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Research topics (not limited to):

e Big data management, analytics, visualization
* Large-scale machine/deep learning

* Heterogeneous computing (GPU/FPGA)

* Fault tolerance and resilience at extreme scale
* Energy-efficient computing

* Numerical algorithms, simulation & software




LUDDY

SCHOOL OF INFORMATICS,
COMPUTING, AND ENGINEERING

Storage and I/O Issues in HPC Systems

SUPERCOMPUTER i PEAK i MEMORY ESTORAGE
SYSTEM YEAR CLASS i FLOPS (PF) I  SIZE (MS) i -WIDTH
1 1 ]

1
Cray Jaguar 2008 1 PFLOPS 51.75 PFLOPS | 360 TB i 240
Cray Blue Waters 2012 10 PFLOPS 113.3 PFLOPS | 1.5 PB H 1.1
Cray CORI 2017 10 PFLOPS 1 30 PFLOPS | 1.4 PB H 1.7
IBM Summit 2018 100 PFLOPS ! 200 PFLOPS | > 10 PB I 2.5
(*) when using burst buffer (**) counting only DDR4
SUPERCOMPUTER PEAK MEMORY STORAGE
SYSTEM YEAR CLASS FLOPS (PF) SIZE (MS) -WIDTH
Fujitsu Fugaku 2020 "ExaScale" 537 PFLOPS 4.85 PB > 1.5
AMD Frontier 2021 ExaScale 1.6 EFLOPS 9.2 PB [€) 10
Intel Aurora (#) future ExaScale > 2 EFLOPS > 10 PB [€)) >= 25

(*) Rpeak, Top-500 as of November 2020

(a) aggregated memory (CPU DDR + GPU HBM)
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F. Cappello (ANL)
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The compute capability is ever-
growing, but storage capacity
and bandwidth are developing
much more slowly




Trend of HPC Systems: Heterogeneity
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Rank
(Prev.)

1

10

(1)

(2)
(3)
(4)

(5)

(6)

(7)

Name

Frontier

Fugaku
LUMI
Summit

Sierra

Sunway
TaihulLight

Perlmutter

Selene

Tianhe-2A

Adastra

Year

2021

2020

2022

2018

2018

2016

2021

2020

2018

2022

CPU

Cores

8,730,112

7,630,848
1,110,144
2,414,592
1,572,480

10,649,600

761,856

555,520

4,981,760

319,072

Accelera-

tor Cores

8,138,240

0
1,034,880
2,211,840
1,382,400

0

663,552

483,840

4,554,752

297,440

Rmax Rpeak
[PFlop/s]
1,102.0 | 1,685.7
442.0 537.2
151.9 214.4
148.6 200.8
94.6 125.7
93.0 125.4
70.9 93.8
63.5 79.2
61.4 100.7
46.1 61.6

Interconnect
Slingshot-11

Tofu
interconnect D

Slingshot-11
Infiniband EDR
Infiniband EDR

Sunway

Slingshot-10

Infiniband HDR

TH Express-2

Slingshot-11

Manufac

-turer
HPE
Fujitsu
HPE
IBM

IBM/NVIDIA

NRCPC

HPE

Nvidia

NUDT

HPE

Country & Site

United States; DOE/SC/Oak Ridge
National Laboratory

Japan; RIKEN Center for
Computational Science

Finland; EuroHPC/CSC

United States; DOE/SC/Oak Ridge
National Laboratory

United States; DOE/NNSA/LLNL

China; National Supercomputing
Center in Wuxi

United States;
DOE/SC/LBNL/NERSC

United States; NVIDIA
Corporation

China; National Super Computer
Center in Guangzhou

France; GENCI-CINES

More and more
heterogeneous systems

CPU + GPU (80% in TOP 10)

Memory/storage hierarchy

SmartNIC (FPGA, DPU)

Memory / Memory
e.g., DRAM / e.g., DRAM
Far Memory
e.g., Intel Xpoint
=> Local Storage
1/0 Performance Gap (e.g., NVMe)

Burst Buffers (e.g., SSD)

/ Parallel File System (e.g., disks) / Parallel File System (e.g., disks)

Figure from X. Sun (IIT)
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Data Management Issues for Scientific Applications cowimis ADBHeztG
application data scale bottleneck reduce by
fil t
HACC 20PB iy 10%
cosmology simulation one-trillion-particle Mira@ANL in need
5h30m
CES M 50% vs 20% to store 1 0"
climate simulation storage in hardware NSF Blue Waters in need

budget, 2017 vs 2013 1-TBps I/O

saturate
APS'U 1 02 PB connection 1 00"
High-Energy X-Ray Brain Initiatives 100 GBps bandwidth  in need
Beams Experiments
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Our SOIUtion — Error-Bounded Lossy ComprQSSion COMPUTING, AND ENGINEERING

2 . 1 (FP-type) 1 0 . 1 or higher

lossless on scientific datasets reduction ratio in need

industry high in reduction rate,
lossy compressor (JPEG) but not suitable for HPC

absolute error bound (infinity-norm)

pointwise relative error bound

1)
need diverse 2)
3) RMSE error bound (2-norm)
4)
5)

compression modes fixed bitrate

satisfying post-analysis requirements

SZ Di and Cappello 2016, Tao et al. 2017,
Xinetal. 2018, Tian etal. 2020

> prediction-based lossy compressor framework for scientific data
> strictly control the global upper bound of compression error

> implemented on CPU, GPU, FPGA

> integrated in I/O libraries (HDF5, ADIOS, PnetCDF)

Floating point data set
(numerical simulation
of the brain):

Random
(noise)

Sign+
Exponent

Figure from P. Lindstrom (LLNL)

Lossy compression for scientific data at varying reduction ratio
(10:1 to 250:1, left to right)
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Lossy Compression Does Improve Performance!

2017 Gordon Bell Award: 18.9-Pflops Nonlinear Earthquake
Simulation on Sunway Taihulight: Enabling Depiction of 18-Hz and 8-

Meter Scenarios

Designed a lossy compression scheme: On-The-Fly (OTF) compression

Benefit from lossy compression:
e 24%+ computational performance improved
e 2X maximum problem size that can be solved

On-the-Fly compression, explored 3 methods:

M1: Directly conversion to half precision IEEE 754 standard. However, dynamic
is too large for 5 bits of exponent, for some variables.

