every thread busy.

October 5, 2020 · PACT ’20, Virtual Event · cuSZ · 11 / 20

GPU Performance Optimization
Canonical Codebook & Huffman Encoding

fine-grained manner:
IPDPS’21: Revisiting Huffman Coding: Toward Extreme
Performance on Modern GPU Architectures, Tian et al.
IPDPS’22: Optimizing Huffman Decoding for Error-Bounded Lossy
Compression on GPUs, Rivera et al.

19

cuSZ – CUDA version of SZ

2 4 6 8 10 12 14 16

50

100

150

Bitrate

PS
N
R

Nyx.cuzfp
Hurricane.cuzfp
Nyx.cusz
Hurricane.cusz

cuSZ (as of October 2021):
For compression kernel,
411× ~ 719× over serial CPU
19.1× ~ 24.8× over OMP CPU

For decompression kernel,
130× ~ 235× over serial CPU
11.8× ~ 16.8× over OMP CPU

Rate-Distortion

HACC CESM-ATM Hurricane Nyx QMCPack

102
103

104

n/
a

n/
a94 86 79 85 81

2,
03
9

2,
88
6

2,
78
5

22
,8
36

27
,3
61

19
,7
28

31
,4
60

28
,8
60

C
om

pr
es
si
on

Th
ro
ug
hp
ut
(M
B/
s)

SZ, single-CPU-core SZ, 32-CPU-core cuSZ, V100

102

103

104

n/
a

n/
a

15
1

23
8

18
5

20
1

21
1

2,
34
9

2,
80
5

2,
96
0

11,
35
4

24
,3
10

19
,2
16

18
,9
68

14
,3
79D
ec
om

pr
es
si
on

Th
ro
ug
hp
ut
(M
B/
s)

https://github.com/szcompressor/cuSZ

https://github.com/szcompressor/cuSZ

Accelerating Parallel Write via Deeply Integrating Predictive
Lossy Compression with HDF5

To appear in International Conference for High Performance Computing, Networking, Storage, and Analysis (ACM/IEEE SC’22)

21

Current Limitations
• Sequential compression and I/O
• Offset cannot be simply pre-assigned

• Compression sizes vary drastically across different data partitions

↑ Compression bit-rate distribution on a Nyx dataset with 512
partitions. Every partition uses the same compression configuration.

Our Solution and Contributions
• Integrate predictive lossy compression (such

as SZ) with asynchronous I/O
• Extend prediction model to estimate the

offset and time of parallel I/O
• Overlap I/O with compression
• Optimize order of compression tasks to

achieve higher performance
• Our solution improves the HDF5 parallel-write performance by up to 4.5× and 2.9× compared to

two existing solutions: parallel write (1) without compression and (2) with the SZ lossy compression
filter, respectively, with only 1.5% storage overhead

Introduction

22

↑ Scientific data management with compression.

Background

https://www.hdfgroup.org/wp-content/uploads/2020/10/Virtual-Object-Layer-VOL-Intro.pdf

Parallel I/O Libraries for HPC Applications
• Access and manage scientific data efficiently
• Moving data between compute nodes and complex storage

• Node-local persistent memory, burst buffers, disk-based storage, etc.
• Currently compression is a dedicated layer (e.g., HDF5’s dynamically loaded

filter) in between applications and I/O libraries
• E.g., HDF5 filter based on SZ: https://github.com/disheng222/H5Z-SZ

• HDF5 virtual object layer (VOL): redirect I/O operations into VOL connector
and allow asynchronous I/O

https://www.hdfgroup.org/wp-content/uploads/2020/10/Virtual-Object-Layer-VOL-Intro.pd
https://www.hdfgroup.org/wp-content/uploads/2020/10/Virtual-Object-Layer-VOL-Intro.pdf
https://github.com/disheng222/H5Z-SZ

23

Fi
le

 F
or

m
at

Li
br
ar
y

D
at

a
M

od
el

D
oc
um

en
ta
ti
on

…

Supporters
…

To
ol
s

HDF5 Ecosystem

Figure from Q. Koziol (LBL)

