cuSZ: An Efficient GPU Based Error-Bounded Lossy
Compression Framework for Scientific Data

Published in 2020 International Conference on Parallel Architectures and Compilation Techniques (PACT 20)

Led by Jiannan Tian from HiPDAC

System Design

£

UNIVERSITY

Challenges

» Tight data dependency—loop-carried read-after-write (RAW)—hinders parallelization.
» Host-device communications due to only considering CPU/GPU suitableness.

-

~

e
f -
2 2 / — - / g\ = = i -
: Ao
-2 o PR
g ; .L../ \ 7 i’ :vé? P ? - kg - q’b o -
b2

=] N ~a
s P2 ’ 0N PREQUANTIZATION set
g = floating-point representation in units of eb £- pred|ct|on results in unit weight in units of eb (unchanged)

g original data PREQUANTIZATION (no RAW) prediction (no RAW) POSTQUANTIZATION (no RAW)

o MSB LSB .
DEFLATED UNUSED
T « .]
range freq. 0 0 bitwidth Huffman code fixed-length representation

c [+ 442-— 512 76% « 4 > >
: () [E— + 512—— 582 24% 0> 0‘ / 1-0 quant.code bitwidth ... Huff-code to

c " 582—— 652 0.14% 508 00000110 ... 00001010
E »n I+ 659—— 722 0.073% / 1 4° 509 00000101 ... 00000100 ty
=z = |+ 722-- 793 0.026% root 0 0 510 00000011 ... 00000100
m (-] |+ 793— 863 0.0095% < 2 1 511 00000010 ... 00000001 to
[= |+ 863—— 933 0.0021% o‘ 1 X 512 00000010 ... 00000011 concatenating
O N [+ 933--1024 ©.00014% 17 1 10 513 00000011 ... 00000101 to dense format
om A 514 00000011 ... 00000000 t,
o -] 1 515 00000110 00001100
z histograming build and canonize memcpy flxed Iength deflating Huffman codes

Huffman codebook Huffman code

/

WASHINGTON STATE

WASHINGTON STATE

UNIVERSITY

£

GPU Performance Optimization

s
Canonical Codebook & Huffman Encodin § 88 8 ¢ - -
g S 28 £ Adaptive Parallelism
compression 9 O €& &
ca-non-i-cal adj dual-quantization
A canonical encoding is then generated in which the histogram o | o Worth noting: in canonizing codebook
numerical values of the codes are monotone increasing build Huffman tree . .
and each code has the smallest possible numerical value . P problem size > max. block size (1024)
: . : : canonize codebook ° ° °
consistent with the requirement that the code is not the . . .
prefix of any other code. Huffman encode (fix-length) . P utilize cooperative groupsandgrid.sync()
deflate (fix- to variable-length) ° >
. syncthreads(): not able
[Schwartz and Kallick 1964] decompression —sY O
inflate (Huffman decode) ° » cudaDeviceSynchronize(): expensive
» codebook transformed to a compact manner .
reversed dual-quantization °

v

no tree in decoding
> tree build time: 4-7 ms Table 2: Parallelism used for cuSZ’s subprocedures (kernels) in
) compression and decompression.

update: 0.8 ms Threads # Tuning
» canonize for 200 us (1024 symbols)

update: incoporated in tree-building hacc cesm hurricane nyx amcpack
i i . i g ——— -_- - -l chunk 1071.8 mb 280,953,867 f32 24.7mb 6,480,000 f32 95.4 mb 25,000,000 f32 512mb 134,217,728 32 601.5 mb 157,684,320 32
> EnCOdmg/deCOdmg is done "I_afialsg_frflze_d_l size #ithread deflate inflate #thread deflate inflate #thread deflate inflate #thread deflate inflate #thread deflate inflate
manner. 26 .) . 10e5 13 250
» A GPU thread is assigned to a data chunk. o7)) . Bled 155 378)))
» Tune degree of parallelism to keep every thread busy. 28 . . . 2.5e4 671 416 98e4 51 1.0
29 . . . 13e4 556 307 49e4 102 94))
. . { 21° . : . 63e3 482 196 24e4 646 342 13¢5 47 B9 1Be5 47 51
fine -graine d manner: o 1465 46 2.8) . . 12e4 573 277 66e4 57 63 T7e4 5.2 6.2
IPDPS’21: Revisiting Huffman Coding: Toward Extreme 212 6.9e4 51 51 . . . 61e3 507 178 33e4 251 161 38e4 129 111
Performance on Modern GPU Architectures, Tian et al. ; " ‘:"::: ;?:: 3;2; : ’ : : ’ : ;'zee: E;Z': 54";: 19'2:: ;:; ;g'g
IPDPS’22: Optimizing Huffman Decoding for Error-Bounded Lossy 216 86e3 658 281 41e3 500 231 483 560 161
Compression on GPUs, Rivera et al. 016 43e3 459 143