M2: Determines the required exponent bit-width according to the recorded
maximum dynamic range and uses the rest bits for mantissa.

M3: Normalize all the values of the same array to the range between 1 and 2,
which corresponds to an exponent value of zero.

Dynamic Rupture Source Generator

(Based on CG-FDM)

|

|

|

| | Fault Stress | Friction |

: Init "l Law Ctrl Solver

g g

[ A [

: Source Partitioner 3D Model Interpolator :

| | | |

| y |

| Seismic Wave Propagation Snapshot/Sesimo |
> |

| : (Based on AWP-ODC) e |

| Velocity y |

: A Update Stress Update i :

/ :

| ";’f"’ep v Restart :

I i\ ress

| | 1 4djustment For [« S(.)urc.’e Controller |

[ Plasticity diEEiy 7 [

| — v [

| : . |

| LZ4 Compression, Group 1/O, Balanced I/O Forwarding I

| |

min/max

Coarse \/\?JJ—L{_’ Fine

(a) Collect statistic from coarse grid

Host Memory !

Compressed grid | Decompressed block
1

(c) Decompress-compuite-compress scheme

Host Memory: |

LDM
dma_get dma_put

CPE: | 16D to 32b decompression l—PI General 32b compmation}—’l 32b to 16b compression I
(b) Computation workflow
8b) Fac (24b) (5b) _frac (10b)
x\lm o (vel, ww0,phi,cohes, taxx, ...,taxz) ﬂg\nﬂLﬂ(_\
1) ‘ ‘ H ‘ HHH‘HH ‘ HHHH e ‘ H H H ‘
signep(8b)  frac@db) (str, 71,72, ..,6,sigma2,yldfac) slgnﬂa(a_“?blﬂ@%
| r |
N, = log(Bpy — By
;‘, en exp (8b) frac (24b, (d1,lam,mu,qp,qs,vx1,vx2,ww) sign ‘ac (15b)
V=14V /0 + 7, -V,,)
3) N, =V <8

IEEE754 32-bit floating point format . X 16-bit floating point formats
(d) Compression algorithms



SZ: A Lossy Compression Framework for Scientific Data DOV

Established in 1963, the R&D 100 Awards is the only S&T (science and technology) awards  coupmine aNb ENCINERING
competition that recognizes new commercial products, technologies and materials for their

technological significance that are available for sale or license. The R&D 100 Awards have long

been a benchmark of excellence for industry sectors as diverse as telecommunications, high-

energy physics, software, manufacturing, and biotechnology. This 2021 R&D 100 winner is listed

$6M from DOE
$1M from NSF
$1M from Aramco

below, along with its respective category.
SZ
|
PRODUCTION RESEARCH
| |
Core R&D Team GENERIC SPECIALIZED GENERIC SPECIALIZED
| | |
Argonne National Laboratory l l l l l J l { l J l
Franck Cappe"o (lead), Sheng Di (|ead) CPU GPU Seismic Quantum X-Ray Material ~ Automatic =~ FPGA  Vectorized  Critical Point DNN
l J ! l l ﬁ‘—l Imaging  Chemistry  Crystallography MD Par-Tuning { Preserving {
WaShington State UniverSity SZ1.4 SZ21 SZ3 SZx cuSZ KSZ { { { J { WAVESZ vecSZ J DEeepSZ
Dingwen TaO (lead), Jiannan (cubA)  (xokkos) Interp-SZ  PaSTRI-SZ Roibin-SZ MMD-SZ SZauto cpSZ
Tian, Sian Jin, Chengming Zhang, SZ compression framework family tree.
Cody Rivera
University of California, Riverside HPC use-lcases: . Al use-cases:
Xin Liang (lead), Kai Zhao, Jinyang Liu » Reducing storage footprint  DNN model compression
» Accelerating I1/0 & communication * DNN training data compression
Clemson University * Accelerating visualization * Reducing DNN memory consumption
Jon Calhoun (lead), Robert * Reducing streaming intensit » Accelerating distributed traini
Underwood, Griffin Dube u. g 9 y ccelerating distributed training
hitps://github.com/szcompressor * Running larger problems *

* Checkpoint/restart


https://github.com/szcompressor

Significantly Improving Lossy Compression for Scientific Data Sets
Based on Multidimensional Prediction and Error-Controlled Quantization

Published in 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS’17)




LUDDY

SCHOOL OF INFORMATICS,

SZ C o m p ress i O n P i pe I i n e COMPUTING, AND ENGINEERING

decorre approxi ]
-lation -mation coding
with strict
initial data + input prediction lossy quantization errorcontrol | variable-length output  ossily comp
parameters linear (1D), or linear-scaling, > (Huffman code) -ressed data
multidimensional of prediction errorsJ low entropy

. losgtess 4

o ||
2D Lorenzo Predictor Error Bound |
e N L We may need much less than 256 Huffman Coding
Y Y o— Real intervals (that 8 bits can represent).
ol Value 14% (538)
Error Bound 1 - 0
(x-1Ly) (x,y) e 12% | @}"o | ) i
i - 100/ 7N ) ~ =
Pr::is ctt 5’;?:: O 7 Eror ° | Very centrally (42} (53) (65) [78)
90 . . 1 0 1 \ 0 1 0 1/7\0
3D Lorenzo Predictor 1 }Bound - 8% distributed - -19] - '/;It/—\") |"'§4j")\11 V/\“
- o B AURSVE GRS
- 11 130 (17) |17
Error Bound 4% ji\lo '
. 2% (o) 7
ul At
2% 0% ot S T
roreoms | | TERGSRERESEENEIEEEEEERARAR P L
2 3
- Error-Bounded Uniform Quantization Code

prediction quantization coding
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Climate and Severe Weather Datasets

Experimental data (floating point-single precision-FP32) 2
* Climate: ATM (CESM): 3D dataset from climate simulation i

* Weather: hurricane: 3D dataset from Hurricane Isabel simulation ,
Data Source Dimension Size | Data Size | File Number el
ATM Climate simulation 1800 x 3600 2.6 TB 11400 20 eyt
APS X-ray instrument 2560 x 2560 40 GB 1518 ; by, 4
Hurricane | Hurricane simulation | 100 x 500 x 500 1.2 GB 624
Climate Hurricane e 0 500 1000 1500 2000 2500 3000 3500

250

(=Y
&
o

N

(=}

(=]

ZFP: Best mode “fixed-accuracy”