24

A parallel HDF5 program has a few extra calls

MPI_Init(&argc, &argv);

fapl_id = H5Pcreate(H5P_FILE_ACCESS);
H5Pset_fapl_mpio(fapl_id, comm, info);
file_id = H5Fcreate(FNAME,…, fapl_id);
space_id = H5Screate_simple(…);
dset_id = H5Dcreate(file_id, DNAME, H5T_NATIVE_INT,

space_id,…);
xf_id = H5Pcreate(H5P_DATASET_XFER);
H5Pset_dxpl_mpio(xf_id, H5FD_MPIO_COLLECTIVE);
status = H5Dwrite(dset_id, H5T_NATIVE_INT, …, xf_id…);

MPI_Finalize();

HDF5 Overview @ UC Berkeley 24

Example of a PHDF5 C Program

25

Overall Design
1. Predict compression ratio and throughput
2. Distribute estimated compression ratio of each

partition to all processes
3. Compute offset (compressed size) for parallel write
4. Optimize the order of compressing different data

fields in each process
5. Overlap compressions and writes
6. Distribute overflow information
7. Handle overflowed data

↑ Overview of our proposed solution.

Design Methodology

26

How Our Solution Compares to Existing Solutions
• Existing solutions:

• (1) Original: non-compression solution
• (2) Lossy compression solution using HDF5 filter

• Our Solutions:
• (3) Overlap compression & I/O
• (4) Overlap compression & I/O + compression scheduling optimization

↑ Timeline of data aggregation with 5 processes and 2 data fields.

Design Methodology

27

Compressor Throughput Estimation
• Min and max compression throughputs are similarly bounded across different data samples
• Bitrate-throughput curve for each data sample is highly consistent

↑ Minimum and maximum compression throughput of a given data
partition based on 30 samples from Baryon density

↑ Single-core compression throughput with different bit-rates on Nyx
and RTM datasets

Design Methodology

28

Compressor Throughput Estimation
• Min and max compression throughputs are similarly bounded across different data samples
• Bitrate-throughput curve for each data sample is highly consistent

↑ Independent write I/O throughput per process with different data sizes
per process

Write Time Estimation
• Not to provide a highly accurate write-time

estimation for each data partition, but to
provide a capability to estimate the relative
write time across different data sizes

• Write time stabilizes after data size reaches a
certain point

Design Methodology

29

Overlapping Compression and Write
• Estimate/predict the offset (i.e., compressed data size)

based on our previously built theoretical model
• Reserve an extra space for compressed data overflow
• Extra space ratio can be adjusted to balance between

performance and compressed size overhead

Extra Space Ratio
• Default at 1.25 for most partitions
• Adjust for partitions with low estimated

compression ratio

↑ Overflow data handling with preserved extra space.

Trade-off between performance overhead and compression size overhead ↑

Design Methodology
Jin, S., Di, S., Jiannan, T., Byna, S., Tao, D. and Cappello, F., 2022, May. Improving
Prediction-Based Lossy Compression Dramatically via Ratio-Quality Modeling. In
Proceedings of The 38th IEEE International Conference on Data Engineering (ICDE’22).

30

Compression Order Optimization
• Improve overlapping efficiency

• I/O of each partition happens after compression
• Avoid unnecessary wait time for I/O

• When good? Compression time and I/O time are similar
• When not good?

• I/O is significantly longer
• Compression is significantly longer

↑ An example of extremely unbalanced compression time and write time, limiting the benefit from our reordering.

Design Methodology

31

Experimental Setup
• Implemented our approach with HDF5 and SZ3
• Two HPC systems

• Summit supercomputer at Oak Ridge National Lab
• Bebop cluster at Argonne National Lab

• Different scales of Nyx and VPIC datasets
• Use PSNR to validate the reconstructed data quality
• Both datasets result in ~16X compression ratio

Evaluation

↑ Details of Tested Datasets.