Table 3: Throughputs (in GB/s) versus different numbers of threads launched on V100. The optimal thread number in terms of
inflating and deflating throughput is shown in bold.

WASHINGTON STATE

UNIVERSITY

£

Performance Evaluation: Throughput and Quality

150 -
I l sz single-CPU-core I B sz 32-cPU-core I B cusz vioo
| B cusz+,vioo l B cusz+ A100 o)
ks 100 %
AN © N -
3 © R S 8 2 I B @ a 4
(o] Q AN ® o
. . me AL - e —O— Nyx.cuzfp -
©- o . @ -..@-- Hurricane.cuzfp g
. maE e ®" —[1— Nyx.cusz S
® —.=)— Hurricane.cusz
| B 2 4 6 8 10 12 14 16
CESM-ATM Hurricane Nyx QMCPack Bitrate
Kernel Throughput (MiB/s), Compression cuSZ (as of October 2021).
- 28 For compression kernel,
3 8 S 411x ~ 719% over serial CPU
. B 19.1x ~ 24.8x over OMP CPU
For decompression kernel,
- 130x ~ 235x% over serial CPU
CESM-ATM Hurricane Nyx QMCPack 11.8x% ~ 16.8% over OMP CPU

Kernel Throughput (MiB/s), Decompression

Adaptive Configuration of In Situ Lossy Compression for
Cosmology Simulations via Fine-Grained Rate-Quality Modeling

Published in 2021 ACM Symposium on High-Performance Parallel and Distributed Computing (HPDC’21)

Led by Sian Jin from HIiPDAC

WASHINGTON STATE

UNIVERSITY

&
Nyx Cosmology Simulation Data

Visualization of Baryon Density in Nyx simulation under resolution of 512 x 512 x 512

> Structured Data

* Generated by mesh-based simulations in parallel ranks S T e
 Different ranks/partitions have different densities of info T e) :)
» Previous Solution (Jin et al., IPDPS’20) o
* Optimize comp. performance by trail-and-error method
e All partitions use the same compression configuration 'ﬂ"’*ﬂﬁ : i 3 W 3 J 2 /
* Visual metrics (e.g., PSNR) are insufficient ST 1 -t B o L ail), /'\,,\‘ <N\
» Our Goals Tinestep
. - . . im_stats_rhob .)
« Guarantee domain-specific analysis quality ol = H
’ —0. . : I 1.04
* Power Spectrum Loro | R |
o ~ 4 102
* FFT-based analysis for Universe’s matter distribution g 1es0 | 1LOE+03 "
. L | — 100 =
* Target: Ratio of P(k) on reconstructed data and < oo | Logso2 | oo B
0004 002 1 098
original data remains within 1 £ 0.01 1020 | LSTR, | o oo
. 1.010 1.0E+00 | ——0.0015 0.008 4 0.96
* Halo Finder Looo | —tooes oo -L|
0.990 1.0E-01 n z . A 0.94
* Find over-densities in the Mass distribution 07 K 10.0 By URCHI G L) meRs e
e Target: Minimize the mass change of each halo
Power spectrum analysis on baryon density. Halo Finder analysis on baryon density.

* In-situ compression towards optimal compression ratio

WASHINGTON STATE

UNIVERSITY

£

Our Methodology

Error Bound Combination /‘ S .
Fine-grained lossy

compression control for
= different data partitions.

