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Abstract—Computation of two-electron repulsion integrals is
the critical and the most time-consuming step in a typical parallel
quantum chemistry simulation. Such calculations have massive
computing and storage requirements, which scale as O(N*) with
the size of a chemical system. Compressing the integral’s data
and storing it on disk can avoid costly recalculation, significantly
speeding the overall quantum chemistry calculations; but it
requires a fast compression algorithm. To this end, we developed
PaSTRI (Pattern Scaling for Two-electron Repulsion Integrals)
and implemented the algorithm in the data compression package
SZ. PaSTRI leverages the latent pattern features in the integral
dataset and optimizes the calculation of the appropriate number
of bits required for the storage of the integral. We have evalu-
ated PaSTRI using integral datasets generated by the quantum
chemistry program GAMESS. The results show an excellent 16.8
compression ratio with low overhead, while maintaining 10~'°
absolute precision based on user’s requirement.

I. INTRODUCTION

Today’s scientific parallel high-performance computing
(HPC) applications are able to work with extremely large
amounts of data, typically on the order of terabytes or even
petabytes. The sheer size of the data, however, causes seri-
ous bottlenecks to the calculations and data processing for
extreme-scale applications. In this work, we focus on the
compression of the data generated or used by the quantum
chemistry programs GAMESS, NWChemEx, and QMCPACK,
which are part of three projects in the U.S. Department of
Energy Exascale Computing Project. These quantum chem-
istry programs can generate petabytes of data. The data can
be stored in a parallel file system such as Lustre or recomputed
on the fly. Because of scaling factors, the storage bandwidth
is a serious bottleneck compared with other types of resources
such as caches, memories, or high-speed processors.

An efficient data compressor therefore is essential in order
to significantly reduce the data size while respecting user-
required error bounds. Since lossless compression algorithms
such as GZIP/DEFLATE [1] suffer from limited compression
ratios [2]-[4], we develop an error-bounded lossy data com-
pression method for quantum chemistry simulations.

In quantum chemistry, the researchers need to solve the
Schrodinger differential equation to obtain the wavefunction,

which contains all the information about a chemical system.
The most time-consuming step typically involves computing
the two-electron repulsion integrals (ERIs). The ERI calcu-
lations have enormous computing and storage requirements,
which scale as O(N*) with the size of the chemical system. To
make matters worse, solving the Schrodinger equation requires
an iterative solver with the number of iterations typically
ranging from 10 to 30. Thus, ERIs need to be read from
a disk or recomputed from scratch every iteration, adding
a massive overhead to the quantum chemistry calculations.
Compressing ERIs will enable large quantum chemistry cal-
culations and speed up calculations by reducing the data
footprint if ERIs are stored on disk. In this study, we used the
popular general-purpose parallel quantum chemistry package
GAMESS [5]-[7]. To be specific, all results were based on
the integral datasets generated by ERI programs implemented
in GAMESS.

The work presented here can benefit many quantum chem-
istry methods such as restricted Hartree-Fock, unrestricted
Hartree-Fock, and density functional theory implemented in
virtually all quantum chemistry programs. Furthermore, post-
Hartree-Fock methods need to assemble molecular integrals
from ERIs. Compressing and storing the latter can lead to
considerable speedup of the calculations. Thus we focus on
how to optimize the ERI compression quality.

We encountered three major challenges in our work. First,
the ERI dataset has a complicated data structure; for example,
it consists of blocks of 4D tensors. Second, exploring an
effective pattern-matching approach with the best-fit scaling
metric 1S a nontrivial task because datasets are diverse. Third,
optimizing the quantization method and developing an en-
coding strategy is also nontrivial because it requires in-depth
analysis of multiple related techniques, as well as careful
calculation of the appropriate number of bits required for the
storage bytes outputted by them.

To compress ERIs, we developed the algorithm PaSTRI
(Pattern Scaling for Two-electron Repulsion Integrals) and
implemented it in the data compression package SZ [2], [3].
Compared with the traditional compression algorithms used



by SZ, PaSTRI significantly improves the data prediction,
quantization method, and encoding techniques based on the
specific pattern feature we explored in ERI datasets. The
PaSTRI algorithm is implemented as a generic compression
algorithm that can work for any dataset as long as it exhibits
similar features we explored.

Our contributions are summarized below:

« We developed a sophisticated model to understand how
to compress ERIs efficiently, which is a fundamental step
for developing an efficient compression algorithm.

e We explored the inherent pattern features in the ERI
datasets by different scaling methods.

« We proposed an effective lossy compression technique for
ERI datasets by leveraging an optimized pattern matching
strategy. We also calculated the proper number of bits
required for storing the involved data bytes.

o We implemented a novel lossy compression algorithm
and released it as an open source [8].

o We evaluated PaSTRI performance using GAMESS by
comparing it with two other state-of-the-art lossy com-
pressors, SZ and ZFP.

The rest of the paper is organized as follows. In Section
IT we discuss the related work. In Section III we describe
the key quantum chemistry concept. Section IV covers the
detailed design and implementation of our PaSTRI algorithm.
The benchmarking results are demonstrated in Section V. Our
conclusions are summarized in Section VI. The key notations
used in this paper are summarized in the Appendix.

II. RELATED WORK

Compression of scientific data is an important problem
because of ever-increasing volume of data produced by parallel
simulations. There are two types of data compression algo-
rithms: lossy and lossless. Popular lossless compressors for
scientific datasets are Gzip [1], FPC [9], Zstd [10], and Blosc
[11]. Since scientific data is diverse and dynamic, lossless
compressors suffer from poor compression ratios (1.1~2 in
most cases), as presented in our prior work [2], [3].

