
RTMobile: Beyond Real-Time Mobile Acceleration
of RNNs for Speech Recognition

Peiyan Dong1, Siyue Wang1, Wei Niu2, Chengming Zhang3, Sheng Lin1, Zhengang Li1, Yifan Gong1,
Bin Ren2, Xue Lin1, and Dingwen Tao3

1Northeastern University 2The College of William and Mary 3The University of Alabama
{dong.pe, wang.siy, lin.sheng, li.zhen, gong.yifa}@husky.neu.edu, xue.lin@northeastern.edu
wniu@email.wm.edu, bren@cs.wm.edu, czhang82@crimson.ua.edu, dingwen.tao@ieee.org

Abstract—Recurrent neural networks (RNNs) based automatic
speech recognition has nowadays become promising and impor-
tant on mobile devices such as smart phones. However, previous
RNN compression techniques either suffer from hardware perfor-
mance overhead due to irregularity or significant accuracy loss
due to the preserved regularity for hardware friendliness. In this
work, we propose RTMobile that leverages both a novel block-
based pruning approach and compiler optimizations to accelerate
RNN inference on mobile devices. Our proposed RTMobile
is the first work that can achieve real-time RNN inference
on mobile platforms. Experimental results demonstrate that
RTMobile can significantly outperform existing RNN hardware
acceleration methods in terms of both inference accuracy and
time. Compared with prior work on FPGA, RTMobile using
Adreno 640 embedded GPU on GRU can improve the energy-
efficiency by 40× while maintaining the same inference time.

Index Terms—RNN, pruning, real-time acceleration, mobile

I. INTRODUCTION

Deep neural network (DNN) has evolved to the state-
of-the-art technique due to its high prediction accuracy in
many artificial intelligence tasks, such as image recognition
and characterization, speech recognition, and recommender
system. Among various DNN architectures, recurrent neural
networks (RNNs) are widely used for speech recognition
tasks because they contain cycles to carry information across
neurons when reading inputs. For instance, Gated Recurrent
Unit (GRU) [1], the most recent representative type of RNNs,
achieves great success in automatic speech recognition. In
recent years, executing DNNs on mobile platforms has become
more and more popular because many high-end mobile devices
are emerging. Several recent studies have proposed techniques
to accelerate large-scale DNNs in mobile environment. How-
ever, due to fairly high computation complexity and memory
consumption when executing RNNs, it is very challenging to
deploy RNNs on embedded processors and mobile devices.

DNN model compression provides an effective way to
mitigate the computation and memory challenges bringing by
DNNs. Many model compression techniques have been studied
for recent years. For example, weight pruning can provide a
notable reduction ratio in the model size. Early work [2] on
non-structured weight pruning eliminates weights at arbitrary

Corresponding author: Dingwen Tao, Department of Computer Science,
The University of Alabama, Tuscaloosa, AL 35487, USA.

location, which leads to the pruned model to be stored in
a sparse matrix format, such as compressed sparse column
(CSC) format. Non-structured weight pruning, however, hurts
processing throughput because the indices in the compressed
weight representation result in stalls or complex workloads on
highly parallel architectures, such as GPUs and FPGAs. On
the other hand, structured weight pruning [3] is more hardware
friendly. By exploiting filter pruning [4] and channel prun-
ing [5], the pruned model is more regular in terms of the shape,
which can eliminate storing the weight indices. However,
structured pruning hurts accuracy more than non-structured
pruning. Moreover, state-of-the-art model-compression-based
RNN acceleration techniques such as ESE [6] and C-LSTM [7]
still suffer from limited inference accuracy and processing
throughput, which prevents them to be implemented on mobile
devices. Furthermore, existing DNN acceleration frameworks
for mobile devices such as TVM [8] do not even support
RNN. Therefore, in order to achieve the real-time inference for
RNNs on mobile devices, it is necessary to develop an end-to-
end RNN acceleration framework that can achieve both high
inference accuracy and high computational efficiency.

