
H-GCN: A Graph Convolutional Network Accelerator on
Versal ACAP Architecture

Chengming Zhang (Washington State University)
Tong Geng (University of Rochester)
Anqi Guo (Boston University)
Jiannan Tian (Washington State University)
Martin Herbordt (Boston University)
Ang Li (Pacific Northwest National Laboratory)
Dingwen Tao (Washington State University)

2

Background: Graph Convolutional Network (GCN)

Ø Computation procedure

• Aggregation and Combination paradigm
• Layer wise forward propagation:

𝑋! = 𝜎(%𝐴 ' 𝑋!"# ' 𝑊!)
%𝐴 = 𝐷"

#
$ ' 𝐴̅ ' 𝐷"

#
$

𝐴̅ = 𝐴 + 𝐼
𝐷 is Laplacian matrix with 𝐷%% ∑& 𝐴̅%&

• Two-layer GCN model:
𝑋$ = 𝜎(%𝐴 ' (%𝐴 ' 𝑋' ' 𝑊#) ' 𝑊$)

Illustration of typical GCN models

3

Background: Versal ACAP

Ø ACAP Architecture
• Fully software-programmable,

heterogeneous compute platform.
• Heterogeneity:
1. Processor System (PS): Scalar Engines that

include the Arm processors.
2. Programmable Logic (PL): Adaptable Engines

that include the programmable logic blocks
and memory.

3. Artificial intelligence Engine (AIE): with
leading-edge memory and interfacing
technologies.

• The PL kernels are C/C++ or RTL
(traditional FPGA).

Versal Adaptive Compute Acceleration Platforms (ACAPs).

4

Background: Versal ACAP

• AI engines are an array of very-long instruction
word (VLIW) processors with single instruction
multiple data (SIMD) vector units.

• Three levels of parallelism
(1) SIMD, (2) instruction level, (3) multi-core.

• The AI engine kernels are C/C++ programs written
using specialized intrinsic calls or AI engine APIs.

Ø AI Engines

5

Motivation
Ø Heterogeneity of graph limits performance
• A graph has tightly clustered components, loosely clustered components, and scattered nodes.
• It is NOT possible to use a unified hardware architecture to accelerate all parts of a graph.
Ø Performance of FPGA accelerator is bounded
• Overall performance of FPGA-based accelerator is bounded by the low frequency.
• SIMD can provide high frequency and computation power. However, its use scenario is

limited (e.g., dense computation) because of fixed computation pattern.

Overview of three types of subgraph.

6

Design: Proposed Architecture

• Consists of a platform controller, a sparse-dense
matrix-matrix multiplications (SpMM) unit and a PL
controller, a sparse/dense systolic tensor array and
activation/exponential unit, a network on chip
(NoC), four DDR4 SDRAM.

• Platform controller controls the whole system.

• PL controller controls SpMM unit to cooperate with
the sparse/dense systolic tensor arrays to perform
all GCN computations.

• Sparse/dense systolic tensor array accelerates of
both dense and sparse matrix addition and
multiplication.

7

Design: Input Graph Ordering

• Real-world graphs exhibit a
“community” structure, some vertices
may share neighbors or have a closer
relationship to each other.

• Improve data locality by modifying the
order of vertices.

• Perform the graph reordering at the
pre-processing stage for only once
using mt-metis.

8

Design: Sparse Tensor Engine
Ø Matrix multiplication
• The essence of matrix multiplication is multiply-accumulate (MAC) operations.
• Matrix multiplication can be further decomposed into vector operations.
• AI engines provide a floating-point 512 bits SIMD vector unit, fpmac & fpmul.

Ø SpMM
• Row-wise SpMM and compressed sparse row (CSR) increase the generality.

9

Design: Sparse Tensor Engine

Ø Limitations of SpMM

1. Compiler cannot optimize
• The number of innermost loops is not fixed since the number of non-zeros in each row is not fixed.
• The compiler cannot use pipeline or loop flatten to optimize such loops with a variable number of loops.
• Performance being worse than the dense matrix multiplication with the same size.

2. Low memory bandwidth utilization: CSR format leads to random row data accesses.

10

Design: Sparse Tensor Engine

Ø Group SpMM

• Directly flatten outermost loop possibly solves
limitations.

• Direct expansion causes insufficient programming
space error due to limited programming space.

• “moving average” divides the rows of matrix A into
multiple groups.

• Goals
1. Each group contains as many rows as possible to

save programming space.
2. Each group has as little padding as possible to

reduce unnecessary calculations on zeros.

