

HALOC: Hardware-Aware Automatic Low-Rank Compression for Compact Neural Networks

Jinqi Xiao¹, Chengming Zhang², Yu Gong¹, Miao Yin¹, Yang Sui¹, Lizhi Xiang³, Dingwen Tao^{2,3}, Bo Yuan¹

- 1 Rutgers University, 2 Indiana University,
- 3 Washington State University

CONTENT

01 Motivation

02 Method

03 Ablation Study

04 Comparison

Motivation

Low-rank compression is an important model compression strategy for obtaining compact neural network models.

- ❖ The rank values directly determine the model complexity and model accuracy; proper selection of layer-wise rank is very critical and desired.
- ❖ All existing works are not designed in a hardware-aware way, limiting the practical performance of the compressed models on real-world hardware platforms.

Problem Formulation

$$\min_{\{W_i\}_{i=1}^n} \mathcal{L}(\{W_i\}) \quad ext{s.t.} \ \ \sum_{i=1}^n \hbar(rank(W_i)) \leq arepsilon$$

Design Challenges

- Insufficient exploration for the rank space
- The search process of the state-of-the-art rank determination works cannot be extended to consider the hardware performance constraint

❖ How should we set the proper search scope to realize sufficient exploration in the rank space with affordable search cost?

- **Design Principle-1:** To make good balance between search cost and rank granularity, the rank candidates in HALOC is set as the multiples of a constant (typically 32).
- Design Principle-2: For a Tucker-2-format layer, equal rank setting (r1 =r2) can be adopted to simplify
 the rank search process with good approximation performance.}

What is the proper scheme to mitigate the interference between different selected rank settings?

$$\mathcal{L}_{approach} = \sum_{i=1}^{n} MSE(Fmap_{decomp,i}, Fmap_{org,i})$$

$$\mathcal{L}_{weight} = \mathcal{L}_{CE(weight)} + \lambda \mathcal{L}_{approach}$$

Ablation Study

Comparison

Method	Comp.		_	_		Params.	
	Type	Rank	(%)	(%)	(1%)	(↓%)	
ResNet-18	Baseline	-	69.75	89.08	-	-	
HALOC	Low-rank	✓	70.65	89.42	66.16	63.64	
HALOC	Low-rank	✓	70.14	89.38	63.81	71.31	
ALDS	Low-rank	✓	69.22	89.03	43.51	66.70	
TETD	Low-rank	X	-	89.08	59.51	-	
Stable EPC	Low-rank	✓	-	89.08	59.51	-	
MUSCO	Low-rank	X	69.29	88.78	58.67	-	
CHEX	Pruning	_	69.60	-	43.38	-	
EE	Pruning	_	68.27	88.44	46.60	-	
SCOP	Pruning	-	69.18	88.89	38.80	39.30	
MobileNetV	2 Baseline	-	71.85	90.33	-	-	
HALOC	Low-rank	✓	70.98	89.77	24.84	40.03	
HALOC	Low-rank	✓	66.37	87.02	45.65	62.59	
ALDS	Low-rank	✓	70.32	89.60	11.01	32.97	
HOSA	Pruning	_	64.43	-	43.65	27.13	
DCP	Pruning	_	64.22	_	44.75	25.93	
FT	Pruning	-	70.12	89.48	20.23	21.31	

Method	Comp. Type		Top-1 (%)	_		Params.
ResNet-18	Baseline	-	69.75	89.08	-	-
HALOC	Low-rank	✓	70.65	89.42	66.16	63.64
HALOC	Low-rank	✓	70.14	89.38	63.81	71.31
ALDS	Low-rank	✓	69.22	89.03	43.51	66.70
TETD	Low-rank	X	-	89.08	59.51	-
Stable EPC	Low-rank	✓	-	89.08	59.51	-
MUSCO	Low-rank	X	69.29	88.78	58.67	-
CHEX	Pruning	-	69.60	-	43.38	-
EE	Pruning	-	68.27	88.44	46.60	-
SCOP	Pruning	-	69.18	88.89	38.80	39.30
MobileNetV	2 Baseline	-	71.85	90.33	-	-
HALOC	Low-rank	✓	70.98	89.77	24.84	40.03
HALOC	Low-rank	✓	66.37	87.02	45.65	62.59
ALDS	Low-rank	✓	70.32	89.60	11.01	32.97
HOSA	Pruning	-	64.43	-	43.65	27.13
DCP	Pruning	-	64.22	-	44.75	25.93
FT	Pruning	-	70.12	89.48	20.23	21.31

ResNet-20 and VGG-16 on CIFAR-10

ResNet-18 and MobileNetV2 on ImageNet

Comparison

Hardware		ResNet-18				MobileNetV2			
	Method	Top-1 (%)	Top-5 (%)	FLOPs (M)	Throughput (images/s)	Top-1 (%)	Top-5 (%)	FLOPs (M)	Throughput (images/s)
NVIDIA	Original	69.75	89.08	1819.07	4362.1	71.85	90.33	314.19	3877.3
Tesla V100	HALOC	69.75	88.93	553.13	6360.5	70.86	89.77	245.52	3993.6
NVIDIA	Original HALOC	69.75	89.08	1819.07	86.3	71.85	90.33	314.19	112.1
Jetson TX2		70.14	89.38	658.26	151.0	70.80	89.55	240.99	117.0
ASIC	Original HALOC	69.75	89.08	1819.07	121.4	71.85	90.33	314.19	496.3
Eyeriss		70.65	89.42	615.62	247.0	70.83	89.65	229.13	590.2

Table 3: Measured Speedup for compressed ResNet-18 and MobileNetV2 on different computing platforms. Hardware-aware automatic rank selection is adopted in the low-rank compression process.