In this paper, we propose a real-time RNN acceleration
framework for mobile devices named RTMobile. RTMobile
is composed of two main components: block-based structured
pruning and compiler-assisted performance optimization. Un-
like traditional structured pruning methods used on DNNs,
our novel block-based structured pruning approach that can
provide a finer pruning granularity to maintain high inference
accuracy while significantly reducing the RNN model size. We
also propose several compiler-based optimization techniques
to determine the block size and generate the optimal code on
mobiles. Our contributions are summarized as follows.

• We propose a novel RNN acceleration framework for
mobile devices, namely, RTMobile. To the best of our
knowledge, RTMobile is the first work that achieves
real-time RNN inference on mobile devices.

• We propose a fine-grained Block-based Structured
Pruning algorithm (BSP) for both high inference accuracy
and high computational efficiency.

• We develop a series of compiler-based optimization
techniques to further accelerate RNN inference on mo-



Fig. 1: A Single GRU model.

bile platforms, including matrix reorder, load redundant
elimination, and a new compact data format for pruned
model storage (called BSPC, i.e., Block-based Structured
Pruning Compact format).

• We compare RTMobile with multiple state-of-the-art
methods based on a representative RNN (GRU) using a
well-known speech recognition dataset. Evaluation results
demonstrate that RTMobile is the first work that can
compress the GRU model by over 10x without losing
accuracy. Experiments also illustrate that RTMobile can
obtain about 50x energy-efficiency improvement over
prior work with the same inference time.

II. BACKGROUND AND MOTIVATION

In this section, we present some background information
about GRU, DNN model compression, and DNN mobile
acceleration framework, and discuss our research motivation.

A. Gated Recurrent Unit

The Gated Recurrent Unit (GRU) is a variation from the
LSTM, proposed by Cho et al. [1]. It combines the forget
and input gates into a single “update gate”. It also merges the
cell state and hidden state, and makes some other changes.
The resulting GRU model is simpler than standard LSTM
models, and has been growing increasingly popular. Fig. 1
shows a single GRU, whose functionality is derived by using
the following equations iteratively from t = 1 to T , where
symbols z, r, h̃, h are respectively the update gate, output
gate, cell state, and cell output. As GRU is a more advanced
version of RNN than LSTM, we mainly focus on GRU model
in this work.

B. DNN Model Compression Techniques

As a representative technique in DNN model compression,
DNN weight pruning removes the redundant or less important
weights to reduce the storage and computational costs for
the inference phase. There exist two mainstreams of weight
pruning, i.e., non-structured pruning and structured pruning.

a) Non-structured pruning: Non-structured weight prun-
ing is fine-grained and prunes weights at arbitrary locations.
With the successful applications of the powerful ADMM opti-
mization framework, existing research works [2], [9] achieve a
very high weight reduction ratio while maintaining promising
accuracy. However, non-structured methods lead to sparse and
irregular weight matrices, which require indices to be stored
in a compressed format. Though saving the storage cost, the
decoding of each stored index requires a search over the
whole activation vector. Consequently, it suffers from limited
acceleration in actual hardware implementation [6].

...

w0,0,0 w0,0,1 w0,0,k

...

w1,0,0 w1,0,1 w1,0,k

...

wn,0,0 wn,0,1 wn,0,k

...

...

... ... ...

w0,1,0 w0,1,1 w0,1,k

...

w1,1,0 w1,1,1 w1,1,k

...

wn,1,0 wn,1,1 wn,1,k

...

...

...

...

...

w0,m,0 w0,m,1 w0,m,k

...

w1,m,0 w1,m,1 w1,m,k

...

wn,m,0 wn,m,1 wn,m,k

...

Channel 0 Channel 1 Channel m

Num of 
filters

(a)

(b)

...

...

...

...

...

...

