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Abstract—Because of the ever-increasing execution scale of
scientific applications, how to store the extremely large volume
of data efficiently is becoming a serious issue. A significant
reduction of the scientific data size can effectively mitigate the I/O
burden and save considerable storage space. Since lossless com-
pressors suffer from limited compression ratios, error-controlled
lossy compressors have been studied for years. Existing error-
controlled lossy compressors, however, focus mainly on absolute
error bounds, which cannot meet users’ diverse demands such
as pointwise relative error bounds. Although some of the state-
of-the-art lossy compressors support pointwise relative error
bound, the compression ratios are generally low because of
the limitation in their designs and possible spiky data changes
in local data regions. In this work, we propose a specialized,
efficient approach to perform compression based on the pointwise
relative error bound with higher compression ratios than existing
solutions provide. Our contribution is threefold. (1) We leverage a
specialized transformation scheme that can transfer the pointwise
relative-error-bounded compression problem to an absolute-
error-bounded compression issue. We also analyze the practical
properties of our transformation scheme both theoretically and
experimentally. (2) We implement the logarithmic transform in
two of the most popular absolute-error-bounded lossy compres-
sors, SZ and ZFP. (3) We evaluate our solution using multiple
real-world application data across different scientific domains
on a supercomputer with up to 4,096 cores and 12 TB of
data. Experiments show that our solution achieves over 1.38X
dumping and 1.31X loading performance over the second-best
lossy compressor, respectively.

I. INTRODUCTION

Today’s scientific research is in badly need of an efficient
data compressor due to the extremely large volumes of data
produced in high performance computing (HPC) simulations
and applications. Hardware/Hybrid Accelerated Cosmology
Code (HACC) [1], for example, is a well-known cosmology
simulation code that simulates the motion and interaction of
up to 3.5 trillion particles. leading to petabytes of data to
store. Some climate research models, such as Community
Earth Simulation Model (CESM), need to run large ensembles
of simulations, generating hundreds of terabytes data in tens
of seconds. On the other hand, the improvement in parallel
file systems (PFS) cannot catch up with the increasing need
of I/O. Some I/O systems [2], for example, suffer from 8
GB/s of parallel writing performance with 32 burst buffers [3].
Therefore, considerably reducing the size of scientific data is

critical to the significant improvement of I/O performance for
extreme-scale scientific simulations.

Lossless compressors ([4], [5], [6]) can be used to alleviate
the heavy I/O burden without any distortion of the data.
However, they suffer from limited compression ratios (usually
no more than 2:1 [7]) because of the random mantissas in
scientific floating data. Error-bounded lossy compressors have
been considered better alternatives under this circumstance,
because they can significantly reduce the data size while
keeping the distortion of data based on users’ error-controlling
demand, guaranteeing an effective post-analysis using the
decompressed data for scientific application users.

In comparison with the absolute error bound that has been
widely used to control the data distortion by existing state-
of-the-art lossy compressors [8], [9], pointwise relative error
bound is significant for many scientific applications. Unlike
absolute-error-bounded compression (i.e., the difference be-
tween each decompressed data value and its corresponding
original value must be bounded within a constant number),
pointwise relative-error-bounded compression means that the
compression error of each data point should be bounded within
a constant percentage of its data value. That is, the smaller the
data value, the lower the absolute error bound to be applied on
the data point. Obviously, the pointwise relative error bound
can preserve more details in regions with small values. On the
other hand, some application users demand pointwise relative
error bound based on the physical meaning of the simulation.
According to cosmologists (such as the users and developers of
HACC and NYX), for example, the higher a particle’s velocity
is, the larger the compression error it can tolerate.

Pointwise relative error bound is much tougher to deal
with than absolute error bound according to the principles of
lossy compressions. SZ [8], [10], for example, predicts the
value for each data point based on the consecutiveness of
the dataset and control the compression errors by a linear-
scaling quantization method. Since the bin size is fixed for
each data point, the compression errors can be bounded within
a constant value (i.e., absolute error bound). However, such a
design cannot adapt to the demand of pointwise relative error
bound, which requires diverse error controls on different data
points. In order to enable SZ to support point-wise relative
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error bound, a blockwise strategy was proposed [12]: the entire
data is split into multiple non-overlapped data blocks each
adopting an absolute-error-bounded compression where the
error bound is calculated by using the minimal value in the
block. This strategy may significantly degrade the compression
ratio, especially when the minimal values in some blocks are
far smaller than other data values in those blocks, because
the absolute error bounds would be too small to get a high
compression ratio. The developers of ZFP [9] proposed an
approximate compression mode (called precision) to achieve
a similar effect with pointwise relative error bound. However,
it cannot fully respect the pointwise relative error bound (to be
presented later) because the data transformation and embedded
encoding adopted in the compression are designed for the
optimization of rate distortion, that is, peak signal-to-noise
ratio (PSNR) vs. bit-rate (the number of bits used to represent
one data point on average).

In this paper, we search for a specialized transformation
scheme that can convert a pointwise relative-error-bounded
compression problem to an absolute-error-bounded compres-
sion problem. Specifically, we want to find a mapping function
that can transform the original dataset to another data domain,
such that the pointwise relative error bound in the original
data domain is equivalent to the absolute error bound in
the transformed domain. Then, one can adopt any state-of-
the-art lossy compressors (such as SZ and ZFP) supporting
absolute error bounds to perform the compression based on
the user’s pointwise relative error bounding demand. The
context of lossy compression has its specific constraints on the
mapping function: continuity, bijection, dealing with floating
point representation accuracy limits instead of real numbers.
Considering all these constraints, the logarithmic mapping is
a suitable mapping function for this problem. This solution
coincides with previous works using logarithmic change to
measure relative error in economics and ocean observation
[13], [14], [15], [16]. However, while the natural base log-
arithm is a good choice in their research context, we show
that for state-of-the-art lossy compressors the base 2 is the
most efficient base. In addition, although Campbell et al.
[16] have adopted the relationship between relative error and
logarithmic absolute error for statistical error measurement,
we further formalize this transformation problem according to
those constraints and show that the logarithmic mapping is the
unique possible mapping for lossy compression.