) = E.g., bit-rate = 8 bits/value (CR = 4)
2 100 o 150 ——S7-1.4 .
o« = SZ: 14dB higher than ZFP on ATM
2 80 g
0 & 100
40

wu
o
Y

s=e==|SABELA-0.2.1

. | g Z7FP-0.5 e  SZ:11dB higher than ZFP on Hurricane
“ ~ / e 211 PSNR is logarithmic scale
12 .14 4

o

0 2 4 6 8 10 6 0 2 4 6 8 10 12 14 16

Rate (bits/value) Rate (bits/value)
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Instrument Datasets

2D X-ray datasets from Argonne Photon 12
Source (APS) instrument

e Data Source: X-ray instrument
*  Dimension Size: 2560 X 2560
* Data Size: 40 GB

Compression Factor
(=]

*  File Number: 1518 2 FPZIP
GZIP
0
0 T g ¢4 1.00E-03 1.00E-04 1.00E-05 1.00E-06 i SZ-1.4
Value-range-based Relative Error Bound
e st ZFP-0.5
500 =
‘ - 1. 5e-5 160 e §7-1.1
140
——
1000 120 ISABELA-0.2.1
: 0 = 100
1500 | : 80
% /
‘ ¥ 60
2000 § -9e-5 40
’ 20
2500 0
-1e-4 0 2 4 6 8 10 12 14 16

Rate (bits/value)
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Vi s u a I izati 0 n Wi t h SZ COMPUTING, AND ENGINEERING

TNy =g 4 0
ATV B . O T T I
? L - Bepatien Gl 0 By i . s
. ) " ¥ e -

100 (SRS

Cosmology ;
300
(CR=58:1)
Downsamping + interpolation
SZ-2.0 (PSNR=29, SSIM=0.6867) (PSNR=18.1, S5IM=0.4345)
Hurricane i
(CR=66:1) '

400

500 500

0 100 200 300 400 500
Downsamping + interpolation
(PSNR=17.7, SSIM=0.7681)

13

original raw data SZ-2.0 (PSNR=51, SSIM=0.9966) ZFP (PSNR=22.5, SSIM=0.8893)



Parallel Evaluation

LUDDY

SCHOOL OF INFORMATICS,
COMPUTING, AND ENGINEERING

Climate Cosmolo
sz-14 Y sz.20
B Compression ™ Writing Compressed Data  Writing Initial Data 900
= 800 compression time
100% | % 700 mmmm data writing time
80% E 600
- 500
60% 9 400
g 300
40% i 200 . I
100 .
20% 0 —% E- & 0.0 =
0% < /% fo o o o
1 2 4 8 16 32 64 128 256 512 1024 2048 7 4096 7 8192 4
Number of Processes Nur‘nber.of Cores
- - Data dumping time
¥ Decompression ™ Reading Compressed Data " Reading Initial Data 1200
100% %1000 ge?omplaes&?n time
|—
60% 3 600
& 400
40% Y
"7, N, HE
20% o | I -
0% 0 ‘—}(\ \9 V}(\ (,/.
1 2 4 8 16 32 64 128 256 512 1024 2048 0/ 4096 O/ 8192 %

Number of Cores

Number of Processes

Data loading time

Speedup

Number of | Number of | Comp Speed Speed Parallel
Processes Nodes (GB/s) peecup Efficiency
1 1 0.09 1.00 100.0%
2 2 0.18 2.00 99.8%
4 4 0.35 3.99 99.9%
8 8 0.70 7.99 99.8%
16 16 1.40 15.98 99.9%
32 32 2.79 31.91 99.7%
64 64 5.60 63.97 99.9%
128 64 11.2 127.6 99.7%
256 64 21.5 245.8 96.0%
-—l oo 6 L 405 L 4630 [ N4 |,
| 1024 64 81.3 930.7 90.9% I
Speedup of 58 on 64 nodes
18
16
14 =fl= cOMpression

== decompression

12
10 Speedup of 16
8 on 64 cores

6

4

2

0

1 2 4 8 16 32 64

Number of cores



cuSZ: An Efficient GPU Based Error-Bounded Lossy
Compression Framework for Scientific Data

Published in 2020 International Conference on Parallel Architectures and Compilation Techniques (PACT 20)




LUDDY

SCHOOL OF INFORMATICS,

System Design

Challenges

» Tight data dependency—loop-carried read-after-write (RAW)—hinders parallelization.
» Host-device communications due to only considering CPU/GPU suitableness.

-

~

= -
: -
; B : 0/ z {» °/\/*" <
o ;/’7075 ~ ? - g ~
: R : -
: = : : > < =
m> .L- /_\. : P g i e 1 ? - o~ q':\ - -
oz : / - : >1 + = = -~
2 T L=~ ~
= N e - ~a
s P2 - 0N PREQUANTIZATION set
g = floating-point representation in units of eb £- pred|ct|on results in unit weight in units of eb (unchanged)
g original data PREQUANTIZATION (no RAW) prediction (no RAW) POSTQUANTIZATION (no RAW)
MSB LSB
0
I DEFLATED UNUSED
T v . ]
c | 22’2‘96 512 fr;z; 0 0‘ bitwidth Huffman code . _fixed-length representation |
———————————————— + - 6 % < >
: (o] |———- + 512—— 582 24% 0~0 / 1-0 quant.code bitwidth ... Huff-code to I I
2 C [+ 582—— 652 0.14% 4 1 508 00000110 ... 00001010
B 0 [+ 659—— 722 0.073% 4° 509 00000101 ... 00000100 ty
=z = |+ 722-- 793 0.026% root 0 0 510 00000011 ... 00000100
m (-] |+ 793— 863 0.0095% < 2 1 511 00000010 ... 00000001 to
=z E |+ 863-- 933 0.0021% \ o, 1 < 512 00000010 ... 60000011 : concatenating
O N [+ 933—-1024  0.00014% 17 4 1~ 0 513 00000011 ... 00000101 : to dense format
om A 514 00000011 ... 00000000 t,
o -] 1 515 00000110 00001100
z histograming build and canonize memcpy flxed Iength deflating Huffman codes
\ Huffman codebook Huffman code /
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» Lossless compression and decompression (codec) are

mutually reversed procedures. prediction quantization ~ reconstruction
» Simlarly, SZ makes to-be-decompressed s [dig— P, = e, dy_, e, s dr ﬂ
. . ~ — — — — —
(reconstructed) data show during compression and g | 9
make it under error control. 3 ! 3
. . L = di1 = Py_y = €y G 2 G5 45| B
» Error control is conducted during quantization and ol | §
o
reconstruction: 3 t o . — - 2
S |d -y e —aqp ol —d” | §
o o
e /(2-eb) X (2-eb) —e” < eb. Il Il Il
. . . . - L] NN e. NN d.
» This introduces loop-carried read-after-write decompression T k k
dependency. l
prequant postquant (unnecessary)

» Prioritize error control.