Filter Pruning

Channel Pruning

(filter width) x (filter height) x (number of channels)

Fig. 2: (a) To support GEMM computation, the weight tensor
representation of a CONV layer is transformed into the weight matrix
representation. (b) How different structured weight pruning schemes
are implemented on the weight matrix representation.

b) Structured pruning: To overcome the limitations of
non-structured pruning, recent works [3]–[5] consider to in-
corporate regularity in weight pruning with a main focus
on convolutional (CONV) layers of DNNs. Previous works
mainly focus on two types of structured pruning: filter pruning
and channel pruning. Filter pruning, also known as row
pruning, removes the entire filter(s), while channel pruning
removes the whole channel(s). Figure 2 illustrates an example
of transforming convolutional computation into general matrix
multiplication (GEMM) by converting weight tensors and
feature map tensors to matrices [10]. In general, structured
pruning directly reduces the dimension of a weight matrix and
preserves a full matrix format, thereby facilitating hardware
implementations. On the downside, the coarse-grained nature
of structured pruning hurts the accuracy more severely.

C. DNN Acceleration on Mobile Devices

Many efforts target accelerating DNN execution on mo-
bile devices in the past few years, including MCDNN [11],
DeepMon [12], TFLite [13], TVM [8], and Alibaba Mobile
Neural Network [14]. However, most of them do not deeply
exploit model compression techniques as RTMobile does. In
particular, none of the existing frameworks can even support
RNN acceleration on mobile devices.

D. Research Motivation

Based on the survey of recent research works, we conclude
the following insights: (i) non-structured pruning has the
advantage of very high compression ratio but is typically
not compatible with GPU acceleration for inference; and (ii)
structured pruning facilitates hardware implementations but is
often subjected to accuracy degradation, especially when it
is applied to time-based RNNs. To overcome the limitations
of current methods, a more flexible and fine-grained pruning
policy is needed. This work specifically focuses on RNN
models that have not been extensively studied.

III. RELATED WORK

Many existing studies have implemented model compres-
sion algorithms for RNN acceleration on FPGAs [6], [7],
[15]–[18]. However, the majority of these works focus on



constructing new RNN architectures [16] rather than software
and hardware co-design framework. Instead, our RTMobile
proposes architecture designs in both software and hardware
level. In this work, we mainly discuss and compare RTMobile
with two most recent and related approaches, i.e., ESE [6]
and C-LSTM [7], which not only address the RNN model
compression problem on algorithm/software but also take into
account the energy efficiency on hardware (i.e., FPGAs).

A. ESE

ESE proposes an optimized LSTM compression framework
on FPGA, which sparsifies the model through parameter
pruning [6]. Compared with both CPU- and GPU-based imple-
mentations, ESE achieves higher energy efficiency on FPGA.
However, the design of ESE has three main limitations: (1)
ESE’s irregular pruning method used for model compression
causes large overhead when performing read/write operations
on hardware; (2) the irregularity of weight matrix in ESE
results in inefficient implementations of indices that consume
extra storage cost, thus the computing power of the FPGA
is not fully exerted; and (3) ESE only marginally improves
compression rate taking into account indices.

B. C-LSTM

In order to solve the problem caused by irregular prun-
ing, Wang et al. [7] propose an approach (called C-LSTM)
to employ a structured compression technique using block-
circulant matrices to compress the LSTM model. With regular
structure of the block-circulant matrices, C-LSTM can further
reduces both computational and storage complexity compared
with ESE. However, the coarse-grained nature of structured
pruning also cause relatively significant degradation on the
model accuracy. Moreover, the advanced ADMM-based neural
network pruning method, which can effectively handle both
model compression and accuracy, is not supported in the C-
LSTM training because it requires the most advanced opti-
mizer in stochastic gradient decent (e.g., Adam optimizer).