I/
O

-In
te

ns
iv

e
HP

C
Ap

pl
ic

at
io

ns

Nyx cosmology simulation VPIC plasma simulation

32

Compression & I/O Throughput Estimation Accuracy
• High accuracy on compression time estimation

• Different partitions
• Different data scales

• High accuracy on write time estimation
• Have some distortion but NOT affect our optimization

↑ Accuracy of our compression-time estimation on 5123 Nyx data
samples (red line is predicted time; black dots are actual time)

↑ Accuracy of our compression-time estimation on 10243 Nyx data
samples. Red line is predicted time; black dots are actual time.

↑ Accuracy of our write time estimation on 10243 Nyx data samples.
Red line is predicted time; black dots are actual time.

Evaluation

33

Evaluation on Extra Space Ratio
• Trade-off curve between performance and storage are highly similar
• Lower the extra space ratio can result in extremely high performance overhead
• We can use the same extra space ratio for different setups (default at 1.25)
• Users can also custom the extra space ratio

↑ Trade-off between performance overhead and storage overhead based on different extra space ratios on Nyx dataset (6 data
fields) and VPIC dataset (7 data fields) on both Bebop and Summit with 512 processes.

Evaluation

34

Comparison
• Original: non-compression solution
• Previous: compression filter solution
• Overlap: our solution
• Reordering: overlap + reorder technique

↑ Evaluation on the consistency of the storage and
performance overheads using the same extra space ratio of
1.25 with 512 processes on Summit.

Performance comparison among our solution (overlapping and reordering),
original non-compression solution, and previous compression-write solution

on 40963 Nyx dataset with 512 processes. à

Performance Improvement
• Original → Previous: 1.87×
• Previous → Overlap: 1.79×
• Overlap → Reordering: 1.30×
• Overall: 2.91× improvement from previous

with a 26% storage overhead. 1.5% if
compared to original size

• Stable performance over timesteps

Evaluation

35

↑ Performance improvement of overall parallel-write with our proposed solution compared to the previous write solution
with H5Z-SZ on both Nyx and VPIC datasets. Dashed red line is the baseline of HDF5 without compression. (a) and (b) are
evaluated with 512 processes on Summit.

Evaluation

Performance with Different Overall Ratios
• Limited improvement from reordering optimization under extremely high/low bit-rate

• High bit-rate: I/O time significantly larger than compression time
• Low bit-rate: compression time significantly larger than I/O time

• Storage overhead is stable (~20% of compressed data)
• Performance improvement is more significant with higher bit-rate

• Low bit-rate: compression time dominate, little overlap efficiency

36

↑ Performance improvement (overall) and storage overhead of our solution compared to the previous solution on both
Nyx and VPIC datasets. (a) and (b) are evaluated with 512 processes om Summit.

Performance with Different Overall Ratios
• Limited improvement from reordering optimization under extremely high/low bit-rate

• High bit-rate: I/O time significantly larger than compression time
• Low bit-rate: compression time significantly larger than I/O time

• Storage overhead is stable (~20% of compressed data)
• Performance improvement is more significant with higher bit-rate

• Low bit-rate: compression time dominate, little overlap efficiency

Evaluation

37

↑ Performance improvement of overall parallel-write with our proposed solution compared to the previous write solution
with H5Z-SZ on both Nyx and VPIC datasets. Dashed red line is the baseline of HDF5 without compression. (c) and (d) are
evaluated with a target bit-rate of 2.

Evaluation

Performance with Different Scales
• Improvement from reordering optimization is stable (~22%)
• Storage overhead is stable (~20% of compressed data)
• Performance improvement is more significant with larger scale

• Independent write provides better scalability than collective write (used by previous comp-write solution)

38

↑ Performance improvement (overall) and storage overhead of our solution compared to the previous solution on both
Nyx and VPIC datasets. (c) and (d) are evaluated with a target bit-rate of 2.