Error-bound lossy compressors offer an attractive alterna-
tive because they can significantly improve the compression
ratio, while maintaining the required accuracy provided by an
user. Many different types of lossy compressors have been
proposed, but the most popular are SZ [2], [3], ZFP [12],
FPZIP [13], wavelet-based compressors [14], and ISABELA
[15]. In our previous work [3], we showed SZ and ZFP provide
the best compression ratios for a large variety of HPC applica-
tions. In another previous work [16], we investigated how to
significantly improve the error-controlled lossy compression
for N-body simulations [17], [18]. However, SZ and ZFP are
general purpose compressors focusing on the traditional mesh
datasets. For example, ZFP works particularly well on 3D
datasets, but suffers from the low compression ratio for 1D
datasets [3], [4]. This restriction presents a problem in the case
of the ERIs because they utilize 1D arrays. SZ exhibits a higher
compression ratio on 1D data sets than ZFP, but it does not
completely utilize the data features in the chemistry datasets

to improve the compression ratio. One common technique is
to store data by using a customized real number format, which
may lead to a compression ratio of only approximately 1.5-2.5
times, also depending on the target precision of the numerical
representation of floating-point numbers [19].

To the best of our knowledge, improving lossy compression
based on latent data features for quantum chemistry applica-
tions has not been studied yet and our work fills this gap.

III. TWO-ELECTRON REPULSION INTEGRALS
A. Overview of Quantum Chemistry Simulation

The goal of quantum chemistry methods is to obtain the
wavefunction of a chemical system by solving the Schrodinger
equation. The wavefunction is usually represented as a com-
bination of well-known functions, called basis set functions
(BFs). Solving the Schrodinger equation in quantum chemistry
involves computing different types of integrals. One of the
most important types is ERI:
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where indices 1 and 2 denote the first and second electron;
¢, ¢, ¢r, and ¢; are the BFs; and r is the vector of atomic
coordinates. The number of BFs (V) scales linearly with the
size of the chemical system, while the number of ERIs scales
as O(N*?). The ERI values are actually repulsion energies
between two electron clouds (¢;¢; and ¢r¢;) in the vacuum.

All BFs in a basis set are grouped in shells. Each shell
is a set of BFs that share the same center, the exponential
coefficient, and the total angular momentum (I, + I, + [.).
Thus, each shell with the angular momentum [ consists of
(I + 1)(I + 2)/2 BFs. An example of shell structure is
presented in Fig. 1. Depending on the total angular momentum
value, a shell in chemistry has an unique one-letter name:
s, p,d, f, ... for angular momentum [ = 0,1,2, 3, ...,
respectively. For example, ERI shell block (pd|df) was formed
by p, d, d, f shells.
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Fig. 1. Demonstration of the shell structure for a p shell. The p shell
(I = 1) contains three Cartesian Gaussians. BFs with (Iz,ly,l.) €
{(1,0,0),(0,1,0),(0,0,1)} are denoted as p*, p¥, and p*, respectively.

In practice, the amount of data required to store all ERIs
for realistic chemical systems is too large (more than hundreds
of gigabytes) to fit in the system memory and is usually
recomputed from scratch whenever it is needed. As a result,
ERIs are recomputed about 10-30 times and in some cases up
to 100 times each. This is a very inefficient aproach in terms
of computational costs, and an alternative approach would be
to store ERIs on a hard disk. However, this also is usually not
practical given the size and speed of hard disks. Although
storage space is becoming more and more available, disk-
based quantum chemistry methods are still bandwidth-limited
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Fig. 2. (a) An illustration of ERI (pflpg |pZ pg) on an organic molecule. Each BF of this ERI is a member of a p-type shell, centered on different atoms.
(b) Position of the ERI (pflpf |[pZp%) in the ERI shell block of (pp|pp) type. This block (denoted as ERI[:,:,:,:]) is a 4D tensor, containing all ERIs for

corresponding shells.

even for modern solid-state drives [20]. A possible solution
for both problems is to store ERIs in compressed form. ERI
compression not only can reduce the storage requirements
but also can increase the hard disk bandwidth (the increased
speed is proportional to the compression rate). Moreover, for
relatively small chemical systems, compressed ERIs can even
fit in the system memory, which can dramatically increase the
speed of quantum chemistry calculations.

B. Patterns in ERI Blocks

A part of an actual integral block of (dd|dd) type generated
by GAMESS is shown on Fig. 3. The 4D ERI block (see
Fig. 2) is mapped to a 1D array, preserving the original ERI
sequence as it is used internally in GAMESS data structures.
At first glance, the data shown in Fig. 3 looks random.
In reality, if one divides [0:215] dataset into 6 subblocks
containing 36 elements, one will find that every subblock has
the same pattern. For example, if one compares the first two
subblocks [0:35] and [36:71] shown in Fig. 3(a) and Fig. 3(b),
one will find the same pattern but with different scaling factors
as shown in Fig. 3(c). The deviation and absolute error are
close to zero as shown on Fig. 3(d). To explain this result, we
developed a quantum chemistry model described in the next
paragraph.

According to the Coulomb’s law, the farther two electron
clouds are from each other (see eq. (1)), the smaller will
be ERI value due to the distance 75" = |r; — ro| ™' be-
tween clouds. An important consequence of r~! nature of
Coulomb’s law is that the repulsion energy of the distant
non-overlapping electronic clouds does not depend much on
their actual shape; rather, it depends mostly on the distance
between them. This fact is especially important for Gaussian
BFs and their products. They can be safely considered as
non-overlapping at some distance because of the exponential
decrease of electronic density away from the Gaussian center.
Thus, the shape of each ERI can be attributed to the following
factors:
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where G;; and Gy, are shape factors depending only on the
angular momentum and exponents of the BFs and D, . is a
distance factor depending on the distance between BF centers
7“1_21. Applying eq. (2) to the ERI shell block, we can multiply

out the distance factor because it is approximately the same
for the whole block:

(Pq|uv)|ryy 00 = (Gpg @ Guv)qu,uv(szl)a 3

where G, is a 2D matrix of shape factor products for shells
p and q. Gy, is consequently a product of shells v and v. We
note that the direct product of the shape factors in eq. (3) of
the whole ERI block carries the shape pattern of both (pg]
and |uv) shell pairs. Thus, the shape of the pattern generated
by the |uv) shell pairs repeats itself. Consequently, we can
observe the shape of |uv) shell pairs by just comparing sub-
blocks, where the group size is determined by the |uv) shell
parts. When we plot the first two sub-blocks on the same scale
as shown on Fig. 3(b), we can see similarities in the patterns.
But the similarity becomes more obvious when both curves
are rescaled to match each other, as shown in Fig. 3(c). The
actual difference is negligible between the two curves (see
Fig. 3(c)). This is an important observation, which is exploited
in our compression algorithm PaSTRI.