C. ADMM

The pruning problem can be formulated as the minimization
of f(W, b) + g(W ) by following:

minimize
{Wi}

f
(
{Wi,bi}Ni=1

)
+ g

(
{Wi}Ni=1

)
,

subject to Wi ∈ Si, i = 1, . . . , N,
(1)

where N is the total number of weight tensor in recurrent
neural network, f(W, b) is the loss function, and g(W ) is an
indicator function that is zero when the constraint S = { the
number of nonzero weights is less than certain threshold } is
satisfied, but +∞ otherwise.

The augmented Lagrangian formation of problem (1) is

Lp = minimize
{Wi}}

f
(
{Wi,bi}Ni=1

)
+

N∑
i=1

ρi
2
‖Wi − Zi +Ui‖2F,

(2)
where ρi is a penalty value, Zi is pruning mask and Ui is
dual variable.

The ADMM algorithm [19] is to iteratively update the
indicated pruning mask and retrain the neural network under
this mask, until a good mask and neural network converge. It
proceeds by repeating iteration k = 0, 1, . . . as following:

Wk+1
i := arg min

Wi

Lp({Wi}, {Zk
i }, {Uk

i }), (3)

Zk+1
i := arg min

Zi

Lp({Wk+1
i }, {Zi}, {Uk

i }), (4)

Uk+1
i := Uk

i +Wk+1
i − Zk+1

i . (5)

The pruning mask can be trained by Algorithm 1.

IV. PROPOSED RTMOBILE FRAMEWORK

In this section, we describe in detail RTMobile, our pro-
posed mobile acceleration framework for RNNs.

A. Block-based Structured Pruning

To better facilitate the compression rate and ensure the
structured model architecture for hardware implementations,
we propose Block-based Structured Pruning (BSP) algorithm.
In general, training a BSP compressed model can be separated
into two main steps: Step 1) row-based column block pruning
and Step 2) column-based row pruning.

The training process starts with splitting the whole weight
matrix W into Numr rows horizontally. For each row, we
divide it into Numc blocks and then perform the structured
pruning using ADMM method (discussed in Section III-C).
Then, we perform column-based row pruning over the entire
weight matrix W in the step 2. Given the constraint of block
number after dividing by Numc and Numr, the pruned model
can achieve a satisfactory performance overhead on hardware.

The training process continues iteratively until all the blocks
are pruned. We identify that by doing so, the training perfor-
mance is stable, and the whole weight matrix after pruning is
decentralized. Our BSP approach is shown in Algorithm 1.
B. Compiler-assisted RNN Acceleration Framework

After the block-based structured pruning, RTMobile relies
on a compiler-assisted RNN acceleration framework to achieve
efficient RNN inference on mobile devices. This compiler
framework consists of three key optimizations that work on
each RNN layer (as shown in Figure 3): matrix reorder, load
redundancy elimination, and a compact data storage format
for pruned RNN matrices, BSPC (i.e., Block-based Structured
Pruning Compact format). These optimizations aim to address
three key challenges in pruned RNN execution: thread diver-
gence and load imbalance among threads, redundant memory
access, and unnecessary zero storage.

a) Matrix reorder: The matrix is executed by multiple
CPU/GPU threads simultaneously. Without a further reorder,
these threads may execute rows with significantly divergent
computations, causing severe load imbalance issue that hurts
thread-level parallelism. Therefore, RTMobile introduces a
matrix reorder optimization to group the rows with the same
(or similar) computation patterns together. After this reorder,
the rows in each group are assigned to multiple threads to
achieve balanced processing.



Fig. 3: Systematic overview of RTMobile acceleration framework.

Algorithm 1 Block-based Structure Pruning (BSP)
Require:

W l ∈ Rm×n is the weight matrix at lth layer pc and pr are
the percentage of target column and row sparsities. Numc and
Numr represent the number of blocks after division. b is the
target block size.
(Experiments on mobile devices showed that when Numc ≤ 4
and Numr ≤ 32, BSP can guarantees the suitable overhead of
mobile device.)

