
Advancing HPC I/O and Storage via 
Efficient Data Compression

Dingwen Tao
Indiana University

July 4, 2022



2

Research topics (not limited to):
• Big data management, analytics, visualization
• Large-scale machine/deep learning
• Heterogeneous computing (GPU/FPGA)
• Fault tolerance and resilience at extreme scale
• Energy-efficient computing
• Numerical algorithms, simulation & software

Graduate Students

Undergraduate Students

Thank
You!
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Storage and I/O Issues in HPC Systems
The compute capability is ever-
growing, but storage capacity 
and bandwidth are developing 
much more slowly

Fugaku Node (SC ’19)ALCF: Intel AuroraOLCF: IBM/NVIDIA Summit

SUPERCOMPUTER                                      PEAK        MEMORY      STORAGE BAND       
SYSTEM               YEAR         CLASS      FLOPS (PF)     SIZE (MS)       -WIDTH (SB)         MS/SB     PF/SB

Cray Jaguar          2008      1 PFLOPS     1.75 PFLOPS        360 TB          240 GB/s          1.5k      7.3k
Cray Blue Waters     2012     10 PFLOPS     13.3 PFLOPS        1.5 PB          1.1 TB/s          1.3k     13.3k
Cray CORI            2017     10 PFLOPS       30 PFLOPS        1.4 PB          1.7 TB/s (**) 0.8k       17k
IBM Summit           2018    100 PFLOPS      200 PFLOPS       > 10 PB (*) 2.5 TB/s          > 4k       80k

(*) when using burst buffer      (**) counting only DDR4                              source: F. Cappello (ANL)

SUPERCOMPUTER                                      PEAK        MEMORY      STORAGE BAND       
SYSTEM               YEAR         CLASS      FLOPS (PF)     SIZE (MS)       -WIDTH (SB)         MS/SB     PF/SB

Fujitsu Fugaku 2020     "ExaScale"     537 PFLOPS (*) 4.85 PB        > 1.5 TB/s (**) > 3.23k      358k
AMD Frontier         2021      ExaScale 1.6 EFLOPS        9.2 PB (a) 10 TB/s       > 0.92k      160k
Intel Aurora (#)   future      ExaScale > 2 EFLOPS       > 10 PB (a) >= 25 TB/s       > 0.40k       80k

(*) Rpeak, Top-500 as of November 2020      (**) DDN Newsroom
(a) aggregated memory (CPU DDR + GPU HBM)

OCLF: AMD Frontier
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Trend of HPC Systems: Heterogeneity

OLCF: IBM/NVIDIA Summit Figure from X. Sun (IIT)

More and more 
heterogeneous systems
• CPU + GPU (80% in TOP 10)

• Memory/storage hierarchy

• SmartNIC (FPGA, DPU)

• …

Rank
Name Year

CPU Accelera- Rmax  Rpeak Manufac

(Prev.) Cores tor Cores [PFlop/s] Interconnect -turer Country & Site

1 Frontier 2021 8,730,112 8,138,240 1,102.0 1,685.7 Slingshot-11 HPE United States; DOE/SC/Oak Ridge 
National Laboratory

2 (1) Fugaku 2020 7,630,848 0 442.0 537.2 Tofu 
interconnect D Fujitsu Japan; RIKEN Center for 

Computational Science

3 LUMI 2022 1,110,144 1,034,880 151.9 214.4 Slingshot-11 HPE Finland; EuroHPC/CSC

4 (2) Summit 2018 2,414,592 2,211,840 148.6 200.8 Infiniband EDR IBM United States; DOE/SC/Oak Ridge 
National Laboratory

5 (3) Sierra 2018 1,572,480 1,382,400 94.6 125.7 Infiniband EDR IBM/NVIDIA United States; DOE/NNSA/LLNL

6 (4) Sunway 
TaihuLight 2016 10,649,600 0 93.0 125.4 Sunway NRCPC China; National Supercomputing 

Center in Wuxi

7 (5) Perlmutter 2021 761,856 663,552 70.9 93.8 Slingshot-10 HPE United States; 
DOE/SC/LBNL/NERSC