¥5

5

L 1000
Compression Ratio «----- SEATEIE - Analysis Quality E
Temperature Error Bound
» Fine-grained Compression » Proposed Optimization Strategy
« Different error bounds for different partitions 1. Parameter extraction (to estimate compression ratio)
« Different eb combinations for different time-steps * Mean value of given partition
* Mean value of overall dataset
» Estimation on Post-analysis Quality Loss 2. Build Rate-Quality Model
* Predict post-analysis error based on eb combination * EB-quality model
* Power spectrum * EB-rate model
e Halo finder 3. Per-partition error bound optimization
> Estimation on Compression Ratio e Derivatives of rate-quality curves are balanced for all

4. For baryon density

* Perform power-spectrum optimization first
e Perform halo-finder optimization if not satisfied

* Predict compression ratio based on error-
bound combination (e.g., SZ compression)

Evaluation

WASHINGTON STATE

UNIVERSITY

£

Compression Ratio

» Compression Ratio Improvement

1.56x overall improvement (up to 1.73x)

Capable across time steps
Smaller partitions higher improvement

Capable across simulation with different resolutions

110%

baryon
density

dark matter temperature velocity x
density

Traditional = Ours

velocity _y

velocity z

CR comparison between our and traditional methods on all 6 fields.

Dumping Time (s)
S = N W A U NN

=)
g%}t oe——eo——0— e 5
= S
« w
E 20% | 5
& 2 —A— —a
Z 80% | E
2 0% -
R R — — 5
= 60%)
-§ 50% | | —©—Ours (adaptive) ~
E . ~#—Qurs (static)
£ 4% I | —o—Traditional
(=]
o 30% A A A
52 48 44 40
Redshift

CR comparison between our and trad. methods
on multiple redshifts’ data using baryon density.

W
[~
(]

N
wn
=)

o
N
-]

=)
N

0 0.5

1

1.5 2

Compression Ratio Improvement

CR improvement with different partition sizes.

Jin et al., submitted to ICDE’22

A] |
7
/i

7\

NN
NN

NN
N
— 1
I NN\ |
NN
T

S
NN |

Traditional

Trail-And-Error
!

; Ours
2 g 7 7
(L o
2. Y HE b % 7
1117 7 7

RSN
NN

800 1000

1200 1400 1600 1800

Snapshot

2000 2200 2400 2600 2800 3000 3200 3400

| ATr-Comp OTr-I/O BTAE-Op BTAE-Comp ETAE-IO ®Ours-Op #ZOurs-Comp @IOurs-I/O |

We generalize this modeling approach to other HPC applications, such as seismic
imaging app. RTM. The above figure shows the overall data dumping time of
different approaches under a similar post-analysis quality with parallel HDF5.

Optimizing Error-Bounded Lossy Compression for Three
Dimensional Adaptive Mesh Refinement Simulations

Submitted to 2021 ACM Symposium on High-Performance Parallel and Distributed Computing (HPDC’22)

Led by Daoce Wang from HiPDAC

Motivation & Background

WASHINGTON STATE

UNIVERSITY

£

Adaptive Mesh Refinement

Increase resolution in regions of most interest
Reduce computational and storage overhead
One of the most widely used frameworks for HPC applications

AMR apps still generate large amounts of data

For example, Nyx with a resolution of 40963 (i.e., 0.5 x 20483
+ 0.5 x 40963) generate 1.8 TB data per snap-shot

Previous Solution (Luo et al., IPDPS’21)

Reorder AMR data in 1D based on geometric coordinates
Cannot adopt 3D compression
Works only for block-structured AMR with redundant data

Our Goals

Adopt 3D compression for each AMR level separately
Mitigate separate 2D/3D compression (time/storage)
overhead by pre-processing

Adaptive Mesh Refinement (AMR) on temperature and velocity during
jetting: grid structure changes with jet progression.

WASHINGTON STATE

UNIVERSITY

£

Proposed Approach

> Our Hybrid Pre-process Strategies

* Adaptively select the best-fit pre-process strategy based on data
density of each AMR level

1. Optimized Sparse Tensor Representation (OpST) for low-density data i | | x

2. Adaptive k-D Tree (AKDTree) for medium-density data s s, s,

3. Ghost-Shell Padding (GSP) for high-densitydata

AKDTree

GSP

Compression errors of naive Sparse Tensor (left) and Compression errors of zero filling (left) and GSP
OpST (right). Brighter means higher compression error. (right). Brighter means higher error.