Ensure: A pruning mask Zl for W l consists of 0’s and 1’s
representing the weights to be pruned or retrained.
Step 1. Do Row-based Column Block Pruning:

1: Divide W l into Numr number of rows where the weight matrix
are represented by W l

:,0, W l
:,1,...W l

:,Numr
.

2: for block i ∈ [1,Numr] do
3: Compute the L2 norm of each column in W l

i ;
4: Find the threshold γ∗ such that for columns whose L2 norm

less than the threshold should be pruned to achieve the target
sparsity level pc;

5: for column k = 0, 1, ...(n− 1) do
6: Zl

i[:, k] = 0 if L2W
l
i [:, k] < γ :

7: end for
8: end for

Step 2. Do Column-based Row Block Pruning:
9: Divide W lnew into Numc number of columns where the weight

matrix are represented by W lnew
0,: , W lnew

1,: ,... W lnew
Numc,:

.
10: for block j ∈ [1,Numc] do
11: Compute the L2 norm of each row in Wj

lnew ;
12: Find the threshold ζ∗ such that for rows whose L2 norm

less than the threshold should be pruned to achieve the target
sparsity level pr;

13: for row r = 0, 1, ...(m− 1) do
14: Zl

j [r, :] = 0 if L2Wj
lnew [r, :] < ζ :

15: end for
16: end for

b) Redundant load elimination: Within a group, each
thread processes multiple continuous rows, offering us an op-
portunity to eliminate the redundant memory load operations.
This optimization is specifically enabled by our block-based
structured pruning, because after such pruning the preserved
weights in two neighbor rows may share the same pattern and
require the same data in the input feature maps. It is difficult to
explore this optimization opportunity for existing unstructured
weight pruning due to its irregularity.

Fig. 4: Speedup using RTMobile with different compression rates on
mobile platform.

c) BSPC format: Our proposed block-based structured
pruning also guides us to design a more compact data structure
than traditional CSR format (called BSPC format) to store
RNN weight matrices. This is because within each block the
preserved weights only exist in certain rows and columns,
enabling to further compact the index array in CSR. The
BSPC format also includes the matrix reorder information to
match the corresponding input feature map with the weight
matrix. The BSPC format significantly reduces the memory
footprint and hence alleviate the memory-bound issue in RNN
execution.

In addition to the above optimizations, our compiler frame-
work also includes an auto-tuning component to perform an
offline search of the best execution configurations like the
matrix tiling size, unrolling size, memory placement, etc. In
particular, we employ it to find the best block size that results
in an optimal combination of accuracy and performance.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate RTMobile by comparing it with
several state-of-the-art methods. There are three evaluation
objectives: 1) comparing RTMobile with other model compres-
sion methods and demonstrating that our method outperforms
others in both compression rate and accuracy; 2) showing
RTMobile has both higher computational efficiency and energy
efficiency than a well-known deployment on FPGA (ESE



TABLE I: Results of Different Model Compression Methods on GRU Using TIMIT Dataset: PER is phone error rate, the lower the
better. Baseline PER is for dense (non-pruned) models and pruned PER is for pruned compressed models. PER Degrad. represents for the
PER degradation, i.e., PERpruned−PERbaseline. The rest columns show the column compression rate, row compression rate, the number
of preserved parameters, and the overall compression rate, respectively.

Method PER (%)
(baseline - pruned) PER Degrad. Column Compress. Rate Row Compress. Rate Para. No. Overall Compress. Rate