8 (6) Selene 2020 555,520 483,840 63.5 79.2 Infiniband HDR Nvidia United States; NVIDIA 
Corporation

9 (7) Tianhe-2A 2018 4,981,760 4,554,752 61.4 100.7 TH Express-2 NUDT China; National Super Computer 
Center in Guangzhou

10 Adastra 2022 319,072 297,440 46.1 61.6 Slingshot-11 HPE France; GENCI-CINES
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Data Management Issues for Scientific Applications
application data scale bottleneck reduce by

HACC 20 PB
use up filesystem

(26 PB in total) 10×
cosmology simulation one-trillion-particle Mira@ANL in need

CESM 50% vs 20%
5h30m

to store 10×
climate simulation storage in hardware NSF Blue Waters in need

budget, 2017 vs 2013 1-TBps I/O

APS-U 10
2 PB

saturate

connection 100×
High-Energy X-Ray Brain Initiatives 100 GBps bandwidth in need
Beams Experiments
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Our Solution – Error-Bounded Lossy Compression

2:1 (FP-type) 10:1 or higher

lossless on scientific datasets reduction ratio in need

industry
lossy compressor (JPEG)

high in reduction rate,
but not suitable for HPC

need diverse
compression modes

1) absolute error bound (infinity-norm)
2) pointwise relative error bound
3) RMSE error bound (2-norm)
4) fixed bitrate
5) satisfying post-analysis requirements

SZ Di and Cappello 2016, Tao et al. 2017,
Xin et al. 2018, Tian et al. 2020

>  prediction-based lossy compressor framework for scientific data
>  strictly control the global upper bound of compression error
>  implemented on CPU, GPU, FPGA
> integrated in I/O libraries (HDF5, ADIOS, PnetCDF)

Lossy compression for scientific data at varying reduction ratio
(10:1 to 250:1, left to right)

Figure from P. Lindstrom (LLNL)

Floating point data set
(numerical simulation
of the brain):

Random
(noise)

Source: Leonardo Bautista Gomez (BSC)

MantissaSign+
Exponent
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2017 Gordon Bell Award: 18.9-Pflops Nonlinear Earthquake 
Simulation on Sunway TaihuLight: Enabling Depiction of 18-Hz and 8-
Meter Scenarios

Designed a lossy compression scheme: On-The-Fly (OTF) compression

Benefit from lossy compression: 
• 24%+ computational performance improved
• 2X maximum problem size that can be solved

Lossy Compression Does Improve Performance!

On-the-Fly compression, explored 3 methods:
M1: Directly conversion to half precision IEEE 754 standard. However, dynamic 
is too large for 5 bits of exponent, for some variables.
M2: Determines the required exponent bit-width according to the recorded 
maximum dynamic range and uses the rest bits for mantissa.
M3: Normalize all the values of the same array to the range between 1 and 2, 
which corresponds to an exponent value of zero.
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Core R&D Team
Argonne National Laboratory

Franck Cappello (lead), Sheng Di (lead) 

Washington State University
Dingwen Tao (lead), Jiannan

Tian, Sian Jin, Chengming Zhang, 
Cody Rivera

University of California, Riverside
Xin Liang (lead), Kai Zhao, Jinyang Liu 

Clemson University 
Jon Calhoun (lead), Robert 

Underwood, Griffin Dube
https://github.com/szcompressor

SZ compression framework family tree.

SZ: A Lossy Compression Framework for Scientific Data
Established in 1963, the R&D 100 Awards is the only S&T (science and technology) awards 
competition that recognizes new commercial products, technologies and materials for their 
technological significance that are available for sale or license. The R&D 100 Awards have long 
been a benchmark of excellence for industry sectors as diverse as telecommunications, high-
energy physics, software, manufacturing, and biotechnology. This 2021 R&D 100 winner is listed 
below, along with its respective category.