ZSno

o o _ o _ o — SO% Oo%
dp2-dp 5 = Prp= 0k 2= 3| =0, , 4,
» Error control happens at the very beginning, \—+

prequantization:

dk_l——-) d ° = 09

o . O% (e} <
k-1~ Praa k-1= Te_1||=01"1 4,

d”/(2-eb) x (2-eb) —d° < eb,

dk -—> d;:: = pz = 57(? q;:?

l Il I

decompression qa, ||=6, --—d;

» And postquantization is corresponding to quantization
inSZ.

| o
j .
uoissaidwod
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GPU Performance Optimization

s
Canonical Codebook & Huffman Encodin § 88 8 ¢ - -
g S 28 £ Adaptive Parallelism
compression 9 O €& &
ca-non-i-cal adj dual-quantization
A canonical encoding is then generated in which the histogram o | o Worth noting: in canonizing codebook
numerical values of the codes are monotone increasing build Huffman tree . .
and each code has the smallest possible numerical value . P problem size > max. block size (1024)
: . : : canonize codebook ° ° °
consistent with the requirement that the code is not the . . .
prefix of any other code. Huffman encode (fix-length) . P utilize cooperative groupsandgrid.sync()
deflate (fix- to variable-length) ° >
. syncthreads(): not able
[Schwartz and Kallick 1964] decompression —sY O
inflate (Huffman decode) ° » cudaDeviceSynchronize(): expensive
» codebook transformed to a compact manner .
reversed dual-quantization °

v

no tree in decoding
> tree build time: 4-7 ms Table 2: Parallelism used for cuSZ’s subprocedures (kernels) in
) compression and decompression.

update: 0.8 ms Threads # Tuning
» canonize for 200 us (1024 symbols)

update: incoporated in tree-building hacc cesm hurricane nyx amcpack
> i i . i g -_- - -l chunk 1071.8 mb 280,953,867 f32 24.7mb 6,480,000 f32 95.4 mb 25,000,000 f32 512 mb 134,217,728 32 601.5mb 157,684,320 f32
EnCOdmg/deCOdmg is done "I_afialsg_frflze_d_l size #thread  deflate inflate #thread deflate inflate #thread deflate inflate #thread deflate inflate #thread deflate inflate
manner.
26 . ) . 10e5 1.3 250
» A GPU thread is assigned to a data chunk. o7 ) ) . Bled 155 378 ) ) )
» Tune degree of parallelism to keep every thread busy. 28 . . . 2.5e4 671 416 98e4 51 1.0
2° . ) . 13e4 556 307 49e4 102 94 . . . . ) )
. . d 2° . , . 63e3 482 196 24e4 646 342 13¢5 47 59 15eb 47 51
fine -graine d manner: o 14e5 46 28 . . . 12e4 573 277 66e4 57 63 T7T7e4 5.2 6.2
. ey . 12
IPDPS’21: Revisitin g Huffm an Codin g: Toward Extreme 213 6.9¢e4 51 51 . . . 6.1e3 50.7 178 3.3e4 251 161 3.8e4 129 111
. . 2 34e4 136 121 . . ) ) . . 16e4 697 524 19e4 727 403
Perf or'mance O_n Mpdern GPU Archltec.tures, Tian et al. oM 17¢4 631 35.0 : . . ) . . 828 724 426 96e3 759 290
IPDPS’22: Optimizing Huffman Decoding for Error-Bounded Lossy ol 8603 658 081 , . . ' . 413 500 231 4863 560 161
Compression on GPUs, Rivera et al. 216 43e3 459 14.3

Table 3: Throughputs (in GB/s) versus different numbers of threads launched on V100. The optimal thread number in terms of
inflating and deflating throughput is shown in bold.
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A CUDA-Based Error-Bounded Lossy Compressor for Scientific Data %

1
-
- T S
cuSZ is a CUDA implementation of the world-widely used SZ lossy compressor. It is the first error-bounded lossy - T
compressor on GPU for scientific data, and it aims to improve SZ's throughput significantly on GPU-based 8
- Nyx.cuzfp =
heterogeneous HPC systems. - Hurricane.cuzfp =
- Nyx.cusz g

Our published papers cover the essential design and implementation. - Hurricane.cusz

12 14 16

¢ PACT '20: cuSZ, via local copy, via ACM, via arXiv
o framework: (fine-grained) N-D prediction-based error-controling "construction" + (coarse-grained)
lossless encoding

¢ CLUSTER '21: cuSZ+, via local, via IEEEXplore
o optimization in throughput, featuring fine-grained N-D "reconstruction"

o optimization in compression ratio, when data is deemed as "smooth"

» developers: Jiannan Tian, Cody Rivera, Wenyu Gai, Dingwen Tao, Sheng Di, Franck Cappello

» contributors (alphabetic): Jon Calhoun, Megan Hickman Fulp, Xin Liang, Robert Underwood, Kai Zhao )

» Special thanks to Dominique LaSalle (NVIDIA) for serving as Mentor in Argonne GPU Hackaton 2021!


https://github.com/szcompressor/cuSZ

Accelerating Parallel Write via Deeply Integrating Predictive
Lossy Compression with HDF5

To appear in International Conference for High Performance Computing, Networking, Storage, and Analysis (ACM/IEEE SC’22)
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Introduction

Current Limitations
» Sequential compression and I/O

* Offset cannot be simply pre-assigned
* Compression sizes vary drastically across different data partitions

40
Our Solution and Contributions E¥ T
* Integrate predictive lossy compression (such 525
as SZ) with asynchronous 1/0 e ol
* Extend prediction model to estimate the EN T N ” ”H H”” H””” ”
offset and time of parallel I/0 “ 0 = AR AL . . Lollo. '1”"1” """ s
* Overlap I/O with compression ' ' Bit-Rate (bits/value) '