ESE [6] 20.40 - 20.70 0.30 – – 0.37M 8×
C-LSTM [7] 24.15 - 24.57 0.42 – – 0.41M 8×
C-LSTM [7] 24.15 - 25.48 1.33 – – 0.20M 16×
BBS [20] 23.50 - 23.75 0.25 – – 0.41M 8×
Wang [21] – 0.91 – – 0.81M 4×
E-RNN [18] 20.02 - 20.20 0.18 – – 1.20M 8×
BSP (ours) 18.80 (w/o pruning) 0 1 1 9.6M 1×
BSP (ours) 18.80 - 18.80 0 10 1 0.96M 10×
BSP (ours) 18.80 - 19.40 0.60 16 1.25 0.48M 19×
BSP (ours) 18.80 - 19.60 0.80 16 2 0.33M 29×
BSP (ours) 18.80 - 20.60 1.80 16 5 0.22M 43×
BSP (ours) 18.80 - 21.50 2.70 20 8 0.12M 80×
BSP (ours) 18.80 - 23.20 4.40 16 16 0.09M 103×
BSP (ours) 18.80 - 24.20 5.40 20 10 0.06M 153×
BSP (ours) 18.80 - 24.20 5.40 20 16 0.04M 245×
BSP (ours) 18.80 - 25.50 6.70 20 20 0.03M 301×

TABLE II: Performance and Energy Evaluation on Mobile GPU and CPU: GOP refers to Giga Operations. GPU/CPU energy efficiency
is calculated as InferenceFrames/(Power × InferenceT ime), i.e., the number of frames inferred per unit energy consumption. This
table normalizes our method’s GPU/CPU energy efficiency by the ESE FPGA implementation’s. As our compression rate reaches 245×,
our GPU inference time becomes slightly faster than ESE’s (82.7us). Our GPU implementation uses 16-bit floating point.

Compression Rate GOP GPU Time / Frame (us) GPU GOP/s GPU Energy Efficiency
(normalized with ESE) CPU Time / Frame (us) CPU GOP/s CPU Energy Efficiency

(normalized with ESE)
1× (baseline) 0.5800 3590.12 161.55 0.88 7130.00 81.35 0.25
10× 0.0580 495.26 117.11 6.35 1210.20 47.93 1.48
19× 0.0330 304.11 108.51 10.35 709.33 46.52 2.52
29× 0.0207 233.89 88.29 13.45 464.73 44.43 3.85
43× 0.0143 186.05 76.86 16.91 344.77 41.48 5.19
80× 0.0080 130.00 61.54 24.2 218.01 36.70 8.20
103× 0.0060 109.76 54.66 28.67 202.72 29.59 8.82
153× 0.0039 97.11 40.16 32.4 170.74 22.84 10.47
245× 0.0028 81.64 34.30 38.54 151.28 18.51 11.82
301× 0.0020 79.13 25.27 39.76 145.93 13.71 12.25

[6])1; and 3) studying the relationship between compression
rate and inference execution time.

A. Experiment Setup
Experimental Platform. We conduct our experiments using a
Samsung Galaxy S10 with the latest Qualcomm Snapdragon
855 mobile platform, which consists of a Qualcomm Kryo 485
Octa-core CPU and a Qualcomm Adreno 640 GPU.
Model Architecture. We evaluate RTMobile and compare it
with the state-of-the-art methods on the popular GRU RNN
model, which has been widely used in previous studies [6],
[7], [18]. The GRU model contains 2 GRU layers and about
9.6M overall number of parameters.
Evaluation Dataset. We conduct our experiments on the
TIMIT dataset [22], which is widely adopted for evaluating
automatic speech recognition systems. The TIMIT dataset
contains broadband recordings from 630 speakers reading ten
phonetically rich sentences in eight major dialects of American
English, each reading ten phonetically rich sentences.

B. Evaluation Results and Discussion
Compression Rate and Accuracy. Table I illustrates the
results (including phone error rate and number of preserved

1We compare RTMobile on mobile with ESE on FPGA because (1) none
of the existing RNN acceleration works supports mobile device, and (2) ESE
provides one of the highest inference accuracy among prior works.

parameters) of RTMobile with different compression rates and
the comparison with other state-of-the-art methods, including
ESE [6], C-LSTM [7], BBS [20], Wang [21] and E-RNN
[18]. For a fair comparison, we train all models using the
same TIMIT dataset [22]. Benefit from the most advanced
PyTorch-Kaldi Speech Recognition Toolkit [23], the baseline
GRU model for our RTMobile can achieve higher recognition
accuracy than the other methods before pruning, e.g., our PER
is 5.35% lower than C-LSTM’s (18.80% v.s. 24.15%).