The contributions of this paper are as follows.
• We formalize the transformation problem between abso-

lute error bound and relative error bound in the context
of lossy data compression mathematically. We also solve
this problem and find the unique mapping function, which
is consistent with using logarithmic change for error
measurement.

• We investigate the impact of the selection of different
logarithmic bases on the compression quality for SZ and
ZFP, respectively. We prove that various bases lead to the
similar compression results theoretically.

• We propose an efficient pointwise relative-error-bounded

lossy compression algorithm by combining the logarith-
mic data transform scheme and state-of-the-art absolute-
error-bounded compressors. Specifically, we integrate the
transformation scheme into both SZ and ZFP.

• We perform the evaluation using multiple datasets pro-
duced by real-world large-scale HPC applications across
different scientific domains. Experiments show that our
solution can significantly improve the compression ratio
based on a particular pointwise relative error bound, com-
pared with four other state-of-the-art lossy compressors
with comparable compression and decompression rates.
Parallel experiments with up to 4,096 cores show that
both the overall data dumping performance (i.e., com-
pression + data writing) and data loading performance
(i.e., data reading + decompression) can be improved by
38% and 31%, respectively, compared with the second-
best compressor.

The reminder of this paper is organized as follows. In
Section II, We discuss the related work. In Section III,
we derive an efficient transformation scheme based on the
logarithmic function for pointwise relative error bound and
analyze its significant properties theoretically. In Section IV,
we investigate the impact of the logarithmic base selection
on the compression ratios, under our designed transformation
scheme with SZ and ZFP, respectively. In Section V, we
present how to support pointwise relative error bound by
combining our data compression scheme and the existing
absolute-error-bounded lossy compressors. In Section VI, we
present the experimental results based on multiple real-world
scientific HPC application data across different domains with
up to 4,096 cores. in Section VII, we conclude our work and
briefly look at future work .

II. RELATED WORK

Many of the existing lossy compressors, such as Jpeg [17]
and Jpeg2000 [18], cannot do the compression based on a
user-defined error bound, which, however, is strictly required
by many scientific applications. Error-controlled lossy com-
pression is proposed in order to significantly reduce the size
of data while keeping the distortion of the decompressed data
to a tolerable range. However, such compressors are usually
designed and optimized on maximizing the compression ratio
given absolute error bounds or PSNR. In this section, we
discuss the state-of-the-art lossy compressors in terms of point-
wise relative error bound. We will present our transformation
scheme in the next section and analyze the impact of our
approach on the two lossy compressors thereafter.

Although many state-of-the-art lossy compressors provide
users with pointwise relative error bounds, they are not de-
signed as efficiently as absolute error bounds. ISABELA [19]
suffers from large computational overhead on sorting as well
as large storage overhead on the sorting index, yielding a low
compression rate and ratio. The precision mode in ZFP [9]
cannot strictly respect error for certain portions of data, and
hence it usually does not meet the requirements of scientific
analysis. The PWR mode in SZ [8], [12] has slightly higher
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performance, but it cannot achieve a high compression ratio
because it divides the whole dataset into small blocks and
conservatively sets the pointwise relative error bound accord-
ing to the data with the smallest value in each block. FPZIP
[20] seems the best among existing compressors. However, it
accepts only precision as a parameter, which makes it hard for
users to select or tune this parameter given an error bound.
Moreover, the compression ratio exhibits piecewise features
over error bounds, which may not be able to maximize the
compression ratio in a given error bound.

In this paper, we propose to use a specialized transformation
scheme that can transform a state-of-the-art absolute-error-
bounded lossy compressors to a state-of-the-art pointwise
relative-error-bounded lossy compressor. This transformation
scheme is generic and can work as a preprocessing stage and a
postprocessing stage for any lossy compressor theoretically. In
our experiments, it successfully turns two state-of-the-art lossy
compressors, SZ and ZFP, representative of prediction-based
compressors and transform-based compressors, to pointwise
relative-error-bounded lossy compressors that are better than
their own pointwise relative-error-bounded mode. Further-
more, since SZ is a top lossy compressor in terms of absolute
error bound, this scheme turns it into a very good pointwise
relative-error-bounded lossy compressor that exhibits much
more efficiency than the existing poinywise relative-error-
bounded lossy compressors.

III. AN EFFICIENT TRANSFORMATION SCHEME FOR
POINTWISE RELATIVE ERROR BOUND

In this section, we leverage a specialized data transformation
scheme that can convert the pointwise relative-error-bounded
lossy compression problem to an absolute-error-bounded lossy
compression problem. That is, under our designed mapping
scheme, any absolute-error-bounded lossy compressor can be
enabled to support pointwise relative error bound such that
more details can be preserved in the regions with small
data values. In what follows, we first derive an efficient
data mapping/transformation scheme and then prove that the
mapping method is the unique solution to the data conversion
between the absolute error bound and pointwise relative error
bound. We also analyze how to adjust the absolute error bound
for the lossy compression to strictly respect the pointwise
relative error bound, considering the impact of the possible
round-off errors raised during the mapping.

A. Theories of the Transformation Scheme

The research problem can be formulated as follows: find
a bijective and continuous function (denoted by f ) that can
map the original dataset (denoted by x) to another domain
f(x) such that the pointwise relative error bound (denoted
by br) can be mapped to an absolute error bound (denoted
by ba) using another mapping function g (i.e., ba = g(br)).
Note that the mapping function (g) used to convert the error
bound is different from the mapping function (f ) used to
transform the data, which will be discussed later in more
detail. Moreover, the mapping function f should be bijective

because we need to map the data reconstructed by the absolute-
error-bounded compressor back to the original data domain
(i.e., x=f−1(f(x))) during the decompression. It also needs
to be continuous because otherwise the mapping function may
affect the continuity of the original data, degrading the data
prediction accuracy in turn. With such a continuous bijective
mapping function, the original data can be mapped to another
domain and then compressed by the corresponding absolute
error bound ba. In the decompression phase, the data will be
mapped back to the original domain via the corresponding
inverse function, and the pointwise relative error bound will
automatically hold. We derive Theorem 1 in order to search
for the most effective mapping function.

