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SystemWorkflowDiagram of cuSZ
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quant.code bitwidth ... Huff‑code
508 00000110 ... 00001010
509 00000101 ... 00000100
510 00000011 ... 00000100
511 00000010 ... 00000001
512 00000010 ... 00000011
513 00000011 ... 00000101
514 00000011 ... 00000000
515 00000110 ... 00001100

range freq.
|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ 442‑‑ 512 76%
|‑‑‑‑‑+ 512‑‑ 582 24%
|+ 582‑‑ 652 0.14%
|+ 652‑‑ 722 0.073%
|+ 722‑‑ 793 0.026%
|+ 793‑‑ 863 0.0095%
|+ 863‑‑ 933 0.0021%
|+ 933‑‑1024 0.00014%

fʐoating҈˕oint re˕resentationoriginal data in ˸nits of eȶPREQUANTIZATION (no RAW)
on ؒؖEؕUANT֬٫AT֬׭N set

!҈˕rediction res˸ʐts in ˸nit ̚eigɭtprediction (no RAW) in ˸nits of eȶ Ѻ˸ncɭangedѻPOSTQUANTIZATION (no RAW)

histograming build and canonize
Huffman codebook

memcpy fixed‑length
Huffman code

deflating Huffman codes

DUAL‑QUANTIZATION
ANDPREDICTION

CUSTOMIZED
HUFFMANENCODING
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System Design
Challenges
Ø Tight data dependency—loop-carried read-after-write (RAW)—hinders parallelization.
Ø Host-device communications due to only considering CPU/GPU suitableness.
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Mixture of Different Parallelisms
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dual-quantization •
histogram • •

build Huffman tree •
canonize codebook • • •

Huffman encode (fix-length) •
deflate (fix- to variable-length) •

decompression
inflate (Huffman decode) •

reversed dual-quantization •

Table 2: Parallelism used for cuSZ’s subprocedures (kernels) in
compression and decompression.

Worth noting: in canonizing codebook
! problem size>max. ÎċĚÏĈ size (1024)
! utilize ÏĚĚĵÙĸµń÷šÙ íĸĚŉĵļ and íĸ÷ÕɚļŨēÏɱɲ
! ՎːļŨēÏńôĸÙµÕļɱɲ: not able
! ÏŉÕµ!Ùš÷ÏÙ�ŨēÏôĸĚē÷űÙɱɲ: expensive
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Adaptive Parallelism

Background Introduction Design Evaluation Conclusion

Tuning Coarse-GrainedHuffmanCodec (Degree of Parallism)

chunk
size
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hacc
1071.8mb 280,953,867 f32

#thread deflate inflate

. . .

. . .

. . .

. . .

. . .

1.4e5 4.6 2.8
6.9e4 5.1 5.1
3.4e4 13.6 12.1
1.7e4 63.1 35.0
8.6e3 65.8 28.1
4.3e3 45.9 14.3

cesm
24.7mb 6,480,000 f32

#thread deflate inflate

1.0e5 11.3 25.0
5.1e4 15.5 37.8
2.5e4 67.1 41.6
1.3e4 55.6 30.7
6.3e3 48.2 19.6

. . .

. . .

. . .

. . .

. . .

. . .

hurricane
95.4mb 25,000,000 f32

#thread deflate inflate

. . .

. . .

9.8e4 5.1 11.0
4.9e4 10.2 9.4
2.4e4 64.6 34.2
1.2e4 57.3 27.7
6.1e3 50.7 17.8

. . .

. . .

. . .

. . .

nyx
512mb 134,217,728 f32

#thread deflate inflate

. . .

. . .

. . .

. . .

1.3e5 4.7 5.9
6.6e4 5.7 6.3
3.3e4 25.1 16.1
1.6e4 69.7 52.4
8.2e3 72.4 42.6
4.1e3 50.0 23.1

. . .

qmcpack
601.5mb 157,684,320 f32

#thread deflate inflate

. . .

. . .

. . .

. . .

1.5e5 4.7 5.1
7.7e4 5.2 6.2
3.8e4 12.9 11.1
1.9e4 72.7 40.3
9.6e3 75.9 29.0
4.8e3 56.0 16.1

. . .