We observe that our proposed BSP method can guarantee
no accuracy degradation when the compression rate is not
higher than 10×, which is superior than ESE and C-LSTM
from both compression rate and inference accuracy. We also
observe that BSP can stably keep a high accuracy compared
to the other methods when the compression rate is relatively
high. For instance, when the compression rate is 103×, the
BSP pruned model can even outperform the C-LSTM baseline
model in terms of both compression rate and accuracy. The C-
LSTM baseline model (with 3.25M parameters) has 36× more
parameters than our BSP pruned model, but its PER is 0.95%
higher than ours (24.15% vs. 23.20%). In addition, we use BSP
to further prune the model until the rate of 301× and observe
that our method can well adapt to ultra-high compression rate
scenario. For example, our model with 245× compression rate
can still maintain the same-level PER as the C-LSTM baseline



model (24.20% vs. 24.15%) and reduce the parameter number
by over 80× (0.04M vs. 3.25M).
Inference Time and Energy Efficiency. Table II presents the
evaluation results of RTMobile’s inference time, Giga Opera-
tions Per Second (GOP/s), and energy efficiency (normalized
with ESE method) on mobile GPU and CPU, respectively.
The table illustrates that, when the compression rate is higher
than 245×, RTMobile can outperform in energy efficiency
by about 40× compared with ESE while maintaining the
same inference time (ESE’s inference time is 82.7 us) on
the mobile GPU (ESE uses a large FPGA platform of 41W
power, and thus it is easier to achieve higher energy efficiency
than speed). Please note that this is a clear feat, as it is
typically perceived that FPGA is more energy-efficient than
general-purpose computing devices. This is because of two
main reasons. First, comparing to ESE’s activation calcula-
tion by look-up tables that results in limited parallelization
and irregular memory accesses (two key performance factors
on FPGA), RTMobile’s compiler optimizations significantly
improve both the parallelization and memory performance.
Second, RTMobile has a much better compression rate (with
a negligible accuracy loss), resulting in a more significant
computation reduction. Although our compression rates are
significant, we must emphasize that the inefficiency in FPGA
implementation in ESE (especially activation) plays an equally
important, if not more, role. As can be seen from the table, our
GPU energy efficiency (frames in unit energy) is almost the
same as ESE (which uses compression) even when we do not
have any pruning. With increase in the compression rate, the
computation pattern becomes I/O and memory bounded, the
memory access pattern becomes more irregular, which leads
to lower CPU/GPU GOP/s.
Relationship between Compression Rate and Inference
Time. Figure 4 further illustrates the relationship between
inference time and compression rate. The inference time is
in the form of speedups over our own dense CPU/GPU
baselines, respectively. The speedup grows as compression rate
increases. The speedup becomes stable when the compression
rate reaches to a certain range (e.g., compression rate reaches
250×). When the compression rate is 245×, our inference time
on mobile GPU is as same as ESE’s on FPGA.

VI. CONCLUSION

In this paper, we propose the first RNN acceleration frame-
work for mobiles, called RTMobile. We develop a novel block-
based pruning algorithm and three compiler optimizations to
achieve real-time inference without any accuracy degradation.
Experimental results demonstrate that RTMobile significantly
outperforms the existing RNN hardware acceleration methods
in terms of compression rate, inference accuracy, execution
time, and energy efficiency.

ACKNOWLEDGMENT

This work is partly supported by the National Science Foun-
dation CCF-1901378, CNS-1909172, CCF-1919117, OAC-
1948447, and OAC-2034169.

REFERENCES

[1] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
arXiv preprint arXiv:1409.1259, 2014.