SZ

PRODUCTION

GENERIC

CPU

SZ1.4 SZ2.1 SZ3 SZx

GPU

cuSZ
(cuda)

KSZ
(KoKKos)

SPECIALIZED

Seismic
Imaging

Interp-SZ

Quantum
Chemistry

PaSTRI-SZ

X-Ray
Crystallography

Roibin-SZ

Material
MD

MMD-SZ

RESEARCH

GENERIC

Automatic
Par-Tuning

SZauto

FPGA

waveSZ

Vectorized

vecSZ

SPECIALIZED

Critical Point
Preserving

cpSZ

DNN

DeepSZ

HPC use-cases:
• Reducing storage footprint 
• Accelerating I/O & communication
• Accelerating visualization
• Reducing streaming intensity
• Running larger problems
• Checkpoint/restart

AI use-cases:
• DNN model compression 
• DNN training data compression
• Reducing DNN memory consumption
• Accelerating distributed training
• …

$6M from DOE
$1M from NSF
$1M from Aramco

https://github.com/szcompressor


Significantly Improving Lossy Compression for Scientific Data Sets 
Based on Multidimensional Prediction and Error-Controlled Quantization

Published in 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS’17)
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Background Introduction Design Evaluation Conclusion

SZ Framework (Error-BoundWorkflow)

initial data +
parameters

prediction
linear (1D), or

multidimensional

quantization
linear-scaling,

of prediction errors

variable-length
(Huffman code)
low entropy

lossily comp
-ressed data

lossless×

input lossy output
with strict
error control

decorre
-lation coding

approxi
-mation

October 5, 2020 · PACT ’20, Virtual Event · cuSZ · 5 / 20

SZ Compression Pipeline

prediction quantization coding

BackUp (!-Predictor)

! Gaussian-like, with signum altering to Manhattan distance to the (polarized) current point (!).

G5×5 =
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2×
Error Bound

2×
Error Bound

2×
Error Bound

2×
Error Bound

First-Phase
Predict Value

Real
Value←

→ Error 
Bound

2D Lorenzo Predictor

3D Lorenzo Predictor

Error-Bounded Uniform Quantization Code

We may need much less than 256 
intervals (that 8 bits can represent).

Very centrally 
distributed

Huffman Coding
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Experimental data (floating point-single precision-FP32)
• Climate: ATM (CESM): 3D dataset from climate simulation
• Weather: hurricane: 3D dataset from Hurricane Isabel simulation

Climate Hurricane

Climate and Severe Weather Datasets

ZFP: Best mode “fixed-accuracy“
E.g., bit-rate = 8 bits/value (CR = 4)
• SZ: 14dB higher than ZFP on ATM
• SZ: 11dB higher than ZFP on Hurricane
PSNR is logarithmic scale
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2D X-ray datasets from Argonne Photon 
Source (APS) instrument
• Data Source: X-ray instrument
• Dimension Size: 2560×2560
• Data Size: 40 GB
• File Number: 1518

Instrument Datasets
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original raw data

original raw data

SZ-2.0 (PSNR=29, SSIM=0.6867) ZFP (PSNR=21.3, SSIM=0.3762)

SZ-2.0 (PSNR=51, SSIM=0.9966) ZFP (PSNR=22.5, SSIM=0.8893)

Downsamping + interpolation
(PSNR=18.1, SSIM=0.4345)

Downsamping + interpolation
(PSNR=17.7, SSIM=0.7681)

Hurricane
(CR=66:1)

Cosmology
(CR=58:1)

Visualization with SZ
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Climate
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Parallel Evaluation



cuSZ: An Efficient GPU Based Error-Bounded Lossy 
Compression Framework for Scientific Data

Published in 2020 International Conference on Parallel Architectures and Compilation Techniques (PACT’20)
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Background Introduction Design Evaluation Conclusion

SystemWorkflowDiagram of cuSZ
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0
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fixed‑length representation
DEFLATED UNUSED