WASHINGTON STATE

UNIVERSITY

£

Evaluation
. Daivg DeMeh =D <-ow] z10 1D (naive) —#—3D —e—Ours T3
» Evaluation on Rate-distortion
« Outperforms naive 1D baseline & zMesh (up to 3.3x) % N %90
e Perform much better than 3D baseline when % |
(1) finest level has a relatively low density, or K IR Y e Bmfe'o 0 10
(2) decompressed data has a high PSNR D (naive) 1D (2Mesh) —4-3D ——Ouns] 75 [1D (naive) —=—3D —o—Ours | T4
: R
» Evaluation on Time Overhead 7 o
* Up to 75x faster than 3D baseline on Run2 datasets and | "

2.4x faster on Run1l datasets
Throughput degrades on the small datasets (i.e., T3 &T4)

2
Bitrate

3

0

50

100

150 200 250

Bitrate

Rate-distortion of timesteps in Run1 (left) and Run2 (right)

Overall compression/decompression throughput (MB/s) of different approaches with different absolute error bounds.

EB . Run1 72 Run1 73 Run1 75 Run1 710 Run2 T2 Run2 T3 Run2 T4
1D | 3D |ours | 1D | 3D |ours | 1D | 3D | ours | 1D | 3D | ours | 1D | 3D | ours | 1D | 3D | ours | 1D | 3D | ours
1E+08 | 169 | 94 97 166 | 90 94 161 | 76 99 160 | 40 95 152 | 17 76 143 | 24 60 125 | 0.4 30
1E+09 | 219 | 115 | 121 | 213 | 120 | 127 | 208 | 109 | 123 | 208 | 63 117 | 193 | 27 91 184 | 3.9 66 159 | 0.5 32
1E+10 | 259 | 125 | 135 | 256 | 125 | 136 | 253 | 117 | 137 | 250 | 65 | 135 | 242 | 30 | 102 | 229 | 4.0 72 197 | 0.5 34

COMET: A Novel Memory-Efficient Deep Learning Training
Framework by Using Error-Bounded Lossy Compression

To appear in 2022 International Conference on Very Large Data Bases (VLDB’22)

Led by Sian Jin from HiPDAC

WASHINGTON STATE

UNIVERSITY

£

System Design

- Ngxtla;uForward ... I Backwardl
T Orivinal i : Sparsity s g Avcra;,c il
rigina | ; : y : :
i v ; : , : I Data Flow
i Conv ————— | Act. Data Conv | W i . g
E —_[Weights]<_[Gradient]) | é - Gony : . SZ De- Conv Value Flow
[2 Compressed .. P 2 : : } compressnon
. Conv —»@— Conv E :C‘m;)l:r&“m. €---=-
i v v : . 1 : : Momentum T
T___[Weights }‘_[Gradient] l : : i____________________________i _______ -i---. 5 |\)£Irlu|t():)(l;0“
""""""""""""" Ourtmmevo ¥ i e ———-— R i ool Tont ff aceen
Data flow in a sample iteration of training CNNs Overview of our proposed memory-efficient DNN training framework - COMET
Activation Data Storage in Training e Parameter collection: collect parameters for analysis and updating
* Must being stored until used in back compression configurations
propagation * Gradient assessment: estimate acceptable o in the gradient
* Long waiting period between * Activation assessment: estimate acceptable error bound for
generating and using the data compressing activation data