In order for PaSTRI to exploit the latent pattern in the
data, the user should provide the information about which
BF configuration is being used. After BF configuration is
specified, we will show that it is rather trivial to calculate the
period and determine the pattern. Since the BF configuration
is closely related to the nature of the applications run by the
user, such information would typically be available to the user
even before the run-time.

IV. ERROR-BOUNDED COMPRESSION WITH PASTRI

In this section, we describe our compression algorithm
PaSTRI, and explain how we designed and optimized the
error-bounded lossy compression for the data generated by
GAMESS ERIs. Our double precision floating-point compres-
sion technique solves the following three critical problems:

« Exploration and recognition of potential repeated patterns
with one scaling coefficient in each sub-block.

o Optimization of the quantization in order to minimize
the number of bits representing the patterns, scaling
coefficients, and error correction codes.

o Optimization of encoding technique to significantly re-
duce the storage size.

The pseudocode of our compression algorithm is presented

in Algorithm 1. The first step is reading the input data during
which each block is loaded into a full sized array and screened
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Fig. 3. ERIs can be presented as a 1D array where x-axis is the BF index
and y-axis is the integral value. A part of the generated (dd|dd) ERI block is
shown in (a). Overlapped first two sub-blocks are shown in (b). Rescaled to
match curves are shown in (c). The deviation and absolute compression error
between curves are shown in (d), when the the error bound is set to be 10719,

elements are represented as zeros. The pattern formation
occurs only on full-sized blocks; hence, PaSTRI always works
on the full-sized blocks. We generate and use one such pattern
per block.

The pattern is constructed based on the subblock with
the maximum scaling metric in the whole block (see lines
5-11 in Algorithm 1). As presented in Fig. 3(c), all data
points in one subblock can match the corresponding data
points in another subblock closely as long as we introduce
an appropriate scaling coefficient (or multiplication factor)
between the two subblocks. Hence, the constructed pattern is
also called a scaled pattern (SP) in our work.

We explore various scaling metrics to optimize the pattern-
matching effect (detailed in Section IV-A). After constructing
the pattern in a block, the algorithm compares each subblock
against the pattern and calculates just one scaling coefficient
to represent all the data values in the subblock.

We model the data points in terms of the SP. Each data
point may have a certain deviation from the SP:

data; = S - P; + dev, 4

where data; and P; denote the values of the data point 7 in
the subblock and in the pattern, respectively; dev; refers to
the deviation between the two values; and S is the scaling
coefficient. In an ideal case, the absolute value of dev; never
exceeds the requested error bound (EB). In this case, using
only the pattern and the scaling coefficients is enough to
represent the entire block with the required EB. In more
general cases, however, there could be one or more outliers,
whose deviations are larger than EB. Their dev; values are
stored explicitly (lines 12-16 in Algorithm 1) during the error
correction (EC) step. The saved dev; values will be further
used for reconstructing the original data during decompression.

The compressed file consists of the data points in the
pattern, scaling coefficients and EC values (i.e., EC codes)
as well as a small header holding the block metadata. Hence,

Algorithm 1 PaSTRI Compression Algorithm

1: allocate(ERI(:))
2: for all Blocks do
> Determine the number of sub-blocks and sub-block size:

3:  num_SB <« NBF.NBF

4 SB_size<—N£F~Nl]§F

5. for all Sub-Blocks do

6: Calculate pattern scaling metrics

7:  end for

8 Construct pattern based on the best-fit scaling metric.
9 for all Sub-Blocks do

10: Calculate scale coefficients

11:  end for

12:  for all Points do

13: Calculate error correction (EC) with binSize = 2-E'B.
14: ECQ <+ Quantize(EC)

15: Update maxECQ

16:  end for

> Write the output file
17:  Quantize and write the pattern and the scaling coefficients
18:  Decide encoding method for ECQ
19:  for all Points do

20: Encode and write ECQ
21:  end for
22: end for

the algorithm will quantize the pattern, scaling coefficients,
and error correction codes to realize the compression effect
(lines 17-22 in Algorithm 1).

The compression ratio could be very high because of the
high effectiveness of pattern matching and optimization of
quantization in our PaSTRI algorithm. As an example, for a
(fd|ff) GAMESS data set, each block contains 10 x 6 x
10 x 10 = 6000 data points. There are 10 x 6 = 60 subblocks,
each subblock containing 10 x 10 = 100 points. Using our
method, only 60 pattern points, 100 scaling coefficients and
some error correction codes for the outliers should be stored in
the output file. In an ideal case, this corresponds to storing just
160 numbers instead of 6,000, leading to a compression ratio
of 6000/160 = 37.5. Our algorithm reduces the number of
bits to store for these values based on the given error bound,
pushing the theoretical upper limit of the compression ratio
for (fd|ff) to be even higher than 37.5. For example, many
blocks have few outliers with relatively small EC code values,
leading the compression ratio to be even higher than 100 for
those specific blocks.

Because of space limitations, we do not show the pseu-
docode of the decompression algorithm. In fact, the decom-
pression algorithm is just an inverse procedure of the com-
pression algorithm, including the following steps: (1) assign
the number of subblocks and subblock size; (2) reconstruct
the pattern (P); (3) reconstruct scaling coefficients (S); (4)
calculate [, the local ID inside a subblock; and (5) calculate
decompressed values based on EC codes.