•

•

•

t0
t1
t2

tn

concatenatingto dense format

S LS
it idt ffman code

quant.code bitwidth ... Huff‑code
508 00000110 ... 00001010
509 00000101 ... 00000100
510 00000011 ... 00000100
511 00000010 ... 00000001
512 00000010 ... 00000011
513 00000011 ... 00000101
514 00000011 ... 00000000
515 00000110 ... 00001100

range freq.
|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ 442‑‑ 512 76%
|‑‑‑‑‑+ 512‑‑ 582 24%
|+ 582‑‑ 652 0.14%
|+ 652‑‑ 722 0.073%
|+ 722‑‑ 793 0.026%
|+ 793‑‑ 863 0.0095%
|+ 863‑‑ 933 0.0021%
|+ 933‑‑1024 0.00014%

f oating oint re resentationoriginal data in nits of ePREQUANTIZATION (no RAW)
on E UANT AT N set

! rediction res ts in nit eig tprediction (no RAW) in nits of e nc angedPOSTQUANTIZATION (no RAW)

histograming build and canonize
Huffman codebook

memcpy fixed‑length
Huffman code

deflating Huffman codes

DUAL‑QUANTIZATION
ANDPREDICTION

CUSTOMIZED
HUFFMANENCODING

October 5, 2020 · PACT ’20, Virtual Event · cuSZ · 7 / 20

System Design
Challenges
Ø Tight data dependency—loop-carried read-after-write (RAW)—hinders parallelization.
Ø Host-device communications due to only considering CPU/GPU suitableness.
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Background Introduction Design Evaluation Conclusion

Loop-Carried Read-After-Write (P+Q) Procedure in SZ

! Lossless compression and decompression (codec) are
mutually reversed procedures.

! Simlarly, SZmakes to-be-decompressed
(reconstructed) data show during compression and
make it under error control.

! Error control is conducted during quantization and
reconstruction:

e◦/(2 · eb)× (2 · eb)− e◦ ≤ eb.

! This introduces loop-carried read-after-write
dependency.

dk−2 − p◦
k−2 = e◦k−2 !!" q◦

k−2 !!" e◦!k−2 !!" d◦!
k−2

dk−1 − p◦
k−1 = e◦k−1 !!" q◦

k−1 !!" e◦!k−1 !!" d◦!
k−1

dk − p◦
k = e◦k !!" q◦

k !!" e◦!k !!" d◦!
k

≡≡ ≡≡ ≡≡

q•
k !!" e•k !!" d•

k

prediction quantization reconstruction

w
/loop

carried
raw

SZ
com

pression

decompression

October 5, 2020 · PACT ’20, Virtual Event · cuSZ · 8 / 20

Fully Parallelized P+Q

Background Introduction Design Evaluation Conclusion

Fully Parallelized (P+Q) Procedure in cuSZ

! Prioritize error control.
! Error control happens at the very beginning,

prequantization:

d◦/(2 · eb)× (2 · eb)− d◦ ≤ eb,

! And postquantization is corresponding to quantization
in SZ.

dk°299K d±
k°2 ° p±

k°2 = ±±k°2 ¥ q±
k°2 ¥ ±±?k°2 99K d±?

k°2

dk°199K d±
k°1 ° p±

k°1 = ±±k°1 ¥ q±
k°1 ¥ ±±?k°1 99K d±?

k°1

dk 99K d±
k ° p±

k = ±±k ¥ q±
k ¥ ±±?k 99K d±?

k

¥¥

q•
k

¥¥ ¥¥

¥ ±•k 99K d•
k

prequant postquant (unnecessary) cu
S

Z
co

m
p

ressio
n

decompression

October 5, 2020 · PACT ’20, Virtual Event · cuSZ · 9 / 20



18

Background Introduction Design Evaluation Conclusion

Mixture of Different Parallelisms

compression se
qu

en
tia

l

co
ar
se
-

gr
ai
ne

d

fin
e-

gr
ai
ne

d

at
om

ic

dual-quantization •
histogram • •

build Huffman tree •
canonize codebook • • •

Huffman encode (fix-length) •
deflate (fix- to variable-length) •

decompression
inflate (Huffman decode) •

reversed dual-quantization •

Table 2: Parallelism used for cuSZ’s subprocedures (kernels) in
compression and decompression.