* Adaptive compression: deploy lossy compression

WASHINGTON STATE

UNIVERSITY

£

Memory Usage Evaluation

» Memory Footprint Reduction

* High compression ratio, up to 13.5x
 Little/no testing accuracy loss

80%

|
4 28 Top-1 Peak Max Conv. JPEG-
70% | gl LT S o heural Nefs Accuracy Mem. Batch Act. Size COMER ACT
{1245
60% | o & b. 57.41% 217 GB 512 407 MB
B = 120 8 AlexNet c. 57.42% 0.85 GB 2048 30 MB 13.5% -
< 50%]
3 | 16 & b. 68.05% 17.29 GB 64 6.91GB
2 40% | 5 VGG-16 c. 68.02% 5.04 GB 256 0.62 GB 11.1 X -
in ¢ 1 5
£30% . . 12 S b. 67.57% 5.16 GB 256 1.71GB
= oo "o g & ResNet-18c. 67.43% 1.37 GB 1024 0.16 GB 10.7 X 7.3 X
20% |/ ResNet-50 COMET ResNet-50 Ori § b orcss HVERE PP
AlexNet COMET AlexNet_Ori < : e : ‘
10% — . 44 _ :
AleiiE Rails . ResNet-50 Ratio ResNet-50 c. 75.51% 4.40 GB 512 0.46 GB 11.0 X 6.0 X
0% I I I I I I 0 b.= baseline, c.= compressed
0 10 20 30 40 50 60 70 . .)) .
Eiiochs Comparison of accuracy and activation size between baseline training
Training accuracy curve comparison between the and our proposed framework

baseline and our proposed framework.

15

WASHINGTON STATE

UNIVERSITY

£

Evaluation
» Performance Improvements 2 1200 ” [ois 032 64 @128 @256
. . . (2 1000 2 Batch Size 7
* Low compression overhead, significantly lower than £ % %
data migration solution (e.g., 7% on VGG-16) ff;: 600 % %
. . . R
 High raw throughput (sample/sec) improvement with g “° % %
e £ 200 / /
better resource utilization (e.g., 1.24x on ResNet-50) £ W , Y
* End-end performance improvement: train model Single GPU (I Nod<) 10GPUs (2 Nodes
faster (e.g.’ 2x on AIexNet) Training performance on ResNet-50 with different Batch size
60%
50% 1.8
° 1.6 . i
. A% § 14 | ECOMET @Migration
s 5 12 ¢ Recompute
g 30% 5 1
< 20% o 0.8
20% % 06
10% 2 0.4
o . | | _ _ . % 02
(1] 0 | 4 4
0 S 10 15 - 20 " 25 a8 g8 9 1 2 3 4 5 6 7 8 9 10 11 12 13
poc)
Validation accuracy curve of COMET under different GPU memory Overhead comparison between migration, recomputation

constraint on AlexNet

ClickTrain: Efficient and Accurate End-to-End Deep Learning
Training via Fine-Grained Architecture-Preserving Pruning

Published in 2021 ACM International Conference on Supercomputing (ICS’21)

Led by Chengming Zhang from HiPDAC

WASHINGTON STATE

UNIVERSITY

£

Pattern Based Pruning

> Fined-grained Pattern-based Pruning elieanl Ptk paiems gt

* Pruning intermediate sparsity between non-structured pruning .._:prjmé_%cmcf
and structured pruning pattem 5 pattem 6 patiem 7 pattems AM A o1

> Why pruning during training? S \EEE C\EEE Z'E;;"Eomtion ‘ELIEitcr

* Ever-increasing scale and complexity of DNNs with large-scale 1
training datasets, leading to challenges to the cost of DNN training Fined grained pattern-based pruning (gray parts are pruned).

* Backward phase consumes more than 70% of overall training FLOPs

00% — Forward Backward

> Our Goals

* Use pruning during training (PDT)-based method to significantly improve
end-to-end performance

* Maintain network architecture for high accuracy 20% -
* Fully utilize pattern sparsity via multiple system-level optimizations 0%

o Library support: fast sparse matrix conversion, pattern-accelerated VGG16 ResNet18 ResNet34 ResNet50
sparse convolution & communication

o Compiler support: compiler-assisted optimized code generation

80%

Training FLOPs(%) .
5 O
(=} (=}
X R
[

29.57 70.43

—134.62 65.38
—130.14 69.86
=129.21 70.79

Percentage of FLOPs in forward and backward.

18

WASHINGTON STATE

UNIVERSITY

&
ClickTrain Design

Start End
Training)

Training

stage 1 stage 2 stage 3 stage 4 stage §

Warm-up Dynamic Pattern Adaptive Pattern & Regularized Compiler-assisted
Training E> Pool Generation ':> Unimportant Kernel I::> Training E> Optimized Training

i smmes I Finalization 1 .