Theorem 1: Given a dataset whose data values are denoted
by x, Equation (1) is a sufficient condition of transforming it to
another data domain by a mapping function f , such that if the
transformed data are compressed with an absolute error bound
g(br), the corresponding inverse mapping of the decompressed
transformed data will always be bounded by the pointwise
relative error bound br in the original domain.

f−1(f(x) + g(br))− x
x

= br (1)
Proof: The pointwise relative-error-bounded compression

regarding the mapping function can be formalized as
|f−1(f(x) + ε)− x|

|x|
≤ br (2)

where ε∈[−g(br), g(br)] refers to compression error, f is
the target forward-mapping function to be applied before the
compression, and f−1 refers to the inverse function to be
applied after the decompression.

Since f and f−1 are bijective and continuous, they must be
strictly monotonic. Without loss of generality, we denote x as a
positive value, and f(x) is a monotonically increasing function
(in fact, if x < 0, it can be mapped to −x first and then we can
derive the same result by the following derivation). Since f is
a monotonic function and x > 0, we have f−1(f(x)+ε) must
be always in interval [f−1(f(x)−g(br)), f−1(f(x)+g(br))].

In order to reach the maximum compression ratio, the abso-
lute compression error ε and the pointwise relative compres-
sion error are expected to be equal to their bounds (i.e., g(br)
and br) at the same time. This leads to f−1(f(x)+g(br))−x

x = br

and f−1(f(x)−g(br))−x
x = −br. Although g is defined only

in [0, +∞) because of the pointwise relative error bound
br ≥ 0, we can merge the two equations to Formula (1) if
we introduce a definition g(x) = −g(−x)(∀x < 0) without
loss of generality.

This theorem indicates that the pointwise relative error
bound can be transformed to an absolute error bound as long
as Equation (1) holds for the data-mapping function f and the
error-bound-mapping function g. In what follows, we derive a
theorem (Theorem (2)) to find the corresponding functions.

Before proposing the theorem, we recall a critical lemma
based on the theory of functional equations.

Lemma 1: The exponential function is the only continuous
and nonconstant function that satisfies f(x+ y) = f(x)f(y),
where x and y are both real numbers.
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Theorem 2: f(x) = logbase x + C is the unique mapping
function that satisfies the Equation (1), where base > 1 and C
= f(1) ∈ R. In this situation, the mapping function g of the
absolute error bound is ba = g(br) = logbase(1 + br).

Proof: We rewrite Equation (1) and apply f to both sides

f(x) + g(br) = f((1 + br)x).

Let us set x = 1. Then the function g can be represented as
g(br) = f(1 + br)− f(1). Let y = 1+ br, and substitute g in
the above equation. Then we have

f(x) + f(y)− f(1) = f(xy)

Let h(x) = f(x) − f(1), then we can derive h−1(x) =
f−1(x+ f(1)). According to the above equation, we can get:

h(x)+h(y) = f(x)+f(y)−2f(1) = f(xy)−f(1) = h(xy).

Applying h−1 to the left-most and right-most sides of the
above equation, we get the following equation:

h−1(h(x) + h(y)) = xy = h−1(h(x))h−1(h(y)).

Let x′ = h(x) and y′ = h(y). The equation turns out to
be h−1(x′ + y′) = h−1(x′)h−1(y′). Denoting h−1(1) = base
leads to h−1(x) = basex according to Lemma 1. Thus, h(x) =
logbase x. Let f(1) = C. We have f(x) = h(x) + f(1) =
logbase x+C. Accordingly, ba = g(br) = f(1+ br)− f(1) =
logbase(1 + br).

Without loss of generality, C can be set to 0 because of
two factors. On the one hand, C just adds a static shift to
the mapped data, which means that it has no effect on the
prediction accuracy of the Lorenzo predictor. On the other
hand, more perturbations may be introduced to the result
because of round-off errors if C is nonzero. Therefore we
fix C = 0 in our implementation.

As previously mentioned, the logarithmic function is used
for relative error measurement in some scientific domains such
as economics and ocean observations. The theory presented in
this paper, in addition, further indicates that the logarithmic
function family is the unique mapping function for transfor-
mation between relative error and absolute error in the context
of lossy data compression.

B. Round-off Error

Because of the inexact representation of floating-point arith-
metic, we cannot produce exact calculation results. Thus, there
is also round-off error while applying the mapping function
f and f−1. When this error is taken into consideration, the
pointwise relative error bound may no longer be respected. In
this subsection we analyze how to control this error.

Now that we have our mapping function f(x) = loga x
and its reverse f−1(x) = ax. To respect the point-wise error
bound, we have the following lemma.

Lemma 2: The absolute error derived in Theorem 2 should
be adjusted to b′a = loga(1 + br)−maxx | loga x|ε0 to respect
the pointwise relative error bound considering round-off errors,
where maxx | loga x| is the maximum absolute value of the
mapped data loga x and ε0 is the round-off error introduced
to f(x) because of machine precision.

Proof: For any data point x, its decompressed value xd
will be

xd = f−1(f(x)(1+ε0)+ε) = a(1+ε0) loga x+ε = xaε0 loga x+ε

where ε ∈ [−b′a, b′a] is the compression error of data in
the transformed domain (i.e., logarithmic data domain). Sim-
ilar to the analysis above, in order to respect the error
bound, the absolute error bound b′a should be set as follows:
aε0 loga x+b

′
a ≤ 1+br for any data point x. Therefore, we have

b′a = g′(br) = loga (1 + br)−maxx |logax|ε0.
We set ε0 to machine epsilon in our implementation. This

setting can already have all of the data points strictly bounded
within the specified error bounds during the compression in
our evaluation, as will be presented later.