In what follows, we detail our floating-point data compres-
sion technique, including exploration of the best-fit pattern-
scaling metrics, optimization of the quantization method, and
a tailored bit-encoding approach.
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Fig. 4. We have evaluated different pattern-scaling methods. In each method, the scaling coefficient for the current subblock is calculated as a/b. Some
methods may also require sign correction, which either multiplies this coefficient by -1 or not.

A. Exploration of Best-Fit Pattern-Scaling Metrics

We explore multiple pattern-scaling methods and metrics,
in order to minimize the data approximation errors and the
number of outliers. We note that some of these deviations are
naturally occurring as the features of the original data, and
they should remain as they are since they contain valuable
information. The five possible scaling metrics explored in our
study are as follows: ratio of firsts (FR), ratio of extremums
(ER), ratio of averages (AR), ratio of absolute averages
(AAR), and interval scaling (IS), as illustrated in Fig. 4.
Each scaling method selects a particular subblock matching
the corresponding condition as the pattern. FR, for example,
selects the subblock with the largest absolute value of the
first data point as the pattern to be used for matching other
subblocks. Similarly, ER, AR, AAR, and IS mean that the
pattern will be set to the subblock with extremum point (the
data with the largest absolute value in the block), with largest
average value, with the largest average absolute value (i.e.,
the mean value of data points’ absolute values), or with the
largest value range, respectively. Then, the scaling coefficient
of each subblock will be set to the ratio of the corresponding
data value in the subblock to that in the pattern.

The reason we always adopt the largest value for a scaling
method is that the closer the scaling metric is to zero, the
more unreliable the scaling effect we will achieve. We note
that the scaling coefficient of any subblock must be in the
range [-1,1] and typically spans through that range with at
least one value being equal to 1. We will take advantage of
this property(|.S| < 1) during quantization to reduce the size
of the output (detailed in Section IV-B). We also note that
the scaling coefficients can be positive or negative, implying
that we have to deal with the sign of the coefficients properly.
Otherwise we may encounter over-large EC values (up to twice
as large as the extremum of that block), significantly reducing
the compression ratio.

We evaluated all five candidate scaling metrics and noted
that the ER metric always leads to the best and most reliable
matching effect, as presented in Fig. 4. The reason is that
the extremum data point in the whole block represents the
amplitude of the data set, which reflects the scaling correlation
between different subblocks most precisely. Unlike the ER
metric, FR results in much higher matching deviations in that
the first data points’ values can be close to zero. Moreover,
ER has the lowest computation complexity. Specifically, AR
and AAR both need to compute a mean value (O(N)), and
IS needs to cope with the sign in the operation, introducing

extra overhead.

B. Optimization of Quantization Method

The main objective of the quantization is to convert the
error correction (EC) values from floating-point data to integer
numbers, such that the integer encoding techniques can be
applied to reduce storage size. In our study, we first investigate
the general quantization equations and then explore the best-fit
quantization method based on them.

We denote the quantized versions of pattern, scaling coeffi-
cients, and EC values as PQ, SQ, and ECQ, respectively. We
denote the number of bits required for them as P,, Sp, and
ECy, respectively. For simplicity of description, we mainly
use ECQ as an example to present how we perform the
quantization. The derived equations will also be suitable for
SQ and PQ, in addition to ECQ.

The quantized values can be calculated by the following
equation with a rounding function:

ECQ = round(EC/ECQbpinsize) (5)

The data reconstructed from the quantized values (i.e., ECQ)
actually represent slightly different values than their originals
(i.e., EC), where the difference is the quantization error
(Equation (6)). This quantization error is represented by AEC
and is bounded by ECQpinsize/2-

EC = ECQ x ECQpinsize £ AEC, 6)

The range of the quantized values can be calculated by using
the range of EC and FCQpinsize as follows:

ECQ'r'ange = Tound(EC'r'ange/ECQbinsize)7 (7)

where ECrqnge = 2 X |ECeyz| and ECey is the extremum
value of EC in the current block.

Considering a symbol-by-symbol, fixed-length encoding to
be designed for the quantization, we can calculate the number
of bits required per quantized value as follows:

ECb = [lOgg(ECQTangeﬂ. (8)
Rearranging Equation (7) with the definition of EC,qnge:

Ecbinsize ~ Ecrange/ECQ'range =2x |ECezt|/2ECb

= |ECep| x 27 F T, ®
After quantization, Equation (4) becomes
DecompVal = SQ X SQrinsize X PQ X PQpinsize (10)

+ECQ X ECQbinsizc .



In order to guarantee the decompressed values to be within
EB distance to the original value, ECQp;nsize 1S chosen to be
2 x EB, where EB is the given error bound. Consequently,
the EC term should accommodate for both the deviation term
in Equation (4) and the quantization errors from S and P.
Plugging in the P and S versions of eq. (6), we get

DecompVal = (S+ AS) x (P £ AP)

+ECQ X ECQbinsizE
=SXxP+SXxAP+PxAS+EASXAP
+ECQ X ECQuinsize-

Our ultimate goal is to have the compression error, that

is the difference between the original value and the decom-
pressed value, to be less than EB for every point in the block:

1)

EB >max( |CompErr| )=max( |Val— DecompVall), (12)

Plugging in Equations (4) and (11) cancels S x P:

EB > max(|Dev+ S x AP+ P x AS £ AS x AP
_ECQ X ECQbinsize‘ )

We can rewrite this equation without the absolute values
and the max operator by considering the worst case, in which
all variables get their extremum values and +’s are selected
to make ECQ have its maximum range :

ECQext X ECQbinsize +EB> |D6'Ue:ct| + |Sea:t X (Ap)ext‘
+|Peact X (AS)ext| + |(AS)eth X (AP)eact‘~