1 " I 1 i |Fast SpMM Conversion
e [T | |

1 f 1 1 el B 1 .

1 :X: mz Em I EEE :[H p 0 _EH i | Forward Acceleration

' :E> 1 CONYV Kernels \ / Finalized Patterns 1 1

p o E E I " E E ; |Backward Acceleration
e Apply

o [X[X]s I Regularization| Unimportant | - 1 0 g g

1 :: Dynamic Pool ! Pattern Bﬂ Kernel | [T gu ooofy Comm. Optimization

R 1 Anoolo oTo[o] " Hard-Pruning Step

e Stage 1, 2, 3, 4 are algorithm-level design: focusing on high compress ratio and high accuracy
* Stage 5 is system-level design: focusing on improving computation efficiency

nInputCha nlnel*kW*kH

506 9

8|
45 |78 Patterns[patternl, pattern2, Temporarily store < Dense input feature matrix (D7)
= _Conv layer n
6|7, 89 attern3, ***, patternx MCPUMEINOLY - pomssisimsiimsyam suiny -cudnn -Com
NEGEE : .] 4 2 | GPU ‘ | o
1 = . i ThreadIdx | A
) G + offset to shared Conv layer nt1 0|
lOWP‘I :’ Eigra_ly _____ ': éowpti : Sparse (’\ S ’\ : m(;:mv Conv layer 1 Fast sparse B c;)
enerate matrix \ EEEEEENE = : conversion + S
collnd E : : collnd | L v) I Sparse ﬁ_&ter matrix Dense outplll feature matrix \M} optimized SpMM ?3;
< i
| patem OPU EREr I SO | &g
ea | T e e T T I Comtyera2] | |2
val EEEE | pool rules | Generate GPU 47499 _E i Conv layer nt2 Conv layernt2| | | <=}
e : : thread offset 'ECEED % | Map a thread _}
[e[7[8[9[4[S[6[8] Lo s Q | blockto 1D file |
(a) Sparse matrix and CSR format (b) Pattern-driven CSR conversion (c) Optimized SpMM library (d) Compiler-based code transformation

1. Fast sparse matrix conversion: through pre-selected sparsity pattern
2. Workload balancing: limit all filters in same layer with same number of un-pruned (non-zero) weights
3. Sparse convolution on GPU: 1D tiling strategy - map each thread block to a 1D row tile of output matrix