IV. IMPACT OF BASE SELECTION

In this section, we investigate the impact of base selec-
tion for the logarithmic mapping solution in Theorem 2.
Specifically, we prove that different logarithmic bases lead
to similar compression results; therefore, simply changing the
logarithmic base cannot improve the compression quality.

A. Impact of Base Selection on SZ

1) Review of SZ: To understand the impact of base selection
on SZ, we need to review the principle of the SZ compressor.
SZ [8] is a prediction-based lossy compressor. It consists of
three stages during the compression. In the stage I, it predicts
each data value in the dataset according to some deterministic
prediction model. Then, it applies a linear-scaling quantization
on the prediction errors such that all the floating-point values
could be converted to a set of integer quantization codes. In
stage II, SZ adopts a customized Huffman encoder constructed
in terms of the quantization codes and performs the compres-
sion. Stage III applies GZIP to the encoded data to further
improve the compression ratio. This step is optional depending
on how hard the data is to be compressed and the error bound
specified. During the decompression, SZ first decompresses
the data by GZIP and the Huffman encoder and then recovers
the data by the prediction model with the decoded prediction
errors. For the data prediction, SZ adopts the Lorenzo predictor
[21] with a limited number of neighbors1 by default since more
neighbors may cause degraded prediction accuracy because of
the impact of the decompressed values. 2

2) Logarithmic Base Analysis: We notice that the selection
of different bases for the log mapping function does not affect
clearly the compression quality of SZ. In absolute terms, we
have the following lemma.

Lemma 3: For SZ lossy compressor with Lorenzo predictor
and linear-scaling quantization, different bases will lead to the
same prediction accuracy, if the arithmetic operations lead to
the exact results.

1For the data prediction of SZ, there is 1 neighbor used per data point in
1D dataset, 3 neighbors per data point in a 2D dataset, and 7 neighbors per
data point in a 3D dataset.

2Note that during the compression phase, the neighboring data used by
the predictor have to be the decompressed values in order to avoid error
propagation during the decompression phase.
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Proof: Suppose a mapping function f(x) = loga x is used
to compress the same 1D dataset. Then the quantization index
i should satisfy Equation (3), when predicting the next point
x1 by the previous data point x0.

loga x1 = loga x0 + q loga(1 + br) (3)

Thus, q can be solved as follows.

q =
loga x1 − loga x0
loga (1 + br)

=
loga

x1

x0

loga (1 + br)
= log1+br

x1
x0

Therefore, the quantization index is independent of the map-
ping base a if the arithmetic operations lead to exact results.
This also holds for 2D and 3D Lorenzo predictors since the
quantization index can be computed as follows.

q2D = loga x01+loga x10−loga x00−loga x11

loga (1+br)
= log1+br

x01x10

x00x11

q3D = loga x001+loga x010+loga x100+loga x111

loga (1+br)

− loga x000+loga x011+loga x101+loga x110

loga (1+br)

= log1+br
x001x010x100x111

x000x011x101x110

However, the floating-point arithmetic operations may cause
nonexact results because of round-off errors, introducing cer-
tain deviation to the distribution of quantization index codes.
Fortunately, we can derive a strict bound for the quantization
index with different bases as follows.

Theorem 3: Given two coding integer values (q0 and q1) at
ith quantization index bin based on two different bases, the
difference in between is bounded by | log1+br (1− br) − 1|,
3| log1+br (1− br) − 1|, 7| log1+br (1− br) − 1| for the 1D,
2D, and 3D Lorenzo predictions, respectively.

Proof: Let us start with the 1D case. Without loss of
generality, assume that the decompressed data of two bases
are x1d and x1d′ . Then the difference of their quantization
indices q0 and q1 can be derived according to Lemma 3.

q0 − q1 = log1+br
x1
x0d
− log1+br

x1
x0d′

= log1+br
x0d′

x0d

Since (1−br)x0 ≤ x0d ≤ (1+br)x0 and (1−br)x0 ≤ x0d′ ≤
(1 + br)x0, we have

log1+br
(1− br)x0
(1 + br)x0

≤ q0 − q1 ≤ log1+br
(1 + br)x0
(1− br)x0

.

It can be simplified to

log1+br (1− br)− 1 ≤ q0 − q1 ≤ 1− log1+br (1− br).

As for the 2D and 3D Lorenzo predictions, the difference
involves 3 and 7 multiplication of decompressed data. Thus
they are bounded by

log1+br (
1− br
1 + br

)3 ≤ q0 − q1 ≤ log1+br (
1 + br
1− br

)3

log1+br (
1− br
1 + br

)7 ≤ q0 − q1 ≤ log1+br (
1 + br
1− br

)7,

which corresponds to the given bounds in the theorem.

B. Impact of Base Selection on ZFP

1) Review of ZFP: Similarly, we first go over how ZFP
works as an error-bounded lossy compressor and the metrics
to assess the effectiveness of its orthogonal transform. ZFP
[9] adopts a largely different method to compress a floating-
point dataset compared with SZ. Briefly, it involves two critical
steps: an invertible blockwise transform on the input data
and an embedded encoding for the transformed coefficients.
Specifically, it divides the whole dataset into independent
blocks, aligns the exponents, and turns the floating-point repre-
sentations into fixed-point representations. Then, ZFP applies a
data transform in each block. Finally, it performs an embedded
encoding on the transformed data (or transformed coefficients).
Such a design obtains an optimized rate distortion (i.e., PSNR
vs. bit-rate), although it may not maximize the compression
ratio given an error bound because it conservatively overes-
timates the errors in the maximum bit-plane computation for
the purpose of strictly respecting the error bound.

The transform is the most critical part in ZFP compression,
and it is the key factor of the final compression quality. Its
effectiveness can be determined by two metrics, decorrelation
efficiency and coding gain, as introduced in [9], [22]. There-
fore, we analyze the impact of the logarithmic base selection
according to the two metrics, defined as follows.

Definition 1: Considering that each entry in a block is a
random variable, the decorrelation efficiency η and coding gain
γ can be defined by

η =

∑
i σ

2
ii∑

i

∑
j σ

2
ij

γ =

∑
i σ

2
ii

n(
∏
i σ

2
ii)

1
n

, (4)

where σij is the element in the ith row and jth column of
the covariance matrix of transformed coefficients and n is the
number of elements in a block.