Some of the variables in this equation are constant within a
block. Since PaSTRI works at the block level, we can consider
them as constants for the purpose of our calculations. EB
and Dewv,,; are such constants in the equation above. We also
know that ECQpinsize = 2 X EB and S+ = +1. Keeping in
mind that (AS)ext = Sbinsize/2 and (Ap)ext = Pbinsize/zv
we can use S and P versions of Equation (9) to represent AS
and AP in terms of S, and P, as follows:

13)

(14)

(As)emt = Sbinsize/2 ~ ‘Seztl X 2731)72 = 2751)727 (153)

(Ap)ezt = -F)binsize/2 ~ |Pezt| X 27Pb72, (ISb)

where |P..;| is constant within a block. FCQ.,; stands
for the maximum integer representable by the EC, which
is approximately 27¢»~1. Plugging in all the constants and

Equations (15) and (9) into Equation (14), we have
281« 9 x EB 4 EB > |Devegt| 4 |Pewt| x 277072 (16)
+|Pe;ct| X 2_Sb_2 + |Pe;ct| X 2_Sh_Pb_27

When S, and P, are not close to zero, the last term becomes
much smaller in comparison with the others, so it can be
dropped. We can also divide both sides by EB, and we end

up with the following relationship between Sy, P, and ECy:
25 > (|Devewt|/EB) — 1+ |Powt| x 27772 /EB an
+|Pewt| x 27572 /EB.

For simplicity, we rewrite this equation by merging the
constants to have one coefficient per term as follows:

2EC > 0y + Co x 27 4 03 x 275, (18)
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Fig. 5. Demonstration of the quantization affects on the scaled pattern.

where C = (|Deveyt|/EB) — 1 and Cy = C5 = |Peye|/4 X
EB). Analyzing this equation, we can deduce that EC}, should
be large enough to cover the deviations from the SP (the term
C1), and the quantization errors of the pattern and the scaling
coefficients (the terms with Cy and Cs). If S, and P, are too
large, meaning that the pattern and scaling coefficients have
very high resolution, then the term C; dominates, and the error
correction should still be able to cover the first term. So, the
lower bound of EC} could be calculated as follows:

lower_bound(ECy) = [log2(Ch)]. (19)

We can see this in Fig. 5, when the quantized SP converges
to its precise values, the range required to be covered by ECQ
converges to the deviation. On the other hand, if the pattern
and scaling coefficients have very low resolution, this means
they are represented by fewer bits, the terms with Cs and Cj
get more important, possibly causing EC} to increase.

It is not an easy task to find an optimal solution for S, P,
and EC} just from this relationship. Even if we assume the
encoding algorithm to be fixed size and symbol by symbol,
calculating the optimal number of bits is still too complex.
It is a nonlinear integer optimization problem as follows:
According to the criteria in Equation (17), we can minimize
the number of total output bits:

TotalBits = SB_size X Py + num_SB x Sy
+NOL x (1DIndexBits + EC})

where NOL stands for Number of Outliers. Although one
can solve this problem, the computational cost will be undesir-
ably high, and the assumptions for the encoding, specifically
the fixed-length part, may not be necessarily true.

The main problem here is to optimally distribute the range
covered by EC to the maximum deviation along with the
quantization errors of S and P, as indicated in Equation (17).

One can limit the quantization errors on both PQ and SQ
by using Ppinsize = Sbinsize = 2 X B, which would result in
good resolution on both PQ and SQ, but unnecessarily large
Sp. As an example, assuming EB = 107!°, some typical
ranges for P and EC are [-1077,1077] and [-107%,1078]
respectively. S values are always spanning the range of [—1, 1].
EChinsize s always equal to 2 x EB. One can calculate Sy,
P, and EC}, as 33, 10, and 7, respectively. Consequently, for
some blocks the size of the scale coefficients at the compressed
output can be significant.

We use a much more practical approach in PaSTRI as
follows. We limit the quantization error on only PQ by using

(20)



Prinsize = 2x EB. Using | P.,:|, we can calculate P, by using
the P version of Equation (8). Then we use S, = P, during
the compression. Consequently, FCj;, will be calculated as it
is supposed to be by using Equation (8).

With this method, (AP).,; = EB since we limited the
quantization error on PQ. Additionally, the largest repre-
sentable PQ value is ~ 2721, Consequently |P.,;| = 27~ x
2x E'B. Using these in addition to S, = P, and plugging them
into Equation (14), we end up with the following:

ECQext X ECQbinsize + EB > |D€Ue:ct| + ‘Sext X EB|

. @1
+]2 X 2 X EB X (AS)egt| + [(AS)ext X (AP) et

Following similar steps to our deductions as before, while
keeping in mind that S, = P, we end up with:

281 w2 x EB 4+ EB > |Deveyt| + |1 x EB]

(22)
+12P7t x 2 x EB x 2771

Rearranging and then dividing both sides by EB, we get:

27 > (|Devest| — 1) 4 3/2. (23)

EC should accommodate for only 2 more bins compared
to the best case, where it needs to accommodate for C; bins
(Equation (19)). In most cases requiring this will not cause an
increase in ECy, letting it stay at its optimal value.

We have shown that by enforcing the maximum EB quan-
tization error on PQ and then selecting S, = P,, we have
decreased S, to a significantly lower value while having almost
no adverse effects on ECj. Consequently, our practical method
boosts the compression ratio significantly while requiring no
computationally expensive steps.

C. Optimization of Encoding

Although precisely estimating the proportions of SQ, PQ,
and ECQ in the compressed output file without the encoding
phase is hard, ECQ should occupy the largest size in the output
file according to our results, thanks to our optimizations during
quantization. Additionally, SQ and PQ do not have suitable
distributions to exploit during the Encoding stage. Conse-
quently, we adopt an optimized symbol-by-symbol fixed-
length encoding method for SQ and PQ, and a variable-length
one for ECQ.