[2] T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, and Y. Wang,
“A systematic dnn weight pruning framework using alternating direction
method of multipliers,” in ECCV, 2018, pp. 184–199.

[3] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in NIPS, 2016, pp. 2074–2082.

[4] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang, “Soft filter pruning for
accelerating deep convolutional neural networks,” in IJCAI, 2018, pp.
2234–2240.

[5] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very
deep neural networks,” in ICCV. IEEE, 2017, pp. 1398–1406.

[6] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao,
Y. Wang, H. Yang, and W. J. Dally, “Ese: Efficient speech recognition
engine with sparse lstm on fpga.” in FPGA, 2017, pp. 75–84.

[7] S. Wang, Z. Li, C. Ding, B. Yuan, Q. Qiu, Y. Wang, and Y. Liang, “C-
lstm: Enabling efficient lstm using structured compression techniques
on fpgas,” in FPGA. ACM, 2018, pp. 11–20.

[8] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze et al., “TVM: An automated end-to-end
optimizing compiler for deep learning,” in OSDI, 2018.

[9] A. Ren, T. Zhang, S. Ye, W. Xu, X. Qian, X. Lin, and Y. Wang,
“Admm-nn: an algorithm-hardware co-design framework of dnns using
alternating direction methods of multipliers,” in ASPLOS, 2019.

[10] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer, “cudnn: Efficient primitives for deep learning,” arXiv
preprint arXiv:1410.0759, 2014.

[11] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krish-
namurthy, “Mcdnn: An approximation-based execution framework for
deep stream processing under resource constraints,” in MobiSys. ACM,
2016, pp. 123–136.

[12] L. N. Huynh, Y. Lee, and R. K. Balan, “Deepmon: Mobile gpu-
based deep learning framework for continuous vision applications,” in
MobiSys. ACM, 2017, pp. 82–95.

[13] https://www.tensorflow.org/mobile/tflite/.
[14] https://github.com/alibaba/MNN/.
[15] S. Li, C. Wu, H. Li, B. Li, Y. Wang, and Q. Qiu, “Fpga acceleration

of recurrent neural network based language model,” in FCCM. IEEE,
2015, pp. 111–118.

[16] E. Nurvitadhi, J. Sim, D. Sheffield, A. Mishra, S. Krishnan, and D. Marr,
“Accelerating recurrent neural networks in analytics servers: Comparison
of fpga, cpu, gpu, and asic,” in FPL. IEEE, 2016, pp. 1–4.

[17] Y. Guan, Z. Yuan, G. Sun, and J. Cong, “Fpga-based accelerator for long
short-term memory recurrent neural networks,” in ASP-DAC. IEEE,
2017, pp. 629–634.

[18] Z. Li, C. Ding, S. Wang, W. Wen, Y. Zhuo, X. Lin, X. Qian, and Y. Wang,
“E-rnn: design optimization for efficient recurrent neural networks in
fpgas,” in HPCA. IEEE, 2019.

[19] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends® in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[20] S. Cao, C. Zhang, Z. Yao, W. Xiao, L. Nie, D. Zhan, Y. Liu, M. Wu,
and L. Zhang, “Efficient and effective sparse lstm on fpga with bank-
balanced sparsity,” in FPGA. ACM, 2019, pp. 63–72.

[21] S. Wang, P. Lin, R. Hu, H. Wang, J. He, Q. Huang, and S. Chang,
“Acceleration of lstm with structured pruning method on fpga,” IEEE
Access, vol. 7, pp. 62 930–62 937, 2019.

[22] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett,
N. L. Dahlgren, and V. Zue, “Timit acoustic-phonetic continuous speech
corpus,” Linguistic data consortium, vol. 10, no. 5, p. 0, 1993.

[23] M. Ravanelli, T. Parcollet, and Y. Bengio, “The pytorch-kaldi speech
recognition toolkit,” in In Proc. of ICASSP, 2019.