2) Logarithmic Base Anaylsis: With these two metrics, we
can analyze the impact of different logarithmic bases on the
quality of ZFP compression. We have the following lemma.

Lemma 4: Decorrelation efficiency η and coding gain γ will
be unchanged across different logarithmic bases.

Proof: For simplicity, we only discuss 1D cases. The
multi-dimensional cases can be deducted accordingly. To make
the analysis more general, we use A to denote any generic
transform matrix.

Denote X = (X1, . . . , Xn)
T as random variables of origin

data in each block, V = (V1, . . . , Vn)
T as the random

variables of coefficients. The data variable will turn out to
be Y = logaX = lnX

ln a after the logarithmic transformation.
Correspondingly, the coefficients variable will be V = AY .
More specifically, let us denote A = (A1, . . . , An)

T , where
Ai is the ith row vector of A. Then the covariance between
any of two variables can be computed by

σij = cov(Vi, Vj) = E(ViVj)− E(Vi)E(Vj)

= E(Y TAT
i AjY )− E(Y )AT

i A
T
j E(Y )

= E((
lnX

ln a
)TAT

i Aj
lnX

ln a
)− E((

lnX

ln a
)T )AT

i AjE(
lnX

ln a
)

=
1

(ln a)2
[E((lnX)TAT

i Aj lnX)− E(lnX)TAT
i AjE(lnX)].
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Thus, the logarithmic base a serves only as a multiplicand
factor. During the computation of η and γ as shown in
Equation (4), 1

(ln a)2 can be extracted as a common factor of
both numerator and denominator and thus canceled. Therefore,
the base selection will not affect the decorrelation efficiency
and coding gain of ZFP.

As such, we have proved that the ZFP transform will
work equally well on different logarithmic bases. In fact,
different logarithmic bases just apply different multiplicands
to the transformed coefficients. Under these circumstances, the
compression quality of ZFP will hardly change, as will be
validated in Section VI.

V. IMPLEMENTATION

In this section, we discuss how to implement the pointwise
relative error bound by combining the logarithmic data trans-
form scheme and the existing state-of-the-art absolute-error-
bounded lossy compressors.

The pseudo-code of the logarithmic-mapping-based lossy
compression in terms of pointwise relative error bound is
presented as Algorithm 1.
Algorithm 1 LOGARITHMIC-MAPPING BASED LOSSY COM-
PRESSION FOR POINT-WISE RELATIVE ERROR BOUND
Input: a dataset (denoted by D), user-specified point-wise relative error bound
br
Output: compressed data stream in form of bytes
1: b′a = loga(1 + br) − maxx | loga x|ε0; /*Calculate the absolute error

bound in the transformed data domain*/
2: signs[‖D‖] = {0}, P = 1
3: for (each data point Di in the dataset D) do
4: if (Di == 0) then
5: di = log2(min)−2b′a, where min refers to the minimum floating-

point value; /*set di to be two error bounds less than the lower-
bound exponent of the data value range*/

6: else
7: if (Di > 0) then
8: Compute di = log2(Di); /*Perform the data mapping*/
9: else

10: Compute di = log2(−Di);
11: P = 0, sign[i] = 1;
12: end if
13: end if
14: end for
15: if (P==0) then
16: compress signs with gzip
17: end if
18: Perform the compression of the transformed dataset {di} by a lossy

compressor (such as SZ or ZFP) using the absolute error bound b′a;
19: Output the compressed data stream in bytes;

In the algorithm, we first calculate the required absolute
error bound (denoted by b′a) based on the given pointwise
relative error bound br, with a consideration of the possible
round-off errors to be introduced during the mapping operation
due to the machine epsilon (line 1), according to Lemma 2.
Then, the algorithm performs the data transformation based on
the logarithmic function (line 2∼8). If the original data point’s
value is equal to 0, we will map it to the lower-bound exponent
of the floating-point data value range minus 2b′a. Specifically,
the minimal positive values of a single-precision number and a
double-precision number are 2−2

7

=2−127 and 2−2
11

=2−1024,
respectively, because their IEEE 754 representations [11]

adopt 1+7 bits and 1+11 bits to represent a signed exponent,
respectively. In the decompression phase, the data values
decompressed by the absolute-error-bounded compressor in
the transformed domain will be back-transformed to 0, as long
as their reconstructed values are lower than or equal to the
minimal positive values minus b′a. Such a design can ensure
that almost all the zero-value data points will be decompressed
to an exact zero number, unlike the SZ 1.4 that may reconstruct
the zeros to be close-to-zero numbers approximately. After
the data transformation step (line 3∼8), the algorithm will
perform the absolute-error-bounded lossy compression over
the transformed dataset, by leveraging an existing compressor
such as SZ and ZFP (line 19).

VI. EVALUATION

In this section, we compare our approaches with four
state-of-the-art lossy compressors providing pointwise relative
error bounds: ISABELA [19], SZ PW REL mode (denoted
SZ PWR) [8], [12], ZFP precision mode (denoted ZFP P)
[9], and FPZIP [20]. We also demonstrate the effectiveness of
pointwise relative error from the perspective of visual quality
by comparing it with the absolute-error-bound mode in SZ
(SZ ABS). To distinguish from the existing SZ and ZFP
compressors, we name our approaches SZ T and ZFP T for
SZ and ZFP with our transformation scheme, respectively.