We start by analyzing the ECQ value distribution of a real
compression execution where thousands of blocks have been
compressed in Fig. 6. We group the ECQ values into different
bins according to the minimum number of bits required to
represent the range [—|ECQual|, +|ECQual|]. For example,
the value O requires at least 1 bit, -1 and 1 require at least 2
bits, £[2, 3] requires 3 bits, +[4, 6] requires 4 bits, and so on.
In general, i bits are required to represent the value range of
+[2072, 2171, All values in that range reside in the ith bin. The
y-axis represents the total frequency of the values that reside in
each bin. We will use this representation to analyze the ECQ
distribution to find a good variable-size encoding method for
our purposes. Additionally, we also calculate the maximum bin
number required per block (denoted as ECY pq.) and store it
in the compressed output file.

Frequency
10 104 103 102 101 10° 10° 104 103 102 101 100

[N
[N

Number of Bits
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o
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Fig. 6. ECQ value distribution of different block types and of the total data
set from a real workload.

According to their ECQ ranges, we observe four types of
data blocks (Fig. 6):

e Type 0: All ECQ values are 0, so there is no need to
keep them in the output file. Even though EC} e, = 1,
regardless of the encoding tree used, this will be handled
as a special case, and no bits will be spent to encode
ECQ.

e Type I: Most ECQ values are 0, but there are also 1’s or
-1’s. Consequently, 1 or 2 bits are enough to represent
any ECQ value within this block: EC} qe = 2

e Type 2: The bits required to represent ECQ values is
limited to a few (typically < 6), and the vast majority
of them are concentrated in lower number of bits.

e Type 3: Many bits are required to represent ECQ values
(> 6), and there is a significant presence of larger bits.
ECYy, maz typically does not exceed 22 for EB = 10710,

Please note that the type of the block can be determined
from the value of EC} pqq-

The vast majority of the blocks (70-80%) can be categorized
as Type 0 or Type 1. Consequently, fixed-length encoding
works well enough for these types of blocks. On the other
hand, Type 2 or 3 blocks have fewer occurrences, but larger
ECh maz. If a fixed-length encoding is used, a large ECQ
value may cause a large E'Cj r,q. the encoded length of all
values to increase, which would be wasteful because there
are more small values than large ones. In order to solve this
problem, we have evaluated multiple different variable-length
encoding methods.

We represent each encoding algorithm we have tried as
encoding trees in Fig. 7. The leaf nodes in an encoding tree
indicate the value being encoded. Starting from the top, the
values on the branches to reach such leaves indicate the bit
stream used to encode that value. For example, in Tree 2,
(Fig. 7) 0 is encoded as 0, 1 as 10, and -1 as 110.

The encoding methods we have evaluated are as follows:

e Tree I: The value 0 is encoded by using only 1 bit (which
is bit 0), and the rest of the values are encoded as the bit 1
followed by just the ECQ value encoded in ECj 44 bits.
With this tree, we aim to focus on encoding 0’s as short
as possible, since they are the most frequent values. This
method results in reasonably good compression ratios.
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Fig. 7. Different symbol-by-symbol and variable-length encoding algorithms
which we have evaluated.

e Tree 2: We put +1 and -1 at higher locations in the
tree, leaving the rest requiring 3+FEC}, bits to represent.
Greedily putting +1 and -1 as high as possible pushes
the rest of the values further down in the tree, requiring
2 more bits to encode them compared with Tree 1.
Consequently, the compression ratio is degraded because
the occurrences of 1 are not frequent enough to justify
such rearrangement.

o Tree 3: We rearrange the tree to push “Others” higher,
and hence they require 1 less bit. Consequently, the
compression ratio is improved.

e Tree 4: The depth of a value in the tree depends on its
bin in Fig. 6. Each leaf contains power-of-2, namely 2°,
elements in it. In order to obtain the encoded bit patterns,
the branches are traversed regularly; and when a leaf is
reached, i extra bits are used to represent the value. For
example, 0 is encoded as 0, -1 is encoded by 10 followed
by 0 for 1 and 1 for -1, and +£[2, 3] is encoded by 110
followed by 2 bits that uniquely distinguished the value
among -3,-2,2,3. We note that this tree ends up being
even worse than Tree 1.

e Tree 5: This is a smart tree that has two different
behaviors depending on the EC} q, value. If it is 2, then
the ECQ range is just [-1,1], and we need not consider
any other value. Consequently O is encoded by 0, 1 by
10 and -1 by 11. For larger EC}, ;.44 values, it works the
same as Tree 3. This tree results in the best compression
ratio due to its adaptive behavior tailored for different
block types.

Since the five trees exhibit similar processing speed as we
characterized, we select Tree 5 for the implementation of
PaSTRI.

One can suggest employing Huffman encoding, which gen-
erates the optimal encoding tree by counting the frequencies
of values occurrences. This approach has three shortcomings
compared with our algorithm:

o It requires storing a dictionary: Since our encoding trees
are fixed, they are a part of the implementation and do
not need to be included in the compressed data.

e The ECQ range can be huge, with many single-
occurrence values. Consequently, huge number of bins
would be required for constructing the Huffman tree.
Additionally, such single-value occurrences degrade the
compression ratio of Huffman encoding, because Huff-
man encoding requires high-frequency of repeated values
to reduce the size effectively.

« It requires generating the dictionary, and the compression
cannot continue until this process is completed. In order
to amortize for the size of the dictionary, thousands of
blocks should be used to create it first, thus serializing
the workload and slowing the whole process. On the other
hand, PaSTRI is highly parallelizable thanks to its block-
level scope.

On the other hand, our Tree 5 uses the optimal tree when
ECh maez = 2, and captures the most important aspects of all
the optimal trees for other ECj ,q, values, where the most
frequently occurring values are encoded with fewer bits.