Worth noting: in canonizing codebook
! problem size>max. block size (1024)
! utilize cooperative groups and grid.sync()
! ^_syncthreads(): not able
! cudaDeviceSynchronize(): expensive

October 5, 2020 · PACT ’20, Virtual Event · cuSZ · 12 / 20

Adaptive Parallelism

Background Introduction Design Evaluation Conclusion

Tuning Coarse-GrainedHuffmanCodec (Degree of Parallism)

chunk
size

26

27

28

29

210

211

212

213

214

215

216

hacc
1071.8mb 280,953,867 f32

#thread deflate inflate

. . .

. . .

. . .

. . .

. . .

1.4e5 4.6 2.8
6.9e4 5.1 5.1
3.4e4 13.6 12.1
1.7e4 63.1 35.0
8.6e3 65.8 28.1
4.3e3 45.9 14.3

cesm
24.7mb 6,480,000 f32

#thread deflate inflate

1.0e5 11.3 25.0
5.1e4 15.5 37.8
2.5e4 67.1 41.6
1.3e4 55.6 30.7
6.3e3 48.2 19.6

. . .

. . .

. . .

. . .

. . .

. . .

hurricane
95.4mb 25,000,000 f32

#thread deflate inflate

. . .

. . .

9.8e4 5.1 11.0
4.9e4 10.2 9.4
2.4e4 64.6 34.2
1.2e4 57.3 27.7
6.1e3 50.7 17.8

. . .

. . .

. . .

. . .

nyx
512mb 134,217,728 f32

#thread deflate inflate

. . .

. . .

. . .

. . .

1.3e5 4.7 5.9
6.6e4 5.7 6.3
3.3e4 25.1 16.1
1.6e4 69.7 52.4
8.2e3 72.4 42.6
4.1e3 50.0 23.1

. . .

qmcpack
601.5mb 157,684,320 f32

#thread deflate inflate

. . .

. . .

. . .

. . .

1.5e5 4.7 5.1
7.7e4 5.2 6.2
3.8e4 12.9 11.1
1.9e4 72.7 40.3
9.6e3 75.9 29.0
4.8e3 56.0 16.1

. . .

Table 3: Throughputs (in GB/s) versus different numbers of threads launched on V100. The optimal thread number in terms of
inflating and deflating throughput is shown in bold.

October 5, 2020 · PACT ’20, Virtual Event · cuSZ · 13 / 20

Threads # Tuning

Background Introduction Design Evaluation Conclusion

Canonical Codebook andHuffman Encoding

ca·non·i·cal adj.

[Schwartz and Kallick 1964]

! codebook transformed to a compact manner
! no tree in decoding
! tree build time: 4–7ms

update: 0.8ms
! canonize for 200 us (1024 symbols)

update: incoporated in tree-building

! Encoding/decoding is done in a coarse-grained
manner.

! AGPU thread is assigned to a data chunk.
! Tune degree of parallelism to keep every thread busy.

October 5, 2020 · PACT ’20, Virtual Event · cuSZ · 11 / 20
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GPU Performance Optimization
Canonical Codebook & Huffman Encoding

fine-grained manner:
IPDPS’21: Revisiting Huffman Coding: Toward Extreme 
Performance on Modern GPU Architectures, Tian et al.
IPDPS’22: Optimizing Huffman Decoding for Error-Bounded Lossy 
Compression on GPUs, Rivera et al.
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cuSZ – CUDA version of SZ
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Hurricane.cuzfp
Nyx.cusz
Hurricane.cusz

cuSZ (as of October 2021):
For compression kernel, 
411× ~ 719× over serial CPU
19.1× ~ 24.8× over OMP CPU

For decompression kernel, 
130× ~ 235× over serial CPU
11.8× ~ 16.8× over OMP CPU

Rate-Distortion
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https://github.com/szcompressor/cuSZ

https://github.com/szcompressor/cuSZ


Accelerating Parallel Write via Deeply Integrating Predictive 
Lossy Compression with HDF5

To appear in International Conference for High Performance Computing, Networking, Storage, and Analysis (ACM/IEEE SC’22)
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Current Limitations
• Sequential compression and I/O
• Offset cannot be simply pre-assigned

• Compression sizes vary drastically across different data partitions 

↑ Compression bit-rate distribution on a Nyx dataset with 512 
partitions. Every partition uses the same compression configuration. 