Table 3: Throughputs (in GB/s) versus different numbers of threads launched on V100. The optimal thread number in terms of
inflating and deflating throughput is shown in bold.
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Threads # Tuning
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Canonical Codebook andHuffman Encoding

ca·non·i·cal adj.

[Schwartz and Kallick 1964]

! codebook transformed to a compact manner
! no tree in decoding
! tree build time: 4–7ms

update: 0.8ms
! canonize for 200 us (1024 symbols)

update: incoporated in tree-building

! Encoding/decoding is done in a coarse-grained
manner.

! AGPU thread is assigned to a data chunk.
! Tune degree of parallelism to keep every thread busy.

October 5, 2020 · PACT ’20, Virtual Event · cuSZ · 11 / 20

Background Introduction Design Evaluation Conclusion

Canonical Codebook andHuffman Encoding

ca·non·i·cal adj.

[Schwartz and Kallick 1964]

! codebook transformed to a compact manner
! no tree in decoding
! tree build time: 4–7ms

update: 0.8ms
! canonize for 200 us (1024 symbols)

update: incoporated in tree-building

! Encoding/decoding is done in a coarse-grained
manner.

! AGPU thread is assigned to a data chunk.
! Tune degree of parallelism to keep every thread busy.

October 5, 2020 · PACT ’20, Virtual Event · cuSZ · 11 / 20

GPU Performance Optimization
Canonical Codebook & Huffman Encoding

fine-grained manner:
IPDPS’21: Revisiting Huffman Coding: Toward Extreme 
Performance on Modern GPU Architectures, Tian et al.
IPDPS’22: Optimizing Huffman Decoding for Error-Bounded Lossy 
Compression on GPUs, Rivera et al.
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Performance Evaluation: Throughput and Quality
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cuSZ (as of October 2021):
For compression kernel, 
411× ~ 719× over serial CPU
19.1× ~ 24.8× over OMP CPU

For decompression kernel, 
130× ~ 235× over serial CPU
11.8× ~ 16.8× over OMP CPU

Rate-Distortion
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Adaptive Configuration of In Situ Lossy Compression for 
Cosmology Simulations via Fine-Grained Rate-Quality Modeling 

Published in 2021 ACM Symposium on High-Performance Parallel and Distributed Computing (HPDC’21)

Led by Sian Jin from HiPDAC
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Ø Structured Data
• Generated by mesh-based simulations in parallel ranks
• Different ranks/partitions have different densities of info

Visualization of Baryon Density in Nyx simulation under resolution of 512 × 512 × 512

Ø Previous Solution (Jin et al., IPDPS’20)

• Optimize comp. performance by trail-and-error method
• All partitions use the same compression configuration
• Visual metrics (e.g., PSNR) are insufficient

Ø Our Goals
• Guarantee domain-specific analysis quality

• Power Spectrum
• FFT-based analysis for Universe’s matter distribution
• Target: Ratio of P(k) on reconstructed data and 

original data remains within 1 ± 0.01
• Halo Finder

• Find over-densities in the Mass distribution 
• Target: Minimize the mass change of each halo

• In-situ compression towards optimal compression ratio

Nyx Cosmology Simulation Data

Halo Finder analysis on baryon density.Power spectrum analysis on baryon density.
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Ø Estimation on Compression Ratio

Ø Estimation on Post-analysis Quality Loss
• Predict post-analysis error based on eb combination

• Power spectrum
• Halo finder

Ø Fine-grained Compression
• Different error bounds for different partitions
• Different eb combinations for different time-steps

• Predict compression ratio based on error-
bound combination (e.g., SZ compression)

Our Methodology

Ø Proposed Optimization Strategy
1. Parameter extraction (to estimate compression ratio)

• Mean value of given partition
• Mean value of overall dataset

2. Build Rate-Quality Model
• EB-quality model
• EB-rate model

3. Per-partition error bound optimization 
• Derivatives of rate-quality curves are balanced for all

4. For baryon density
• Perform power-spectrum optimization first
• Perform halo-finder optimization if not satisfied

Fine-grained lossy 
compression control for 
different data partitions. 
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Ø Compression Ratio Improvement
• 1.56x overall improvement (up to 1.73x)
• Capable across time steps
• Smaller partitions higher improvement
• Capable across simulation with different resolutions

CR comparison between our and traditional methods on all 6 fields. 

CR comparison between our and trad. methods 
on multiple redshifts’ data using baryon density. CR improvement with different partition sizes.