During the encoding stage, PaSTRI decides whether to use
sparse representation or non-sparse representation (without
indices) to represent the ECQ data. This adaptive behavior
also helps boosting compression ratios.

PaSTRI is highly parallelizable, since it has almost no
non-parallelizable parts, and it has very small granularity of
parallel workloads. Patterns can be considered as symbols in
a dictionary, but due to differences in between blocks, each
block requires its own pattern. Consequently, there is no need
to bundle blocks together to generate a dictionary. Instead,
PaSTRI stores one pattern per block, allowing each block to be
compressed and decompressed completely independent from
each other. Each block, typically, can contain a maximum
of 10000 elements with the total data size of 80 kB (for
the largest configuration that is commonly used, (ff|ff)),
which makes each parallelizable workload to be very small
for both compression and decompression, resulting in very
homogeneous workloads for parallel systems.

V. PERFORMANCE EVALUATION

In this section, we present the evaluation results for double
precision floating point data compression with PaSTRI, com-
pared to the state-of-the-art lossy compressors SZ and ZFP.

A. Experimental Setting

We evaluate our results using data sets that correspond to
tri-Alanine, Benzene and Glutamine molecules (Fig.8) with
(dd|dd) and (ff|ff) BF configurations, which are represen-
tative in the quantum chemistry calculations. We have chosen
d and f BFs because they are commonly used, their total
data size is large and their ERI calculations are costly. In
our experiments, we have also used d and f hybrid BF
configurations ((df|fd), etc.) but we have reported only the
pure configurations for simplicity while presenting the general
trends in our results. Metrics for hybrid configurations follow
very similar trends of the metrics of pure configurations.

Since full sizes of such quantum chemistry data sets are
impractically large, we have sampled them down to at least 2
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(a)
Fig. 8. The molecules used in the benchmarks: (a) Benzene, (b) Glutamine,
and (c) tri-Alanine.

GB in size for each BF configuration. We have used Z-Checker
[21] infrastructure to evaluate our results, using different error
bound (EB) settings of 1072, 107!° and 10~'! (Fig. 9).
Typical GAMESS applications require EB to be around 10~1°.

In addition, we run a parallel experiment with up to 2,048
cores, in order to assess the I/O performance gain when
facilitated with the lossy compression techniques. We conduct
our experiments on the Bebop supercomputer [22] using up
to 2,048 cores (i.e., 64 nodes, each with two Intel Xeon
E5-2695 v4 processors and 128 GB of memory, and each
processor with 16 cores). The storage system uses General
Parallel File Systems (GPFS). These file systems are located
on a raid array and served by multiple file servers. The I/O and
storage systems are typical high-end supercomputer facilities.
We use the file-per-process mode with POSIX I/O [23] on
each process for reading/writing data in parallel. '

B. Evaluation Results

As shown in Fig. 9, our compressor PaSTRI exhibits much
higher compression ratios than both SZ and ZFP with different
error bound settings. SZ and ZFP reach 7.24x and 5.92x
double precision floating point data compression ratios, re-
spectively, when the error bound is set to 10719, while PaSTRI
gets the compression ratio up to 16.8X. The key reason is that
PaSTRI exploits latent patterns in the data, and employs an
optimized quantization and encoding methods additionally.

We break up the structure of storage by PaSTRI as follows:
PQ and SQ constitute around 20-30% of PaSTRI’s output data
size, whereas ECQ constitutes around 70-80%. A tiny portion
of the output data, typically less than 0.5%, consists of other
bookkeeping bits, for example P, and EC}.

PaSTRI runs much faster than SZ and ZFP on both compres-
sion and decompression, due to its optimized design and avoid-
ing unnecessary computations with its simple yet effective
encoding method as explained in Section IV-C. Specifically,
the compression rate of PaSTRI is greater than 660 MB/s
on average, whereas it is 308.5 MB/s for ZFP and 104.1
MB/s for SZ (see Fig. 9(c)). PaSTRI achieves over 1110
MB/s decompression rate because of its few decompression
operations, whereas ZFP and SZ suffer from 260.5 MB/s and
148.6 MB/s, respectively (see Fig. 9(d)).

Rate-distortion is a commonly used metric to evaluate the
compression ratio against the overall distortion of the data.
Specifically, the term rate here refers to bit rate, which denotes
the number of bits used per input data value. This rate can

'POSIX I/O performance is close to other parallel I/O performance such
as MPI-IO [24] when thousands of files are written/read simultaneously on
GPFS, as indicated by a recent study [25].

be calculated as 64/compression_ratio. The distortion of data
is generally assessed by using the peak signal-to-noise ratio
(PSNR), defined as 20 log;( ”“l%\/%”ge), vs./here.MSE refers
to the mean squared error. Having a rate-distortion curve to
be close to the upper-left corner means a lower bit rate (or
higher compression ratio) and a lower distortion of data. We
present the rate distortion of double precision floating-point
data compression for Alanine (dd|dd) in Fig. 9(b). We can
see that PaSTRI is far better than the other two solutions
with respect to the rate-distortion metric. Specifically, with
the same PSNR (data distortion), the size of the compressed
data generated by PaSTRI is half less than the size of the
data generated by SZ or ZFP. All other data sets follow the
same trend as Alanine (dd|dd) in terms of PSNR vs. Bitrate,
in which PaSTRI is far superior.

We evaluate the I/O performance by employing the com-
pression techniques in the data dumping and data loading as
shown in Fig. 10. We do not show the I/O time of writ-
ing/reading the original data without compressors because they
take extremely long time (more than thousands of seconds). As
shown in the two figures, PaSTRI leads to much higher perfor-
mance (2X or higher) than the other two compressors mainly
because of significantly reduced size of data to write/read.

On single dataset, PaSTRI also achieves much better re-
sults (e.g., higher compression ratios and higher execution
performance) than the other two compressors. On average,
PaSTRI achieves an approximately 2.5x better compression
ratio while maintaining very low overhead because of the
low time complexity (O(N)) of our efficient pattern-matching
method and built-in variable-length encoding design. It also
achieves a significantly better PSNR vs. Bitrate curve, along
with superior parallel execution performance.