N Compression bit-rate distribution on a Nyx dataset with 512

* Optimize order of compression tasks to
partitions. Every partition uses the same compression configuration.

achieve higher performance
* Our solution improves the HDF5 parallel-write performance by up to 4.5X and 2.9 X compared to
two existing solutions: parallel write (1) without compression and (2) with the SZ lossy compression

filter, respectively, with only 1.5% storage overhead
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Background e
Parallel 1/0 Libraries for HPC Applications High Level /O Library | __ i
e Access and manage scientific data efficiently MPI-I0 i
* Moving data between compute nodes and complex storage e - ADIOS
* Node-local persistent memory, burst buffers, disk-based storage, etc.
e Currently compression is a dedicated layer (e.g., HDF5’s dynamically loaded Sl SRl

filter) in between applications and I/O libraries
* E.g., HDFS5 filter based on SZ: https://github.com/disheng222/H57-S7
» HDF5 virtual object layer (VOL): redirect I/O operations into VOL connector

and a”OW asynCh ronous |/O https://www.hdfgroup.org/wp-content/uploads/2020/10/Virtual-Object-Layer-VOL-Intro.pdf

MEMORY

2

(inteD OPTANE
e

HOTTIER MEMORY I

Application Application Application Application —— ——————————————
— $ ________________ $ ________________ $$ _____ N HDF5 API |
+ Compression/ Compression/ Compression/ Compression/ | : .

' Decompression Decompression  Decompression ~ Decompression | Non-VOL Virtual Object Layer \
_________ Co ] Previeus [ | Apl Eval N
Parallel Scientific Data Management Library Calls VOL - So
o u >
$ Ours S <
%)
Parallel I/O s VFL o 2 @
¢ ¢ ¢ ¢ N = B £9
o a o ® >
Parallel Parallel Parallel Parallel w »n O =z
File System File System File System File System

N Scientific data management with compression.

STORAGE 1

(inte) OPTANED

Improve Performance

iz UL
HDD [ TAPE
Key
HDF5 Library
Native VOL
Plugin
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Example of a PHDF5 C Program

A parallel HDF5 program has a few extra calls
MPI Init(&argc, &argv);

fapl id = HS5Pcreate(H5P_FILE_ ACCESS);

H5Pset fapl mpio(fapl id, comm, info);

file id = HS5Fcreate(FNAME,.., fapl id);

space_id = H5Screate_simple(..);

dset_id = HSDcreate(file_id, DNAME, H5T_NATIVE_INT,
space_id,..);

xf _id = H5Pcreate(H5P_DATASET_XFER);

H5Pset dxpl mpio(xf_id, HS5FD MPIO COLLECTIVE);

status = H5Dwrite(dset _id, H5T_NATIVE_ INT, .., xf_id..);

MPI Finalize();

HDF5 Overview @ UC Berkeley
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Process 1 Process 2 Process 3 Process 4

Prediction Prediction Prediction Prediction Overall Desi gn

I I I I

| | All Gather | | 1. Predict compression ratio and throughput

Optimization = Optimization =~ Optimization = Optimization = 2  Djstribute estimated compression ratio of each
¥ \ J J partition to all processes

3. Compute offset (compressed size) for parallel write
4. Optimize the order of compressing different data

Compression Compression Compression Compression fields in each process
IOI I'/OI L Ol I'OI 5. Overlap compressions and writes
. v All Gather y ’ 6. Distribute overflow information
Overflow Overflow Overflow Overflow 7. Handle overflowed data
Handling Handling Handling Handling

‘N Overview of our proposed solution.
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\ )
] |

\\

>

(2) Lossy Compression

—_— With Collective Write
T
I .
e (3) Overlap Compression & 1/0
e —
————————————————— I/0
(4) Compression Scheduling Optimization Compression (1) Original -

N Timeline of data aggregation with 5 processes and 2 data fields.

How Our Solution Compares to Existing Solutions
e Existing solutions:
* (1) Original: non-compression solution
* (2) Lossy compression solution using HDFS5 filter
e Our Solutions:
* (3) Overlap compression & I/0
* (4) Overlap compression & |/O + compression scheduling optimization
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Compressor Throughput Estimation
* Min and max compression throughputs are similarly bounded across different data samples

* Bitrate-throughput curve for each data sample is highly consistent

Tcomp — D/S
—a\ Ra
— (Bori X n)/(((Cmaa: - szn) X 3 )B + szn)
300 300
w2
%250 -—?—-o——cr——o-—g—6——?—9—-0—9--0——9—-0-—5—-0*—9—-0--9—13-—?—9——9—3——5—0--0——0—-0—5——( 250 ® Baryon —&— Dark-matter
< 2 o— Temp A— Velosity x
Zom | 2 200 —%—RTM |
2 150 | . . 2150 |
5 __.___.__o_____°__.__._.__!_n__.__‘__,_g__.____.__.__°__°__.._'___.__,_._..___.,_.__" < — T —
= =)
g 100 © 100
g 50 50 F
g e MIN o MAX
8 0 1 1 1 1 1 O 1 1 1 1
0 5 10 15 20 25 30 0 1 3 4 5 6 7
Sampled Data Bit-Rate (bits/value)

D Minimum and maximum compression throughput of a given data

partition based on 30 samples from Baryon density

and RTM datasets

N Single-core compression throughput with different bit-rates on Nyx
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Compressor Throughput Estimation
* Min and max compression throughputs are similarly bounded across different data samples
* Bitrate-throughput curve for each data sample is highly consistent

Teomp = D/ S

= (Bori X 1) /(((Crnaz — Cmin) X 374 B* 4+ Chuin).
Write Time Estimation ” | p—o
* Not to provide a highly accurate write-time
estimation for each data partition, but to
provide a capability to estimate the relative
write time across different data sizes
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AN o©
o O

e Write time stabilizes after data size reaches a 40
certain point 20
0 1 1 1 1 1 1
Twrite = (B X n)/Cihr 0 10 20 30 40 50 60 70

Data Size Per Process (MB)

N Independent write I/0 throughput per process with different data sizes
per process
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Over!applng Cpmpressmq and Write _ Predicted Compressed Size Extra Space Original Data
» Estimate/predict the offset (i.e., compressed’data size) S —— —
based on our previously built theoretical model — 1
* Reserve an extra space for compressed data overflow I I N S O —— ' Shared HDF’ File