Evaluation

We generalize this modeling approach to other HPC applications, such as seismic 
imaging app. RTM. The above figure shows the overall data dumping time of 
different approaches under a similar post-analysis quality with parallel HDF5.

Jin et al., submitted to ICDE’22



Optimizing Error-Bounded Lossy Compression for Three
Dimensional Adaptive Mesh Refinement Simulations

Submitted to 2021 ACM Symposium on High-Performance Parallel and Distributed Computing (HPDC’22)

Led by Daoce Wang from HiPDAC
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Motivation & Background
Ø Adaptive Mesh Refinement
• Increase resolution in regions of most interest 
• Reduce computational and storage overhead
• One of the most widely used frameworks for HPC applications

Ø AMR apps still generate large amounts of data
• For example, Nyx with a resolution of 40963 (i.e., 0.5 × 20483

+ 0.5 × 40963) generate 1.8 TB data per snap-shot

Ø Previous Solution (Luo et al., IPDPS’21)
• Reorder AMR data in 1D based on geometric coordinates
• Cannot adopt 3D compression
• Works only for block-structured AMR with redundant data

Adaptive Mesh Refinement (AMR) on temperature and velocity during 
jetting: grid structure changes with jet progression.

Ø Our Goals
• Adopt 3D compression for each AMR level separately
• Mitigate separate 2D/3D compression (time/storage) 

overhead by pre-processing
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Proposed Approach
Ø Our Hybrid Pre-process Strategies
• Adaptively select the best-fit pre-process strategy based on data 

density of each AMR level
1. Optimized Sparse Tensor Representation (OpST) for low-density data
2. Adaptive k-D Tree (AKDTree) for medium-density data
3. Ghost-Shell Padding (GSP) for high-density data

Opst

AKDTree

GSP
Compression errors of naïve Sparse Tensor (left) and 

OpST (right). Brighter means higher compression error.
Compression errors of zero filling (left) and GSP 

(right). Brighter means higher error.



12

Evaluation

Ø Evaluation on Rate-distortion
• Outperforms naïve 1D baseline & zMesh (up to 3.3x)
• Perform much better than 3D baseline when 

(1) finest level has a relatively low density, or 
(2) decompressed data has a high PSNR

Rate-distortion of timesteps in Run1 (left) and Run2 (right)

Ø Evaluation on Time Overhead
• Up to 75x faster than 3D baseline on Run2 datasets and 

2.4x faster on Run1 datasets
• Throughput degrades on the small datasets (i.e., T3 &T4)

Overall compression/decompression throughput (MB/s) of different approaches with different absolute error bounds.



COMET: A Novel Memory-Efficient Deep Learning Training 
Framework by Using Error-Bounded Lossy Compression 

To appear in 2022 International Conference on Very Large Data Bases (VLDB’22)

Led by Sian Jin from HiPDAC
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• Parameter collection: collect parameters for analysis and updating 
compression configurations

• Gradient assessment: estimate acceptable 𝜎 in the gradient 
• Activation assessment: estimate acceptable error bound for 

compressing activation data
• Adaptive compression: deploy lossy compression

Overview of our proposed memory-efficient DNN training framework - COMET

System Design

Data flow in a sample iteration of training CNNs

Activation Data Storage in Training
• Must being stored until used in back 

propagation
• Long waiting period between 

generating and using the data
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Ø Memory Footprint Reduction
• High compression ratio, up to 13.5x
• Little/no testing accuracy loss

Training accuracy curve comparison between the 
baseline and our proposed framework.

Comparison of accuracy and activation size between baseline training 
and our proposed framework

Memory Usage Evaluation
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Training performance on ResNet-50 with different Batch size

Ø Performance Improvements
• Low compression overhead, significantly lower than 

data migration solution (e.g., 7% on VGG-16)
• High raw throughput (sample/sec) improvement with 

better resource utilization (e.g., 1.24x on ResNet-50)
• End-end performance improvement: train model 

faster (e.g., 2x on AlexNet)

Validation accuracy curve of COMET under different GPU memory 
constraint on AlexNet

Overhead comparison between migration, recomputation

Evaluation



ClickTrain: Efficient and Accurate End-to-End Deep Learning 
Training via Fine-Grained Architecture-Preserving Pruning

Published in 2021 ACM International Conference on Supercomputing (ICS’21)

Led by Chengming Zhang from HiPDAC
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Pattern Based Pruning

Ø Why pruning during training?
• Ever-increasing scale and complexity of DNNs with large-scale

training datasets, leading to challenges to the cost of DNN training
• Backward phase consumes more than 70% of overall training FLOPs

Percentage of FLOPs in forward and backward.