Our Solution and Contributions
• Integrate predictive lossy compression (such 

as SZ) with asynchronous I/O 
• Extend prediction model to estimate the 

offset and time of parallel I/O
• Overlap I/O with compression 
• Optimize order of compression tasks to 

achieve higher performance
• Our solution improves the HDF5 parallel-write performance by up to 4.5× and 2.9× compared to 

two existing solutions: parallel write (1) without compression and (2) with the SZ lossy compression 
filter, respectively, with only 1.5% storage overhead

Introduction
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↑  Scientific data management with compression.

Background

https://www.hdfgroup.org/wp-content/uploads/2020/10/Virtual-Object-Layer-VOL-Intro.pdf

Parallel I/O Libraries for HPC Applications 
• Access and manage scientific data efficiently
• Moving data between compute nodes and complex storage

• Node-local persistent memory, burst buffers, disk-based storage, etc.
• Currently compression is a dedicated layer (e.g., HDF5’s dynamically loaded 

filter) in between applications and I/O libraries
• E.g., HDF5 filter based on SZ: https://github.com/disheng222/H5Z-SZ

• HDF5 virtual object layer (VOL): redirect I/O operations into VOL connector 
and allow asynchronous I/O 

https://www.hdfgroup.org/wp-content/uploads/2020/10/Virtual-Object-Layer-VOL-Intro.pd
https://www.hdfgroup.org/wp-content/uploads/2020/10/Virtual-Object-Layer-VOL-Intro.pdf
https://github.com/disheng222/H5Z-SZ
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A parallel HDF5 program has a few extra calls

MPI_Init(&argc, &argv);

fapl_id = H5Pcreate(H5P_FILE_ACCESS);
H5Pset_fapl_mpio(fapl_id, comm, info);
file_id = H5Fcreate(FNAME,…, fapl_id);
space_id = H5Screate_simple(…);
dset_id = H5Dcreate(file_id, DNAME, H5T_NATIVE_INT,

space_id,…);
xf_id = H5Pcreate(H5P_DATASET_XFER);
H5Pset_dxpl_mpio(xf_id, H5FD_MPIO_COLLECTIVE);
status = H5Dwrite(dset_id, H5T_NATIVE_INT, …, xf_id…);

MPI_Finalize();

HDF5 Overview @ UC Berkeley 24

Example of a PHDF5 C Program
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Overall Design
1. Predict compression ratio and throughput
2. Distribute estimated compression ratio of each 

partition to all processes 
3. Compute offset (compressed size) for parallel write 
4. Optimize the order of compressing different data 

fields in each process 
5. Overlap compressions and writes
6. Distribute overflow information
7. Handle overflowed data 

↑  Overview of our proposed solution. 

Design Methodology
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How Our Solution Compares to Existing Solutions
• Existing solutions:

• (1) Original: non-compression solution
• (2) Lossy compression solution using HDF5 filter

• Our Solutions:
• (3) Overlap compression & I/O
• (4) Overlap compression & I/O + compression scheduling optimization

↑  Timeline of data aggregation with 5 processes and 2 data fields. 

Design Methodology
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Compressor Throughput Estimation
• Min and max compression throughputs are similarly bounded across different data samples
• Bitrate-throughput curve for each data sample is highly consistent 

↑  Minimum and maximum compression throughput of a given data 
partition based on 30 samples from Baryon density 

↑  Single-core compression throughput with different bit-rates on Nyx 
and RTM datasets 

Design Methodology
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Compressor Throughput Estimation
• Min and max compression throughputs are similarly bounded across different data samples
• Bitrate-throughput curve for each data sample is highly consistent 

↑  Independent write I/O throughput per process with different data sizes 
per process 

Write Time Estimation
• Not to provide a highly accurate write-time 

estimation for each data partition, but to 
provide a capability to estimate the relative 
write time across different data sizes 

• Write time stabilizes after data size reaches a 
certain point 

Design Methodology
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Overlapping Compression and Write 
• Estimate/predict the offset (i.e., compressed data size) 

based on our previously built theoretical model
• Reserve an extra space for compressed data overflow
• Extra space ratio can be adjusted to balance between 

performance and compressed size overhead 

Extra Space Ratio
• Default at 1.25 for most partitions
• Adjust for partitions with low estimated 

compression ratio

↑ Overflow data handling with preserved extra space.