* Extra space ratio can be adjusted to balance between ( )
performance and compressed size overhead

Actual Compressed Size Overflowed data

1 Overflow data handling with preserved extra space.

Extra Space Ratio

70% 50%
e Default at 1.25 for most partitions S 6o | S
. - . : - { 40% <
* Adjust for partitions with low estimated 3 s0% | 3
- : £ -
compression ratio 5 40% | 130% 5
=min(2,1 + (R 1) x4 g 0% 1 { 20% S
T'space —mll’l( ) +( space ) X )’ %20% - Z
41 10% g
where  Tcomp > 32. g 10% | 2
S 0% ' : : - 0% 8
1 1.1 1.2 1.3 1.4 1.5 )
S

Extra Space Ratio

Size Overhead

Performance Overhead

Trade-off between performance overhead and compression size overhead
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Compression Order Optimization
* Improve overlapping efficiency
* |/0O of each partition happens after compression
* Avoid unnecessary wait time for I/O
* When good? Compression time and |/O time are similar
* When not good?
* /O is significantly longer
 Compression is significantly longer

Compression I/O

(a) Compression time is significantly shorter

(b) Compression time is significantly longer

Algorithm 1 Compression Order Optimization

Notation: data fields in current process: £; compression queue: (); com-
pression queue after insert and additional data: (Q°; possible insert locations
in a queue: [3; time to compress: t.; time to write:t,,; predicted compression
time: P.(¢); predicted write time: Py, (£)

Global: P.(¢), Py ()

1 procedure TIME(q)

2 te,tw < 0

3 for / < data fields in g do

4 te « tc + Pe(¥)

5 tw < Py(£) + max(te, tw)

6 end for

7 return ¢,

8 end procedure
9
16 procedure SCHEDULINGOPTIMIZATOR
11 for / < data fields in current process do

12 for 3 < all possible insert location do

13 Q° < insert £ to 3

14 if TIME(Q°) < TIME(Q) or first 5 then
15 Q<+ Q°

16 end if

17 end for

18 end for

19 return )
20 end procedure

N An example of extremely unbalanced compression time and write time, limiting the benefit from our reordering.
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Evaluation

Experimental Setup
* Implemented our approach with HDF5 and SZ3

* Two HPC systems
* Summit supercomputer at Oak Ridge National Lab

* Bebop cluster at Argonne National Lab

» Different scales of Nyx and VPIC datasets
* Use PSNR to validate the reconstructed data quality
* Both datasets result in ¥16X compression ratio

Name Description Scale Size
4096 X 4096 X 4096 2.47 TB
204820482048 206.15 GB
10241024 X 1024 25.76 GB
512X512%512 3.22 GB

nyx [18] Cosmology simulation

I/O-Intensive
HPC Applications

VPIC [52] Particle simulation 161,297,451,573 4.62 TB

Nyx cosmology simulation VPIC plasma simulation

M Details of Tested Datasets.
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Compression & 1/0 Throughput Estimation Accuracy
* High accuracy on compression time estimation

* Different partitions

e Different data scales
e High accuracy on write time estimation

* Have some distortion but NOT affect our optimization

0.08
[} 00
0.06 °
~ )
& . .
() _ % e %
£ 0.04 T e
5 e
= 'é o 88 ik
0.02 o3 g VT
vt 7
% o
%~
0
0 1 2 3 4 5
Bit Rate (bits/value)

‘N Accuracy of our write time estimation on 10243 Nyx data samples.
Red line is predicted time; black dots are actual time.

0.08
= 0.07
g % :.' ° d °
.5 0.06 >
= o .".’0;080 Sl
§005 | oy @
4 o’
5004 |
5
O 003

0'02 1 1 1 1 1 1

0 1 2 3 4 5 6 7
Bit Rate (bits/value)

‘™ Accuracy of our compression-time estimation on 5123 Nyx data

samples (red line is predicted time; black dots are actual time)
0.08

007 |

@

5 0.06 |

= 005 |

8004 |

7

§0.03 -

002 |

o001 |
0

0 1 2 3 4 5 6 7
Bit Rate (bits/value)
‘I Accuracy of our compression-time estimation on 10243 Nyx data

samples. Red line is predicted time; black dots are actual time.
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90% 50% 80% 50%
S 80% - . S0% t 25
i {1 40% ar { 40% X
g 70% | > M% T 0% | e
0, L '
£ 60% \ | 30% 8§ 5 50% | { 30% 8
> 50% | >
& 0% " S Q% | 2
8 40% | O 3 2
g 120% o 2 30% 120% o
g 30 | - &
5 20% | 1 10% & 520% | 1 10%
& = 5 10% | s
B 10% S 10%
0% 1 1 1 1 1 1 1 1 0% 0% 1 1 1 1 1 1 1 1 0%
1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45

left y-axis Extra Space Ratio | right y-axis left y-axis Extra Space Ratio | _g _Epergy  right

—@—Bebop Dark_Matter —— Baryon —@— Bebop Uy ——Ux y-axis

—@— Summit Temperature Vx —@— Summit Uz X

Vy Vz y Z
(a) Nyx (b) VPIC

N Trade-off between performance overhead and storage overhead based on different extra space ratios on Nyx dataset (6 data
fields) and VPIC dataset (7 data fields) on both Bebop and Summit with 512 processes.

Evaluation on Extra Space Ratio
* Trade-off curve between performance and storage are highly similar
* Lower the extra space ratio can result in extremely high performance overhead
* We can use the same extra space ratio for different setups (default at 1.25)
* Users can also custom the extra space ratio
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35%
30% | o= == —e ==
Comparison st |
. . . . g o
 Original: non-compression solution S 20% | T, ———
* Previous: compression filter solution g 5% |
* Overlap: our solution Hie
. . 5% —@— Storage Overhead =~ —O@— Performance Overhead |
* Reordering: overlap + reorder technique o .
40 42 44 46 48 50 52 54 56
Performance Improvement | Red Shift (2)
o _ ‘N Evaluation on the consistency of the storage and
* Original - Previous: 1.87 X performance overheads using the same extra space ratio of
* Previous - Overlap: 1.79 X 1.25 with 512 processes on Summit.
e Overlap - Reordering: 1.30 X Reordering
* Overall: 2.91 X improvement from previous
Overlap VA |

with a 26% storage overhead. 1.5% if
compared to original size Previous % %
» Stable performance over timesteps