A. Experiment Setup

We conduct our experimental evaluations on a supercom-
puter [23] using up to 4,096 cores (i.e., 128 nodes, each
with two Intel Xeon E5-2695 v4 processors and 128 GB
of memory, and each processor with 16 cores). The storage
system uses General Parallel File Systems (GPFS). These file
systems are located on a raid array and served by multiple
file servers. The I/O and storage systems are typical high-
end supercomputer facilities. We use the file-per-process mode
with POSIX I/O [24] on each process for reading/writing data
in parallel. 1 The HPC application data are from multiple
domains, namely, HACC cosmology simulation [1], CESM-
ATM climate simulation [27], NYX cosmology simulation
[28], and Hurricane ISABEL simulation [29]. Each application
involves many simulation snapshots (or time steps). We assess
only meaningful fields with relatively large data sizes (other
fields have constant data or too small data sizes). Table I
presents all the 101 fields across these simulations. The data
sizes per snapshot are 3.1 GB, 1.9 GB, 1.2 GB, and 3 GB for
the four applications, respectively.

TABLE I
SIMULATION FIELDS USED IN THE EVALUATION

Application # Fields Dimensions Examples
HACC 3 280953867 velocity x, velocity y, velocity z

CESM-ATM 79 1800×3600 CLDHGH, CLDLOW · · ·
NYX 6 512×512×512 dark matter density, temperature · · ·

Hurricane 13 100×500×500 CLOUDf48, Uf48 · · ·

1POSIX I/O performance is close to other parallel I/O performance such
as MPI-IO [25] when thousands of files are written/read simultaneously on
GPFS, as indicated by a recent study [26].
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B. Impact of Base Selection

We choose two representative fields, dark matter density
and velocity x, in NYX to demonstrate the influence of differ-
ent logarithmic bases on the final result. Dark matter density
is a typical use case for pointwise relative error. A large
majority (84%) of its data is distributed in [0, 1], and the
rest is distributed in [1, 1.378E+4]. Simply applying the
absolute value will result in huge distortion when users need
to focus on the densest data in [0, 1]. Velocity x, on the other
hand, has usually large values with positive/negative signs
indicating directions. Pointwise relative error is also needed
when accurate directions of the 3D velocity are required for
each point. We evaluate 3 most widely used logarithmic bases:
2, e and 10 on both SZ and ZFP on these two fields.

TABLE II
COMPRESSION RATIO OF DIFFERENT BASES FOR SZ T ON 2 FIELDS IN

NYX
fields dark matter density velocity x

log bases 2 e 10 2 e 10
0.0001 2.033 2.036 2.036 4.235 4.202 4.254
0.001 2.724 2.725 2.585 7.647 7.509 7.482
0.01 3.842 3.843 3.847 13.047 13.115 13.131
0.1 6.298 6.249 6.307 20.788 18.171 20.079
0.2 7.619 7.595 7.562 22.623 23.090 24.635
0.3 8.529 8.427 8.541 29.696 28.799 29.361

Table II shows the compression ratio of SZ with six different
pointwise relative error bounds ranging from 10−4 to 0.3.
According to the table, the different logarithmic bases impact
only 1% and 3% on the final compression ratio on average
for the two fields, respectively. This variance is less when
the pointwise relative error bound is small because of larger
number of quantization intervals and tighter bound (Theorem
3) on the difference of quantization index at that time, resulting
in a low ratio in frequency difference of the Huffman tree.
When the pointwise relative error bound grows, the variance
becomes slightly larger because of the smaller number of
quantization intervals and the looser bound.
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Fig. 1. Rate distortion of different bases for ZFP T on 2 fields in NYX

As mentioned, we prove that different bases do not affect
the decorrelation efficiency and coding gain of ZFP. However,
since ZFP aims at optimizing the rate distortion given an
absolute error bound, it may not keep the same compression
ratio because of the different maximum bit-plane computed
in embedded coding. Thus, we show the point-wise relative
error based rate distortion of ZFP T in Figure 1, in which the
PSNR is calculated based on point-wise relative errors with
the value range being set to 1. From this figure, we can see

that the different bases make little difference in terms of point-
wise rate distortion, which is a result that is consistent with
our analysis.

TABLE III
PERFORMANCE OVERHEAD OF DIFFERENT BASES ON 2 FIELDS IN NYX

fields dark matter density velocity x
log bases 2 e 10 2 e 10

pre-processing time(s) 1.67 1.59 2.23 2.18 2.08 2.74
post-processing time(s) 1.73 2.30 7.11 2.04 2.52 7.35

Table III shows the overhead of preprocessing and post-
processing steps in our transformation scheme under dif-
ference bases. The overhead in preprocessing comes from
two aspects: logarithmic mapping on the original dataset and
lossless compression on the signs if the dataset is not always
positive or negative. Correspondingly, the postprocessing step
decompresses the signs if necessary and performs the inverse
mapping. Field dark matter density has faster preprocessing
and postprocessing time compared with velocity x because
its data are always positive and omit the sign compression.
Base 10 performs badly during postprocessing because it does
not have fast implementation in a standard C library such as
base 2 (exp2) and base e (exp). Also it is not competitive on
preprocessing, so we do not use it. Although base e is faster
than base 2 while preprocessing, it is much slower during the
postprocessing step. Thus we use logarithmic base 2 in our
implementation, and we fix it for both SZ T and ZFP T in
the rest part of evaluation.

C. Strict Error Bound Test

In this subsection, we check the maximum pointwise rela-
tive errors of our approach and state-of-the-art approaches. As
mentioned, ZFP overpreserves the absolute error bound and
thus may not be competitive with other compressors given
an absolute error bound. Therefore, we select SZ T as our
final solution to maximize the compression ratio, given the
pointwise relative error bound. However, we still compare
ZFP T with the precision mode of ZFP to demonstrate that
our transformation scheme can also be used to improved
transform-based compressors such as ZFP.