Ø Fined-grained Pattern-based Pruning
• Pruning intermediate sparsity between non-structured pruning 

and structured pruning

Fined grained pattern-based pruning (gray parts are pruned).

Ø Our Goals
• Use pruning during training (PDT)-based method to significantly improve 

end-to-end performance
• Maintain network architecture for high accuracy
• Fully utilize pattern sparsity via multiple system-level optimizations

o Library support: fast sparse matrix conversion, pattern-accelerated 
sparse convolution & communication

o Compiler support: compiler-assisted optimized code generation
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ClickTrain Design

• Stage 1, 2, 3, 4 are algorithm-level design: focusing on high compress ratio and high accuracy
• Stage 5 is system-level design: focusing on improving computation efficiency

1. Fast sparse matrix conversion: through pre-selected sparsity pattern
2. Workload balancing: limit all filters in same layer with same number of un-pruned (non-zero) weights
3. Sparse convolution on GPU: 1D tiling strategy - map each thread block to a 1D row tile of output matrix
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Evaluation

Ø Comparison with SOTA PDT-based Approach
• ResNet32/50: 10× compression ratio with only up to 0.2% 

accuracy drop
• VGG11/13: 8.6×~11.5× compression ratio with up to 0.3%

accuracy drop

• Speedups of 2.2×, 2.1×, 1.9×, 
1.6× on ResNet18, ResNet32, 
ResNet50, VGG16

• Saves 0.16, 0.29, 0.59, and 0.15
hours on ResNet18/32/50 and 
VGG16 on CIFAR10

• Save up to 67% computation time with up to 1.2% accuracy drop

Comparison with SOTA 
PAT-based Approaches



HuffMax: Optimizing Memory Efficiency for Parallel Influence 
Maximization on Multicore Architectures

Submitted to ACM International Conference on Supercomputing (ICS’22)

Led by Xinyu Chen from HiPDAC
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Motivation

Ø Influence Maximization (IM) Problem
• Given a graph G=(V,E), find k vertices that can activate maximal 

number of vertices in G (NP-hard problem)
• Use MC simulation to get approximate solution
• Both computation and memory intensive on large graphs

Ø SOTA Solution (Minutoli et al., Ripples)
• Improved performance by parallelization on shared-and 

distributed-memory systems
• Huge memory inflation (30x~165x) during computation

Ø Our Goals
• Characterize memory footprint based on graph characteristics
• Use compression techniques to reduce memory footprint.
• Analysis on compressed data to preserve memory saving.
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IM has wide applications 
in viral marketing, 
politics, public health, 
sensor networks, 
bioinformatics, etc.
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System Design

Sample and Compress
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HuffMax workflow: sampling-and-encoding, decoding-and-selection

Ø Block-based sampling-and-encoding
• Use 1st portion of MC to characterize graphs

o Kurtosis 𝐾 for Adaptive Sampling (increase threshold 𝜎)

o Skewness 𝑆 to trigger Huffman Coding or fall back to Ripples
• Use OpenMP to parallelize

o Swap potential seed to the front
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Scalability of Parallel Merge and OpenMP reduction

ØDecoding-and-selection
• Query decoded data

• Leverage data locality for partially decoding
• Parallel merge

• Reduce global maximum from local maxima (p<<n)
• Nearly constant time compared with OpenMP reduction
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Evaluation

Average 36% memory reduction on skew distributed graphs

Ø Effectiveness of adaptive sampling
• Top-1 seeds is NOT affected by increasing 𝜎 = 10

Ø Reduction of memory footprint
• Up to 45.7% (Skitter) w/o adaptive sampling

Ø Shorten time-to-solution
• Up to 28.0% (Youtube) w/ adaptive sampling

Ø Strong scalability
• 9.45x speedup on 64 cores

Scalability of Parallel Merge and OpenMP reductionTime-to-solution on tested graphs. Average time shortened is 14.5% on skew-distributed graphs. 