Original 777777777722 22222 P,

50 100 150 200 250 300 350 400

0
Performance comparison among our solution (overlapping and reordering), Time (5)
original non-compression solution, and previous compression-write solution
on 40963 Nyx dataset with 512 processes. 2

moptimization Ocompression BEwrite Ooverflow
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600 - 1200
500 % 1000 | B
g Reordering Overlap Previous Reordering Overlap Previous
= é . - = I |
o 100 Z Original Write Time 2 800
k= . i k=
= 300 g ? = 600 | 7 Original Write Time
2 3 1] | 2 -
E200 1 1] Z | £ a0 g
100 n 2 | - - - 200 |
L gl gall snp il ] ]
il il i A : H B BEEH mBf
9 3.09 2.01 1.30 0.88 0.52 6.66 3.30 2.31 1.04 0.37
Bit-Rate (Bits) Bit-Rate (Bits)
BReordering OCompression BAI/O DOOverflow BRedordering DOCompression @I/O OOverflow

N Performance improvement of overall parallel-write with our proposed solution compared to the previous write solution
with H5Z-SZ on both Nyx and VPIC datasets. Dashed red line is the baseline of HDF5 without compression. (a) and (b) are
evaluated with 512 processes on Summit.

Performance with Different Overall Ratios

* Limited improvement from reordering optimization under extremely high/low bit-rate
* High bit-rate: I/0 time significantly larger than compression time
* Low bit-rate: compression time significantly larger than I/O time

» Storage overhead is stable (~¥20% of compressed data)

* Performance improvement is more significant with higher bit-rate
* Low bit-rate: compression time dominate, little overlap efficiency
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- DD 50% - D 50%
3 3 8 3|
£ 1 40% g = 1 40% g
% 2.5 £ % 25 F =

o % 9O o 1 30% 2
g 2 e} 30% 3 a8 2t
E- & & \: S
e 1.5 1 20% % ’; 1.5 F 4 20% OO-)D
S ) 2 1 e
g : 10% 2 g . 1 10% 3
E 0.5 —@— Performance improvement ~ —@-— Storage overhead ) g 0.5 —@— Performance improvement ~ —@- Storage Overhead »n

)
(Fo) 0 1 1 1 1 1 1 0% E 0 1 1 1 1 1 1 0%
A~ 0 1 2 3 4 5 6 7 a 0 1 2 3 4 5 6 7
Bit-Rate (Bits) Bit-Rate (Bits)
(a) Nyx with different compression ratio (b) VPIC with different compression ratio

N Performance improvement (overall) and storage overhead of our solution compared to the previous solution on both
Nyx and VPIC datasets. (a) and (b) are evaluated with 512 processes om Summit.

Performance with Different Overall Ratios

* Limited improvement from reordering optimization under extremely high/low bit-rate
* High bit-rate: I/0 time significantly larger than compression time
* Low bit-rate: compression time significantly larger than I/O time

» Storage overhead is stable (~¥20% of compressed data)

* Performance improvement is more significant with higher bit-rate
* Low bit-rate: compression time dominate, little overlap efficiency
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120 250
100 Reordering Overlap Previous 200 f Reordering Overlap Previous
g I} ==
= 60 r =
Q Q
£ ! 2 100
= b =
| 50 |
20 F 7
TINTINL TERTTN I -
0 0
256 512 1024 2048 4096 256 512 1024 2048 4096
Scale Scale
BReordering OCompression BI/O OOverflow BReordering OCompression B@I/O OOverflow

N Performance improvement of overall parallel-write with our proposed solution compared to the previous write solution
with H5Z-SZ on both Nyx and VPIC datasets. Dashed red line is the baseline of HDF5 without compression. (c) and (d) are
evaluated with a target bit-rate of 2.

Performance with Different Scales
* Improvement from reordering optimization is stable (~22%)
» Storage overhead is stable (~¥20% of compressed data)
e Performance improvement is more significant with larger scale
* Independent write provides better scalability than collective write (used by previous comp-write solution)



LUDDY

SCHOOL OF INFORMATICS,

Evaluation

w
w

50%

. 50%
g 5
£25 { 40% g g 2.5 { 40% g
52y —0 ’30vf‘3 5 2 "30‘V§
8 o > a o o >
E15 I/ o) £ 15 Q" o= o)
12% & o 1 20% &
g Ol 20% % g | ¢ %
o o
g 05 r —@—Performance improvement ~ —@— Storage Overhead [ 1 10% & £ 05 —@— Performance improvement ~ —@— Storage Overhead | 1 10% 3
o
Q% 0 1 1 1 0% E 0 1 1 1 0%
A 256 512 1024 2048 4096 o 256 512 1024 2048 4096
Scale Scale
(c) Nyx with different scale (d) VPIC with different scale

N Performance improvement (overall) and storage overhead of our solution compared to the previous solution on both
Nyx and VPIC datasets. (c) and (d) are evaluated with a target bit-rate of 2.

Performance with Different Scales
* Improvement from reordering optimization is stable (~22%)
» Storage overhead is stable (~¥20% of compressed data)
e Performance improvement is more significant with larger scale
* Independent write provides better scalability than collective write (used by previous comp-write solution)

38



COMET: A Novel Memory-Efficient Deep Learning Training
Framework by Using Error-Bounded Lossy Compression

Published in Proceedings of the VLDB Endowment, Vol. 15, No. 4, 2021




System Issues with Large Al Models

LUDDY

SCHOOL OF INFORMATICS,
COMPUTING, AND ENGINEERING

Trend

ommmmmmmm—— =-Aland Memory Wall
+ . -~ .
m(;; Transformer Size: 240x /2 yrs Y, 1078 Baglu RecSys
J AI HW Memory: 2x/2yrs_,¢ 2TB Baidu RecSys
== S - - —— e
<= 10004 T mmmem=m— - GShard
5 °
= GPT-3
as) °
= 100
C
> Mlcrosoft T-N
8 10; Megatron LM 9100 80 (.OGB)
g E ® V100 (32GB) @ TPUV3 (32GB)
o ] o Pic0 (1208  ®TPUY2 (16GE) ceT2 100 (40GB)
© 1
5_3 ] BES) ALBERT
. g °
01 Incept.lon V4 Reshexttot Transormer o ELECTRA
ResNet50 DenseNet
° o O
0.01 i T i i T i T i i T i i T i i T
2016 2017 2018 2019 2020 2021
. Trammg FEOPS-Scatingfor | SOTA CV, NLP, and Speech Models
e
4 Transformer:  750x/2 yre~ ~ oCPT-3
1e+fe4 CV/NLP/Speech: 15x/2yrs Y M'ﬁ[‘§°ﬁ
B 1eror ] f .Moore s Law: 2x /2 yrs-” Megatron M e
9 SN~ ————— - - XLNetes 20
& 1e+06 Xception BERT °
o
% InceptionV3 ° MoCo ResNet50
g le+05- ° GPT-1
5 E Transforther
S 1 Seq25eq ResNet ResNext o
O le+04+ ] ® [ ]
£ E VGG DenseNet ELMo
£ 1 ) [
E le+03 AlexNet : . —
1 e
1 P I
le+02?