Trade-off between performance overhead and compression size overhead ↑ 

Design Methodology
Jin, S., Di, S., Jiannan, T., Byna, S., Tao, D. and Cappello, F., 2022, May. Improving 
Prediction-Based Lossy Compression Dramatically via Ratio-Quality Modeling. In 
Proceedings of The 38th IEEE International Conference on Data Engineering (ICDE’22).
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Compression Order Optimization 
• Improve overlapping efficiency

• I/O of each partition happens after compression
• Avoid unnecessary wait time for I/O

• When good? Compression time and I/O time are similar
• When not good?

• I/O is significantly longer
• Compression is significantly longer

↑  An example of extremely unbalanced compression time and write time, limiting the benefit from our reordering. 

Design Methodology
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Experimental Setup 
• Implemented our approach with HDF5 and SZ3
• Two HPC systems 

• Summit supercomputer at Oak Ridge National Lab 
• Bebop cluster at Argonne National Lab 

• Different scales of Nyx and VPIC datasets 
• Use PSNR to validate the reconstructed data quality
• Both datasets result in ~16X compression ratio

Evaluation

↑  Details of Tested Datasets.
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Compression & I/O Throughput Estimation Accuracy 
• High accuracy on compression time estimation

• Different partitions
• Different data scales

• High accuracy on write time estimation
• Have some distortion but NOT affect our optimization

↑  Accuracy of our compression-time estimation on 5123 Nyx data 
samples (red line is predicted time; black dots are actual time) 

↑  Accuracy of our compression-time estimation on 10243 Nyx data 
samples. Red line is predicted time; black dots are actual time. 

↑  Accuracy of our write time estimation on 10243 Nyx data samples. 
Red line is predicted time; black dots are actual time. 

Evaluation
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Evaluation on Extra Space Ratio 
• Trade-off curve between performance and storage are highly similar
• Lower the extra space ratio can result in extremely high performance overhead
• We can use the same extra space ratio for different setups (default at 1.25)
• Users can also custom the extra space ratio 

↑  Trade-off between performance overhead and storage overhead based on different extra space ratios on Nyx dataset (6 data 
fields) and VPIC dataset (7 data fields) on both Bebop and Summit with 512 processes. 

Evaluation
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Comparison
• Original: non-compression solution
• Previous: compression filter solution
• Overlap: our solution
• Reordering: overlap + reorder technique

↑  Evaluation on the consistency of the storage and 
performance overheads using the same extra space ratio of 
1.25 with 512 processes on Summit. 

Performance comparison among our solution (overlapping and reordering), 
original non-compression solution, and previous compression-write solution 

on 40963 Nyx dataset with 512 processes. à

Performance Improvement
• Original → Previous: 1.87×
• Previous → Overlap: 1.79×
• Overlap → Reordering: 1.30×
• Overall: 2.91× improvement from previous 

with a 26% storage overhead. 1.5% if 
compared to original size

• Stable performance over timesteps 

Evaluation
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↑  Performance improvement of overall parallel-write with our proposed solution compared to the previous write solution 
with H5Z-SZ on both Nyx and VPIC datasets. Dashed red line is the baseline of HDF5 without compression. (a) and (b) are 
evaluated with 512 processes on Summit. 

Evaluation

Performance with Different Overall Ratios
• Limited improvement from reordering optimization under extremely high/low bit-rate

• High bit-rate: I/O time significantly larger than compression time
• Low bit-rate: compression time significantly larger than I/O time 

• Storage overhead is stable (~20% of compressed data)
• Performance improvement is more significant with higher bit-rate

• Low bit-rate: compression time dominate, little overlap efficiency
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↑  Performance improvement (overall) and storage overhead of our solution compared to the previous solution on both 
Nyx and VPIC datasets. (a) and (b) are evaluated with 512 processes om Summit. 