WASHINGTON STATE

UNIVERSITY

r)y

Evaluation

2 id. i Total
PDT Base. Valid. Comp. Train./Inf. Hard Pr. MePt::d B::Z Avuhg ‘:’"!"P Epochs
Method Acc. Acc. A Ratio FLOPs Epoch . i atio P
PRT 93.6% —2.1% 22x 53% / 66% N/A . -II;?ZSP (12] 706% =15% 1:3X iyt 120
ResNet32 CLK 93.6% 0+£0.05% 86X 41.3%/85.1% 08 esNet-18 pigel (74] 22'2? _g';Zf j?: we ”a"‘*;’g
CLK 93.6% 0+0.07% 10.7X 43.0% / 85.7% 95 6% —0.9% . C . .
: omparison with SOTA
I T Bty
ResNet50 CLK 94.1% 0+0.04% 8.5X 37.5%/ 74.3% 95 ESINets e —dalse £ well.train:
= -
= CLK 94.1% -0.220.05% 108X 41.2%/77.6% 90 CLK 762% —0.6% 4.3 s PAT based ApproaChes
g PRT 92.1% —-0.7% 8.1X 57% / 65% N/A ResNet-101 RSNLIA [63] 75.27% —2.10% 19X weII train + tune
o VGG11 CLK 92.1% —0.10.04% 87X 41.2%/81.5% 9% CLK 764% —1.2% 4.2X 20
CLK 92.1% —0.3+0.06% 115X 43.9%/ 85.3% 94 NeST [s] — e Y N/A
VGG-16 o et)
PRT 93.9% —0.6% 8.0 56% / 63% N/A CLK 731% —0.8% 6.6X 90
VGG13 CLK 93.8% 0+0.08% 8.6X 41.3%/81.3% 95
CLK 93.8% —0.2:£0.04% 10.9% 42.5%/84.9% 9% 0, . H : o
* Save up to 67% computation time with up to 1.2% accuracy drop
PRT 71.0% -1.4% 2.1X 32% / 46% N/A
ResNet32 CLK 71.0% 0+0.05% 8.3X 41.7% | 82.9% 95 {Forward ~ mEmBackward Forward (opt conv) \\\Backward (opt conv) Tl gm i (G i
CLK 71.0% —0.2+0.05% 104X 45.2%/ 85.6% 90 1200 b=t ~
Z 100.0 So' 4= =3 Pruning after training §
PRT 73.1% —0.7% 19X 53%/ 69% N/A £ € = Baseline (w/o pruning) §
S ResNet50 CLK 73.1% 0+0.04% 82X 36.7%/73.6% 9% § 00 = N
= CLK 73.1% —0.2+0.07% 9.7X 38.9%/77.3% 95 £ 500 =
2 £
§ PRT 70.6% -1.3% 3.0% 47% / 57% N/A g 400 :
o VGG11 CLK 70.6% 0+0.1% 67X 40.1%/78.6% 95 £ 200 N z
CLK 70.6% —0.2+0.06% 8.4x 43.1%/ 82.0% 92 oo [S
’ ResNet18 ResNet32 ResNet50 VGG16 ResNet18 ResNet32 ResNet50 VGG16
PRT 74.1% —1.4% 2.9% 42% | 52% N/A
VGG13 CLK 741% —0.1£0.05% 74X 405%/79.7% 95 B (a) CIFAR) (a) CIFAR10
CLK 74.1% —0.2+0.08% 9.2% 41.7% / 83.3% 9 Forward I Backward Forward (opt conv) N\ Backward (opt conv) T (Wlo opt cony) 2726
T Haoo'o 3 = Ours (w/ opt conv) \
5% PRT 76.2% -1.9% 1.6X 40% / 53% N/A £ 250.0 < 200 ; Erunilng a(ﬂe/r training §
EZ ResNets0 CLK 762% ~0.6+0.07% 4.3% 36.9% / 66% 40 § 2000 £ i aseline (wio prunit 7 %
51500 2 / § B
> Comparison with SOTA PDT-based A h i1 Na- ONAD AN
omparison wit -based Approac £ w00 N s s N /) N
S 2 1ANND A AN
o v 1 T T

* ResNet32/50: 10x compression ratio with only up to 0.2% ez ResNet32 ResNets0 ResNet101

(b) ImageNet

accuracy drop « Speedups of 2.2x, 2.1, 1.9x « Saves0.16, 0.29, 0.59, and 0.15
* VGG11/13: 8.6x~11.5x compression ratio with up to 0.3% peedups ot £.2x, £.2%, 2.9%, aves ©.20, 8.2, L.59, and .
1.6x on ResNet18, ResNet32, hours on ResNet18/32/50 and

accuracy drop
ResNet50, VGG16 VGG16 on CIFAR10

20

HuffMax: Optimizing Memory Efficiency for Parallel Influence
Maximization on Multicore Architectures

Submitted to ACM International Conference on Supercomputing (ICS’22)

Led by Xinyu Chen from HiPDAC

WASHINGTON STATE

UNIVERSITY

£

Motivation

IM has wide applications
in viral marketing,
politics, public health,
sensor networks,
bioinformatics, etc.

> Influence Maximization (IM) Problem

* Given a graph G=(V,E), find k vertices that can activate maximal
number of vertices in G (NP-hard problem)

* Use MC simulation to get approximate solution

* Both computation and memory intensive on large graphs

5146 9,838 50,997 07,374 172,430
9586‘7

98.95% 99.01%

B

A E10°
(O——

I L 104
I E10°
L 102

DBLP YouTube Skitter Orkut Pokec LiveJournal

DBLP 75K - YouTube Pokec
10K -
50K -
> Our Goals
° : . e 2] ok Characterization

Characterize memory footprint based on graph characteristics -,

=
(=)
(=)

1 425 94.25% 96.24%
87.45%

- 106

09}
(o=}

> SOTA Solution (Minutoli et al., Ripples)