The results of three most widely used pointwise error
bounds (0.1, 0.01, 0,001) are shown in Table IV. Columns
4 and 9 (settings) indicate the parameters we choose for
each compressor. Columns 5 and 10 show the percentage
of decompressed data that is strictly bounded by the given
error bound. The notation ≈ indicates that most of the data is
bounded by the error bound, but there exists little data (usually
much less than 0.01%) that exceeds the bound, likely because
of round-off errors. The notation * in the table indicates
that the compressor modifies original 0 in the data. The
compressors without the notation * keep the original 0 as it is,
such that the decompression has no loss on the values 0. The
columns Avg E and Max E indicate the average and maximum
pointwise relative errors, respectively. From this table, one can
clearly see that only FPZIP and the compressors under our
transformation scheme (SZ T and ZFP T) can strictly respect
the given error bound and keep the original zeros as they
are. Furthermore, the SZ T compressor also yields the best
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TABLE IV
POINTWISE RELATIVE ERROR BOUND ON 2 REPRESENTATIVE FIELDS IN NYX

dark matter density velocity x
pwr eb type name settings bounded Avg E Max E CR settings bounded Avg E Max E CR

1E-3
prediction

ISABELA 1E-3 ≈ 100% 4.6E-4 ≈ 1E-3 1.35 1E-3 ≈ 100% 4.7E-4 ≈ 1E-3 1.71
FPZIP -p 19 100% 3.4E-4 9.8E-4 2.28 -p 19 100% 3.5E-4 9.8E-4 6.15

SZ PWR -P 1E-3 ≈ 100%* 1.2E-4 ≈ 1E-3 1.87 -P 1E-3 ≈ 100% 4.5E-4 ≈ 1E-3 6.77
SZ T -P 1E-3 100% 4.7E-4 9.9E-4 2.72 -P 1E-3 100% 4.9E-4 9.9E-4 7.58

transform ZFP P -p 26 99.93%* 5.7E-5 2.9E+4 1.5 -p 20 99.94% 2.3E-5 1.5E+2 3.4
ZFP T -p 1E-3 100% 2.2E-5 2.1E-4 1.81 -p 1E-3 100% 2.3E-5 2.1E-4 3.58

1E-2
prediction

ISABELA 1E-2 ≈ 100% 4E-3 ≈ 1E-2 1.91 1E-2 ≈ 100% 2.9E-3 ≈ 1E-2 2.42
FPZIP -p 16 100% 2.7E-3 7.8E-3 2.89 -p 16 100% 2.8E-3 7.8E-3 10.79

SZ PWR -P 1E-2 ≈ 100%* 1.2E-3 ≈ 1E-2 2.46 -P 1E-2 ≈ 100% 4.5E-3 ≈ 1E-2 11.08
SZ T -P 1E-2 100% 4.8E-3 1E-2 3.85 -P 1E-2 100% 5E-3 1E-2 13.49

transform ZFP P -p 23 99.94%* 5.7E-4 2.5E+5 1.75 -p 16 99.91% 3.4E-4 7.7E+2 5.42
ZFP T -p 1E-2 100% 1.8E-4 1.6E-3 2.18 -p 1E-2 100% 1.8E-4 1.6E-3 5.38

1E-1
prediction

ISABELA 1E-1 ≈ 100% 1.8E-2 ≈ 1E-1 2.52 1E-1 100% 7.6E-3 1E-1 2.75
FPZIP -p 13 100% 2.2E-2 5.9E-2 3.97 -p 13 100% 2.2E-2 5.9E-2 19.08

SZ PWR -P 1E-1 ≈ 100%* 1.2E-2 ≈ 1E-1 3.37 -P 1E-1 100% 4.5E-2 1E-1 13.73
SZ T -P 1E-1 100% 4.6E-2 1E-1 6.31 -P 1E-2 100% 4.8E-2 1E-1 22.07

transform ZFP P -p 19 99.91%* 5.7E-3 1.9E+5 2.23 -p 13 99.93% 2.6E-3 2E+5 12.1
ZFP T -p 1E-1 100% 2.8E-3 2.6E-2 3.00 -p 1E-1 100% 2.1E-3 2.5E-2 13.3
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Fig. 2. Compression ratio on given point relative error bound

compression ratio on the two fields, demonstrating its high
quality and good efficiency.

We also compare ZFP under our transformation scheme
(denoted ZFP T) with the -p option given by the original
ZFP lossy compressor (denoted ZFP P). Since ZFP P does
not strictly respect the error bound, we set the percentage
threshold for bounded data in ZFP P to 99.9%, in order to
keep the same order of average error with ZFP T. According
to the table, ZFP T outperforms ZFP P in almost all aspects,
demonstrating that our transformation scheme can really im-
prove the compression quality for ZFP as well. Its compression
ratio is not as high as those of other compressors because
of the over-preserved error bound. If there exist some other
transform-based compressors that may lead to a very high
compression ratio given specific absolute error bounds, our
transformation scheme can also turn them into outstanding
compressors respecting pointwise relative error bound.

D. Compression Ratio & Compression/Decompression Rate

Here we showcase the compression performance (compres-
sion ratio and compression/decompression rate) of the above
lossy compressors. However, tuning the parameter for ZFP P
for each field under each error bound is complicated because
it does not respect the error bound. Also, according to two
fields in NYX (Table IV), ZFP is not as competitive as FPZIP
and SZ PWR in terms of the compression ratio. Thus we do
not test ZFP P for overall performance from this section on.

The compression ratios of the lossy compressors on the four
datasets are displayed in Figure 2. ISABELA usually cannot

achieve a high compression ratio because of its high index
overhead. SZ PWR is competitive when the error bound is
small, but its performance degrades for larger error bounds.
Also, it is not good at sharply varying datasets such as HACC
because of the group minimum design. FPZIP is good in most
cases, but its performance suffers on 2D datasets, especially
when the error bound is small. Our SZ T almost outperforms
all the other compressors by a certain scale under all the
tested error bounds. However, ZFP T does not exhibit a high
compression ratio because it overpreserves the error bound.

We also evaluate the compression/decompression rate of
these lossy compressors. The results are shown in Figure 3.
According to this figure, FPZIP leads all the other compressors
in all the datasets in terms of compression speed. ZFP T
usually gets the second place because ZFP is faster than SZ.
SZ T is better than SZ PWR since it does not compute com-
plicated block information. ISABELA is slow because of the
high sorting overhead. Regarding decompression, all the com-
pressors except ISABELA exhibit comparable performance.
SZ PWR shows considerable improvement compared with its
compression rate because it saves the block information and
does not compute it during decompression.