Performance with Different Overall Ratios
• Limited improvement from reordering optimization under extremely high/low bit-rate

• High bit-rate: I/O time significantly larger than compression time
• Low bit-rate: compression time significantly larger than I/O time 

• Storage overhead is stable (~20% of compressed data)
• Performance improvement is more significant with higher bit-rate

• Low bit-rate: compression time dominate, little overlap efficiency

Evaluation
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↑  Performance improvement of overall parallel-write with our proposed solution compared to the previous write solution 
with H5Z-SZ on both Nyx and VPIC datasets. Dashed red line is the baseline of HDF5 without compression. (c) and (d) are 
evaluated with a target bit-rate of 2. 

Evaluation

Performance with Different Scales
• Improvement from reordering optimization is stable (~22%) 
• Storage overhead is stable (~20% of compressed data)
• Performance improvement is more significant with larger scale

• Independent write provides better scalability than collective write (used by previous comp-write solution)
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↑  Performance improvement (overall) and storage overhead of our solution compared to the previous solution on both 
Nyx and VPIC datasets. (c) and (d) are evaluated with a target bit-rate of 2. 

Evaluation

Performance with Different Scales
• Improvement from reordering optimization is stable (~22%) 
• Storage overhead is stable (~20% of compressed data)
• Performance improvement is more significant with larger scale

• Independent write provides better scalability than collective write (used by previous comp-write solution)



COMET: A Novel Memory-Efficient Deep Learning Training 
Framework by Using Error-Bounded Lossy Compression 

Published in Proceedings of the VLDB Endowment, Vol. 15, No. 4, 2021
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System Issues with Large AI Models
Issue

Highly limited GPU memory space 
but larger batches are needed 
[You et al., SC’19]

Our solution [Jin et al., VLDB’22]
reduces memory consumption
by up to 13.5×.

Solution

Backward phase consumes more 
than 70% of overall training FLOPs

Our solution [Zhang et al., ICS’21]
saves end-to-end training-and-
pruning time by up to 2.3×.
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• Parameter collection: collect parameters for analysis and updating 
compression configurations

• Gradient assessment: estimate acceptable 𝜎 in the gradient 
• Activation assessment: estimate acceptable error bound for 

compressing activation data
• Adaptive compression: deploy lossy compression

Overview of our proposed memory-efficient DNN training framework - COMET

System Design

Data flow in a sample iteration of training CNNs

Ø Activation Data Storage in Training
• Must being stored until used in back 

propagation
• Long waiting period between 

generating and using the data
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Ø Parameter Collection

• Offline parameters: batch size, activation data size, corresponding output layer size
• Simi-online parameters: activation data sparsity, average loss, average momentum value

Ø Gradient Assessment
• Compute 𝜎 based on parameters and empirical experience:

Ø Activation Assessment
• Compute error bound based on parameters and  theoretical analysis:

Ø Adaptive Compression
• Compression configuration update every 1000 iterations
• Modified cuSZ for compressing sparse floating-point data

Design Detail
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Ø Memory Footprint Reduction
• High compression ratio, up to 13.5x
• Little/no testing accuracy loss

Training accuracy curve comparison between the 
baseline and our proposed framework.

Comparison of accuracy and activation size between baseline training 
and our proposed framework

Memory Usage Evaluation
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Training performance on ResNet-50 with different Batch size

Ø Performance Improvements
• Low compression overhead, significantly lower than 

data migration solution (e.g., 7% on VGG-16)
• High raw throughput (sample/sec) improvement with 

better resource utilization (e.g., 1.24x on ResNet-50)
• End-end performance improvement: train model 

faster (e.g., 2x on AlexNet)

Validation accuracy curve of COMET under different GPU memory 
constraint on AlexNet

Overhead comparison between migration, recomputation

Performance Evaluation
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Q&A

Thank You!
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