* |Improved performance by parallelization on shared-and
distributed-memory systems
* Huge memory inflation (30x~165x) during computation

Memory usage of
intermediate result on
different graphs

BarPlot: RRR Percentage
= (=23
fel o

Do
(=]

Line: Total Memory Usage (MB)

fe=)
i

0 25000 50000 75000 50000 5000 10000 of intermediate
* Use compression technlques to reduce memory fOOth’Int. 100K — S 5 000k - o JRE result’s distribution
. . 2 000K | on different graphs
* Analysis on compressed data to preserve memory saving. ok _—
' 1,000K -
0K - ! ! ! : 0K -

1 1 1 1
10000 0 5000 10000 15000

0 20000 40000 60000 0000

WASHINGTON STATE

UNIVERSITY

£

System Design

[Huffman Code HJ - @ fmmmmee- *@ 10
4 | ! —<4— openMP-Reduction - 60%
: ! —<— Parallel-M
4 Sample and Compress) l 4 Decode and Query R 8 1 i
— — i e o --%- % openMP-Reduction
block-1 block-b | seed-1 i seed-k g % % Parallel-Merge - 40%
Sampling Sampling | Decode C ! Decode C E 0
0/b Ry 6/b Ry | one by one : one by one <
encode C encode Cy, i query & re- i query & re- _é 1 - 20%
copy CP, copy CP, ! move C, CP i move C, CP -
: : 24 et
OO0 treads OO treads I OO0 treads | OO0 treads Ceeerrzrrziio: .%'/
\) i) % 4 L 0%
! ! — < < < <
y ! Y | Y 0 T T T T T
histogram h |~ ————————————— ’ hist. h |~ ———————— ' hist. h 2 4 8 16 32
HuffMax workflow: sampling-and-encoding, decoding-and-selection Scalability of Parallel Merge and OpenMP reduction
> Block-based sampling-and-encoding » Decoding-and-selection
* Use 15t portion of MC to characterize graphs « Query decoded data
o Kurtosis K for Adaptive Sampling (increase threshold o) « Leverage data locality for partially decoding
o Skewness S to trigger Huffman Coding or fall back to Ripples Parallel merge
* Use OpenMP to parallelize * Reduce global maximum from local maxima (p<<n)
o Swap potential seed to the front * Nearly constant time compared with OpenMP reduction

23

WASHINGTON STATE

UNIVERSITY

£

Evaluation

> Effectiveness of adaptive sampling 10 [~ —p- ke
* Top-1 seeds is NOT affected by increasing o = 10 . \ T ~——_ e Skitter
> Reduction of memory footprint i o
* Up to 45.7% (Skitter) w/o adaptive sampling 97
> Shorten time-to-solution 041
* Upto 28.0% (Youtube) w/ adaptive sampling 0 20 40 60 80

e The first k seeds.
> Strong scalability OBLP
* 9.45x speedup on 64 cores

RBO score

YouTube

30K 4

20K 4

Graph DBLP YouTube Skitter Orkut

Ripples 423 (1.00) 3,143 (1.00) 9,888 (1.00) 45,784 (1.00)
HuffMax1 342 (1.24) 1,780 (1.77) 5,365 (1.84) 30,001 (1.53) 0K 4 momf S o S S e A
HuffMax2 258 (1.64) 1,943 (1.62) 6,447 (1.53) 30,088 (1.52)

1K 4 10K 4

Computation Time (ms)

%]
-
(=]
—
(=
w
%]

Skitter Orkut

Average 36% memory reduction on skew distributed graphs
100K < 1, 000K A

Graph DBLP YouTube Skitter Orkut Pokec Journal

Ripples 0.77 (0%) 616 (0%) 1352 (0%) 17223 (0%) 16447 (0%) 51444 (0%)]
HuffMax1 1.02 (32%) 493 (-20%) 1289 (-5%) 15208 (-12%) 16484 (0.2%) 51555 (0.2%)

HuffMax2 0.68 (-12%) 444 (-28%) 1272 (-6%) - - - - KT h © & e W & & & & & e

500K A

Time-to-solution on tested graphs. Average time shortened is 14.5% on skew-distributed graphs. Scalability of Parallel Merge and OpenMP reduction