2012

—T T T T
2013 2014 2015 2016 2017 2018 2019 2020

Issue

W Feature Map
I Optimizer
HEl Parameters

w
o

N
wu

N
o

=
%]

GPU Memory Limit

iy
o

Total Memory Usage (GB)

ul

o

z S ? 5 ? 3 B @
[¢]
& © [ z pas S b N
s 8 & &5 = & 8 g
IN) > N I N N N
5 N S = =
= o ~
[e)}
Forward Backward
100% -
<
ESOO/ —
7.} 0
o
[ y—
= 60% 3 ™ © o
L 0 < - ™~
0409/, - o D o
2 40% © o e o
c N N~ < -—
‘s 20% © 10 - N
= < o o o
o [2) [ ™ N
0% 1 T T T

=4

Solution

Highly limited GPU memory space
but larger batches are needed
[You et al., SC’19]

—

Our solution|[Jin et al, VLDB’22]
reduces memory consumption
by up to 13.5x.

Backward phase consumes more
than 70% of overall training FLOPs

—

Our solution|[Zhang et al, 1CS’21]
saves end-to-end training-and-

VGG16 ResNet18 ResNet34 ResNetb

o, pruning time by up to 2.3x.
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> lea)uForward ........................................... o Backwardlo“
T Original | Sparsity " I ‘ o s Avcra;,c .
: v : , : : WS, Data Flow
i Conv —— [ Act. Data Conv | W H : : :
R 4 . — § i €<
E —_[ Welghts ]<_[ Gradient ] | g - Conv : . : SZ De- Conv Value Flow
£ Compressed .................................................................. o a g : - ) : compress]on
. Conv —»@— Conv E .(‘nn;)[:lrt:sscd o mminssa
: v v : : 1 : : Momentum T
T___[ Weights }‘_[ Gradient ] l : : i____________________________; _______ _.___. : |\):Irlu|k()(l)(l;0“
o] Omrme el e B e e ek
Data flow in a sample iteration of training CNNs Overview of our proposed memory-efficient DNN training framework - COMET
» Activation Data Storage in Training e Parameter collection: collect parameters for analysis and updating
* Must being stored until used in back compression configurations
propagation * Gradient assessment: estimate acceptable o in the gradient
* Long waiting period between * Activation assessment: estimate acceptable error bound for
generating and using the data compressing activation data

* Adaptive compression: deploy lossy compression
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> Parameter Collection

» Offline parameters: batch size, activation data size, corresponding output layer size
e Simi-online parameters: activation data sparsity, average loss, average momentum value

> Gradient Assessment

 Compute g based on parameters and empirical experience:
o= 0-01MAverage

> Activation Assessment

 Compute error bound based on parameters and theoretical analysis:

eb = i

aL\VNR

» Adaptive Compression

* Compression configuration update every 1000 iterations
* Modified cuSZ for compressing sparse floating-point data
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» Memory Footprint Reduction

* High compression ratio, up to 13.5x
 Little/no testing accuracy loss

80%
|
4 28 Top-1 Peak Max Conv. JPEG-
70% | T —— . Neural Nets Accuracy Mem. Batch Act. Size COMET ACT
{1245
60% | o & b. 57.41% 2.17 GB 512 407 MB
B S 1208 AlexNet c. 57.42%  0.85 GB 2048 30 MB 13.5% -
< 50% @
E | 16 & b. 68.05% 17.29 GB 64  6.91GB
< 40% | 5 VGG-16 c. 68.02%  5.04 GB 256  0.62 GB 11.1 X -
'T ° ° ¢ e x 3000 ° °°°°°'°°°°o_‘ (=]
R 30% [ /[/ o aei eteuieae®t saenge Tt oo es s tenet T Nee e 129 b. 67.57%  5.16 GB 256 1.71GB
= [es "o g & ResNet-18c. 67.43%  1.37 GB 1024  0.16 GB 10.7 X 7.3 X
20% |/ ResNet-50 COMET ResNet-50 Ori | § b 75559 1557 GB 128 514GB
AlexNet COMET AlexNet_Ori < : e : .
10% - — 14 - A
AlexNet_Ratio . ResNet-50 Ratio ResNet-50 c. 75.51%  4.40 GB 512  0.46 GB 11.0 X 6.0 X
0% I I I I I I 0 b.= baseline, c.= compressed
0 10 20 30 40 50 60 70 _ . , . .
Epochs Comparison of accuracy and activation size between baseline training
Training accuracy curve comparison between the and our proposed framework

baseline and our proposed framework.
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» Performance Improvements g 10 - (o =% et o 2]
. . P v 1000 Batch Size v
* Low compression overhead, significantly lower than £ % /%
data migration solution (e.g., 7% on VGG-16) ;?: 600 % %
. . . R
 High raw throughput (sample/sec) improvement with g “° % %
oy . S 200
better resource utilization (e.g., 1.24x on ResNet-50) £ A é , , /4
* End-end performance improvement: train model Single GPU (1 Node) 16 GFUs (2 Nodes)
faster (e.g.’ 2% on AIexNet) Training performance on ResNet-50 with different Batch size
60%
50% 1.8
. 40% Eig I ECOMET @Migration
g — g l-i - Recompute
< 20% o 0.8
20% % e
10% 2 0.4
oo . . . : . . % 0.2
0 0 4 4 4
' # 10 = EpZ(())Ch &3 = 83 49 1 2 3 4 5 6 7 8 9 10 11 12 13
Validation accuracy curve of COMET under different GPU memory Overhead comparison between migration, recomputation

constraint on AlexNet
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