E. Visualization for Multiprecision and Angle Skews

Besides compression performance, compression quality,
such as the multiprecision visualization, is also important. Un-
like absolute error bound, which requires universal restriction
on each data point, pointwise relative error bound provides
value-based restrictions that are usually different for different
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(b) CESM-ATM Compression Rate
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(e) HACC Decompression Rate
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(f) CESM-ATM Decompression Rate
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Fig. 3. Compression/decompression rate on given point relative error bound
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Fig. 4. Multiprecision distortion of Slice 100 in dark matter density (NYX, 512× 512× 512) when the compression ratio is 7. The original data is shown
in range [0, 1], and enlarged windows are observed with a higher precision [0, 0.1]. Compared with SZ ABS, FPZIP clearly keeps the features in blue parts
(e.g., data in the center). However, it exploits more local loss and adds certain noise to regions between the blue and red parts (i.e., data in the top right and
bottom left parts) since its max pointwise relative error is 0.5, which is much larger than that of SZ T (0.15).

data points. Under this requirement, smaller value will have
a smaller error bound on this data point and vice versa.
Respecting this error bound is very effective when all the data
points are all equally important regardless of their data value;
otherwise, the small data value will be easily distorted by the
universal restriction. In this section, we analyze the quality of
pointwise error bound by visualizing the decompressed data
generated by difference compressors.

Figure 4 shows the multiprecision visualization results of
original data, SZ ABS, FPZIP, and SZ T on the 100th slice
in dark matter density fields of the NYX dataset when the
compression ratio is set to 7. The absolute-error-bound mode
of SZ is used as a comparison to demonstrate the advantages
of pointwise relative error bound. Only FPZIP and SZ T
are selected because the other compressors cannot achieve
such a compression ratio when the point-wise relative error
bound is set to less than 100%. The original images show the
visualization of a data range [0, 1] (value greater than 1 is
shown as 1). The zoomed-in windows show a more precise
range of [0, 0.1]. According to this figure, the absolute error
bound does lead to certain distortion. The blue region in the

center is distorted a lot because the universal restriction on
each point is 0.055, which is large for data in range [0, 0.1].
On the other hand, FPZIP keeps the rough features in the
center because it uses pointwise relative error bound, which
has tighter restrictions on those blue regions. However, since
it has to relax its pointwise error bound to 0.5 to reach such a
compression ratio, it loses certain information for data in range
(0.1, 1), which leads to the artifacts in the bottom left and top
right. As a contrast, SZ T needs only a pointwise relative
error bound of 0.15 to get the same compression ratio. Thus
its compressed data is distorted very little.

We also compare the skewed angles between original data
and decompressed data for the velocity fields in HACC. A
particle’s skewed angle is defined as the angle between its
original velocity and its reconstructed velocity in 3D space. It
is calculated by θ = arccos ~v ~vd

||~v|||| ~vd|| , where ~v is the original
velocity in the 3D space and ~vd is the reconstructed one.
Because data points in HACC are scattered in the 3D space,
we divide the whole space into 200 × 200 × 200 blocks and
compute the average skewed angle values in each block. We
present the result at slice 100 in Figure 5. The brighter a region
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(a) SZ ABS (b) FPZIP (c) SZ T

Fig. 5. Angle skews of different compressors on HACC datasets when compression ratio is 8. The absolute-error-bounded compressor leads to large angle
skews because the universal error bound (15 in this case) may greatly affect a small value. SZ T has better performance because it has a stricter pointwise
error bound (0.145) than that of FPZIP (0.334) under the given compression ratio.
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Fig. 6. Dumping and loading performance of NYX in parallel execution

is, the larger distortion it has, meaning a worse result. The
figure shows that the absolute-error-bounded compressor has
larger skewed angles (usually > 6), while pointwise relative-
error-bounded compressors have much smaller skewed angles
(around 4 for FPZIP and 2 for SZ T). SZ T is better than
FPZIP because it has a stricter error bound (0.145 versus
0.334) at this compression ratio.

F. Parallel Evaluation

We still use the NYX dataset to demonstrate the data-
dumping and data-loading performance in parallel execution.
Since ISABELA and ZFP T have a much lower compression
ratio (ISABELA also has a relatively lower compression rate),
we do not involve them in the parallel execution. For the
rest of the compressors (SZ PWR, FPZIP, SZ T), we fix
the pointwise error bound to 0.01 for all six fields in NYX
datasets. We evaluate the three compressors on three scales
(1,024 cores ∼ 4,096 cores). Each rank in the evaluation
needs to process 3 GB of data, which corresponds to a total

of 3 TB ∼ 12 TB of data. We plot the breakdown of data-
dumping time (compression and writing) and data loading time
(reading and decompression) in Figure 6. As a comparison,
the original data needs about 0.7 ∼ 2.8 hours and 1 ∼
4 hours for dumping and loading, respectively. From this
figure, we can observe that our transformation scheme is able
to achieve 1.62X , 1.38X dumping performance and 1.55X ,
1.31X loading performance over SZ PWR and FPZIP on 4k
cores, respectively, thanks to the higher compression ratio and
acceptable compression/decompression rates. Also, we tend to
have more advantages when the scale continues to increase.

VII. CONCLUSION

In this paper, we formulate the bidirectional mapping prob-
lem between relative error bound and absolute error bound
in order to use the existing lossy compressors in their best
compression mode (absolute error mode). Under the spe-
cific constraints of lossy compression, we conclude that the
logarithm in base 2 is the most effective transform from
relative error bound to absolute error bound. We also prove the
uniqueness of the log transform to solve our initial mapping
problem. We develop a new lossy compressor by combining
the existing state-of-the-art compressors and the logarithmic
mapping scheme. Experimental results based on multiple real-
world datasets across different scientific domains show that
our solution can significantly improve the compression ratios
(up to 60%) under the demand of pointwise relative error
bound. Our solution achieves over 1.38X dumping and 1.31X
loading performance over the second-best lossy compressor,
respectively, in parallel experiments with 4,096 cores.
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