We observed that compression ratios do not have large
variations for different molecules and BF configurations for
each compression algorithm. On the other hand, compression
and decompression rates have larger variations. There does
not seem to be a clear trend for different BF configurations
or molecules in terms of compression ratios, rates and decom-
pression rates. PSNR vs. Bitrate curves have similar trends for
all our data sets, with some minor shifts, but PaSTRI always
results in a much more favorable curve. MPI execution times
are also always in favor of PaSTRI, while being dominated
by the disk access times for reading and writing. Since the
execution does not take much time, the advantage of PaSTRI
depends on its superior compression ratios.

Finally, we have performed a comparison between the
original GAMESS infrastructure and PaSTRI infrastructure in
terms of total computation time required. In fig. 11, Original
represents generating the data every time it is needed using
original GAMESS functions, whereas PaSTRI infrastructure
represents generating the data once, then compressing it once
by using PaSTRI, and then decompressing it whenever it is
needed again. About 87% of GAMESS Hartree-Fock compu-
tation time is spent on computing the integrals, which is signif-
icantly slower ((dd|dd): 322.82 MB/s, (f f|f f): 622.81 MB/s)
than PaSTRI decompression (around 1GB/s for EB = 10719).



Compression Ratios

m alanine, (dd | dd) m alanine(ff| f) benzene,(dd|dd)

N
]

benzene, (ff| ff) m glutamine,(dd|dd) m glutamine, (ff| ff)

25 W Average =

15

|11 R W v o T worm
Sz ZF| Sz ZF| Sz ZF|

P PaSTRI P PaSTRI P PaSTRI
EB=1E-11 EB=1E-10 EB=1E-9
(a)

Compression Rates (MB/s)
1000
800
6

4
2 Ll il il
o mnnmmm (TR ] Iniin
Sz ZF Sz ZF Sz ZF|

S 8 9o
S & ©

P PaSTRI P PaSTRI P PaSTRI
EB=1E-11 EB = 1E-10 EB =1E-9
(c)

PSNR vs Bitrate
230

——S7
220
210 ZFP
PaSTRI *
@ 200 e ~
=
= 190
Z 180
a
170
160
0 2 4 6 . 8 10 12 14
Bitrate
(b)

Decompression Rates (MB/s)

1600
1400

1200

1000

800

600

400

208 wenenmn HNRCHNN s NICHNN [T (] II III
sz zF z zF z zF

P PaSTRI S P PaSTRI S: P PaSTRI
EB=1E-11 EB = 1E-10 EB = 1E-9

Fig. 9. Comparison of PaSTRI versus SZ and ZFP. (a,c,d): Metrics are calculated for different compression algorithms (SZ, ZFP, PaSTRI), using different
data sets (Alanine, Benzene, Glutamine) with different EBs (10~11, 1019, 10~9). (b): PSNR vs. Bitrate graph for Alanine (dd|dd)

30
25
20
15
10

: ] I 1

DLDLDLDLDLDLDLDLDLDVLDLDIL

W Write to Disk
Read Original

m Compress
W Decompress

Elapsed Time (min)

SZ  ZFP PaSTRI SZ  ZFP PaSTRI SZ = ZFP PaSTRI SZ = ZFP PaSTRI

256 512 1024 2048

Number of Cores

Fig. 10. Parallel Performance of Dumping (D) and Loading (L) Alanine data
(dd|dd) to PFS with 256, 512, 1024 and 2048 cores

o 1.00

£ M Calculate ERI = Compress

F 080 m Decompress

3 0.60

= 040

£ 020 I | B | I I I

S 000 e i - .=
EB= EB= EB = EB= EB= EB=
1E-11  1E-10 1E-9 1E-11  1E-10 1E-9

PaSTRI infras.
(dd|dd)

PaSTRI infras.
(ffIff)

Original Original

Fig. 11. Total computation time needed to obtain integral data. Disk access
times are not included, as in both GAMESS and PaSTRI infrastructures the
data is assumed to fit into the memory.

Consequently, it is possible to achieve significant speed-ups by
using PaSTRI infrastructure instead of the original GAMESS
even for relatively small data reuse values. In fig. 11 we have
assumed that the same integral data is used for a total of 20
times, which is a conservatively acceptable value for ERIs.

VI. CONCLUSIONS

We proposed a fast compression algorithm for two-electron
repulsion integrals used in quantum chemistry. We first per-
formed an in-depth analysis of the latent pattern features of
the integral data. We then designed a novel error-bounded
lossy compression algorithm called PaSTRI, which utilizes
the mined patterns. In PaSTRI, we optimized the number

of bits required for storing integral data, patterns, scaling
efficients, and error correction values. All the steps have
O(N) complexity, where N is the number of the points per
block. We implemented PaSTRI in the SZ package designed
for compressing data generated by scientific applications. We
then evaluated PaSTRI by using integrals data generated by
the quantum chemistry package GAMESS. Our benchmarks
show that PaSTRI achieves an excellent 16.8X compression
ratio with low overhead, while maintaining 1010 absolute
precision based on the requirement of the corresponding
researchers. This work not only directly benefits the exascale
computing chemistry project GAMESS, but it can be used for
compressing any data with pattern features. In the future, we
plan to extend it to suit more chemistry applications.
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APPENDIX
TABLE I
LIST OF ABBREVIATIONS USED IN THE PAPER
Notation Description Notation Description
BF basis set function Nﬁf/k ;| size on four dimensions of BF
EB error bound ERI electron repulsion integrals
SB sub block SP scaled pattern
EC error correction ECQ quantized EC values
PQ quantized pattern values SQ quantized scale values
Py/Sy/EC), # bits required for pattern, scale, and error correction
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