Evaluation

Performance with Different Scales
• Improvement from reordering optimization is stable (~22%)
• Storage overhead is stable (~20% of compressed data)
• Performance improvement is more significant with larger scale

• Independent write provides better scalability than collective write (used by previous comp-write solution)

COMET: A Novel Memory-Efficient Deep Learning Training
Framework by Using Error-Bounded Lossy Compression

Published in Proceedings of the VLDB Endowment, Vol. 15, No. 4, 2021

40

System Issues with Large AI Models
Issue

Highly limited GPU memory space
but larger batches are needed
[You et al., SC’19]

Our solution [Jin et al., VLDB’22]
reduces memory consumption
by up to 13.5×.

Solution

Backward phase consumes more
than 70% of overall training FLOPs

Our solution [Zhang et al., ICS’21]
saves end-to-end training-and-
pruning time by up to 2.3×.

2 B 2 B

G E

1 D E

AE
AE

1 D GE
D E

5

. 1 D E

-.

3C D C C
03

13

. EC -.

. C D E
3 -

03

- E

YEAR

Transformer:
CV/NLP/Speech: 15x / 2 yrs
Moore's Law:

750x / 2 yrs

2x / 2 yrs

Tr
ai

ni
ng

 C
om

pu
te

 (P
FL

O
PS

)

Training FLOPS Scaling for SOTA CV, NLP, and Speech Models

P100 (12GB) TPUv2 (16GB)
V100 (32GB) TPUv3 (32GB) A100 (40GB)

A100-80 (80GB)

ResNet50

Inception V4

DenseNet

ResNext101 Transformer
GPT-1

BERT

GPT-2

Megatron LM

ALBERT

Microsoft T-NLG

ELECTRA

GPT-3

GShard

2TB Baidu RecSys

10TB Baidu RecSysTransformer Size: 240x / 2 yrs
AI HW Memory: 2x / 2 yrs

AI and Memory Wall

Pa
ra

m
et

er
 C

ou
nt

 (B
ill

io
n)

Trend

41

• Parameter collection: collect parameters for analysis and updating
compression configurations

• Gradient assessment: estimate acceptable 𝜎 in the gradient
• Activation assessment: estimate acceptable error bound for

compressing activation data
• Adaptive compression: deploy lossy compression

Overview of our proposed memory-efficient DNN training framework - COMET

System Design

Data flow in a sample iteration of training CNNs

Ø Activation Data Storage in Training
• Must being stored until used in back

propagation
• Long waiting period between

generating and using the data

42

Ø Parameter Collection

• Offline parameters: batch size, activation data size, corresponding output layer size
• Simi-online parameters: activation data sparsity, average loss, average momentum value

Ø Gradient Assessment
• Compute 𝜎 based on parameters and empirical experience:

Ø Activation Assessment
• Compute error bound based on parameters and theoretical analysis:

Ø Adaptive Compression
• Compression configuration update every 1000 iterations
• Modified cuSZ for compressing sparse floating-point data

Design Detail

43

Ø Memory Footprint Reduction
• High compression ratio, up to 13.5x
• Little/no testing accuracy loss

Training accuracy curve comparison between the
baseline and our proposed framework.

Comparison of accuracy and activation size between baseline training
and our proposed framework

Memory Usage Evaluation

44

Training performance on ResNet-50 with different Batch size

Ø Performance Improvements
• Low compression overhead, significantly lower than

data migration solution (e.g., 7% on VGG-16)
• High raw throughput (sample/sec) improvement with

better resource utilization (e.g., 1.24x on ResNet-50)
• End-end performance improvement: train model

faster (e.g., 2x on AlexNet)

Validation accuracy curve of COMET under different GPU memory
constraint on AlexNet

Overhead comparison between migration, recomputation

Performance Evaluation

45

Q&A

Thank You!

Acknowledgements

Email: ditao@iu.edu
Website: https://www.dingwentao.com/

mailto:ditao@iu.edu
https://www.dingwentao.com/