11

Design: Sparse Tensor Engine

Ø Grouping algorithm

• Lines 8-9: use pre_ave to record the
previous moving average, and cur_ave
saves the current moving average.

• Lines 13-18: if the change of the moving
average exceeds threshold 𝜏, row j to row i-1
into a group, pad each row in this group to
ensure the same number of non-zero
elements in each row.

12

Design: Sparse Systolic Tensor Array

• Two-dimensional (2D) systolic arrays is a pipelined 2D array of processing
elements (PEs).

• Efficient local data movement and energy-efficient execution.
• Systolic tensor array with tensor PEs (TPEs).

• Difficulty of performing SpMM using systolic tensor array.
1. TPEs in the same row are required to perform exactly the same calculation

mode (e.g., MAC).
2. But for SpMM, each tile has a completely different number of non-zero

element and computational model.

13

Design: Sparse Systolic Tensor Array

Ø Proposed automatic tensor PEs generation algorithm.

• Lines 6-8: count the non-zeros of tiles in the same row.

• Lines 9-10: calculate the average non-zeros (ave_nnz) and
maximum non-zeros (max_nnz) of all tiles in the same row.

• Lines 12-14: find a suitable number of non-zeros for all tiles
in the same row if the difference between ave_nnz and
max_nnz is larger than the pre-defined ratio 𝛿; if cannot find
a suitable number, select max_nnz as ideal non-zeros for
all tiles in the same row.

14

Design: Sparse Systolic Tensor Array

Ø Proposed automatic tensor PEs generation algorithm.

• Line 17: use the grouping algorithm again to group the
rows (enable efficient SpMM on each AIE) after generating
the number of non-zeros in each row, and obtain the final
density after padding.

• Lines 18-22: directly use dense tensor PE for those tiles if
their final density is larger than d; otherwise, we use
sparse tensor PE.

15

Design: Sparse Systolic Tensor Array

Ø Pipelining SpMM Chains
• SpMM chains 𝐴 ' 𝑋 ' 𝑊 are executed on three different

hardware, i.e., dense systolic tensor array, sparse systolic
tensor array, and PL for SpMM.

• 400 AIEs distributed in 8 rows and 50 columns.
• The upper 4 lines are for mixed sparse or dense systolic

tensor PEs (STPEs/TPEs) to perform the computation of 𝐴 '
𝐵, where B is the intermediate variable generated by 𝑋 ' 𝑊.

• The remaining 4 lines are for dense systolic tensor PEs to
perform the computation of 𝑋 ' 𝑊.

16

Experimental Setup

Ø Dataset: 7 real-world datasets
Ø GCN Model: 2-layer Vanilla-GCN model with the hidden dimension of 128.
Ø Platform: Versal VCK5000 board which features with Versal ACAP XCVC1902

device, and four DDR4 with 72-bit memory interface.

17

Speedup of Sparse Tensor Engine

Ø Our grouping algorithm “CSR-fixed-nnz” provides 2.9x, 2.1x, and 2.5x speedup on matrices of
size 64, 32, and 16 (density = 0.1).

Ø Row-wise SpMM with variable loops “CSR-variable-nnz” is much slower than dense method.

18

Comparison with SOTA

Ø Comparison with other GCN accelerators
• Inference latency

• Outperforms I-GCN by 1.1x, BoostGCN by 1.5x~2.3x, AWB-GCN by 1.2x, and HyGCN by 6.9x.
• Due to (1) better data locality, (2) full use of AIEs, and (3) our proposed scheduling approach.

• Energy-efficient
• 1.12x and 1.64x more energy-efficient than I-GCN and AWB-GCN.
• Due to the ACAP's more efficient dynamic power management.

19

Comparison with SOTA

Ø Comparison with CPU/GPU software
• H-GCN significantly outperforms PyG and DGL on both CPU and GPU

• Speedup of 79.5x over PyG-CPU
• Speedup of 12.2x over DGL-CPU
• Speedup of 1.59x over PyG-GPU
• Speedup of 1.58x over DGL-GPU

20

Graph Reordering Overhead

• The graph reordering is integrated into the training process.
• The OpenMP version of Metis takes advantage of multiple cores in the CPU (56 CPU cores).

21

Thank you!
Any questions and ideas are welcomed

Dingwen Tao: dingwen.tao@wsu.edu
Chengming Zhang: chengming.zhang@wsu.edu

Contact:

mailto:dingwen.tao@wsu.edu
mailto:chengming.zhang@wsu.edu

