
H-GCN: A Graph Convolutional Network
Accelerator on Versal ACAP Architecture

Chengming Zhang�¶, Tong Geng†§, Anqi Guo‡, Jiannan Tian�, Martin Herbordt‡, Ang Li†, Dingwen Tao�¶
�School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA
†Mathematics and Computer Science Division, Pacific Northwest National Laboratory, Richland, WA, USA

‡Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
§Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
¶School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA

Abstract—Graph Neural Networks (GNNs) have drawn
tremendous attention due to their unique capability to extend Ma-
chine Learning (ML) approaches to applications broadly-defined
as having unstructured data, especially graphs. Compared with
other Machine Learning (ML) modalities, the acceleration of
Graph Neural Networks (GNNs) is more challenging due to the
irregularity and heterogeneity derived from graph typologies.
Existing efforts, however, have focused mainly on handling
graphs’ irregularity and have not studied their heterogeneity.
To this end we propose H-GCN, a PL (Programmable Logic)
and AIE (AI Engine) based hybrid accelerator that leverages
the emerging heterogeneity of Xilinx Versal Adaptive Compute
Acceleration Platforms (ACAPs) to achieve high-performance
GNN inference. In particular, H-GCN partitions each graph
into three subgraphs based on its inherent heterogeneity, and
processes them using PL and AIE, respectively. To further
improve performance, we explore the sparsity support of AIE
and develop an efficient density-aware method to automatically
map tiles of sparse matrix-matrix multiplication (SpMM) onto
the systolic tensor array. Compared with state-of-the-art GCN
accelerators, H-GCN achieves, on average, speedups of 1.1∼2.3×.

I. INTRODUCTION

In the past few years, GNNs have achieved great success

in many applications such as node classification [1], link pre-

diction [2], graph classification [3], and clustering [4]. Among

various kinds of GNNs, graph convolutional network (GCN)

[5], [6] is one category of models that re-define the notion of

convolution for graph data and has attracted substantial efforts

from both the industrial and academic communities due to

their unique ability to extract latent information from graph

data. GCNs have various applications, including citation net-

works [5], social network analysis [7], chemistry [8], computer

vision [9], and natural language processing [10].

Despite the popularity of GCNs, accelerating GCN infer-

ence is still challenging: GCNs inherit the irregular compu-

tational pattern and processing dataflow of graph analytics,

resulting in inefficiency on CPUs and GPUs. This is due es-

pecially to three factors: (1) irregular data access patterns due

to executing on non-Euclidean data, (2) workload imbalance
due to skewed distribution of graph degrees, and (3) hybrid
computation patterns due to diverse features of different GCN

Corresponding author: Dingwen Tao (dingwen.tao@wsu.edu).

Fig. 1. Overview of three types of subgraph.

phases. In particular, the Aggregation (or message passing)

phase performs vector additions where vectors are fetched with

irregular strides, while the Combination (or node embedding)

phase can be either dense or sparse-dense matrix multiplica-

tion. We describe these two phases in detail in Section II.

There have been many efforts on GCN acceleration using

both GPUs and FPGAs. Researchers have pointed out that

the irregularity from graph topology, the resulting poor data

locality, and the serious workload imbalance are the problems

[11]. By leveraging FPGA hardware flexibility, existing work

[12], [13] has well addressed these problems. However, we

observe that besides the irregularity, the heterogeneity of graph

structure is also a significant performance limiter. As shown

in Figure 1, a graph can have tightly clustered components,

loosely clustered components, and scattered nodes: it is there-

fore challenging to use a unified hardware architecture/device

to accelerate all parts of the graph computation.

A few works have implemented GCN accelerator on FPGAs

[13], [14]. However, the overall performance is significantly

bounded due to the low frequency of FPGAs compared

to CPUs and GPUs. Also, single-instruction multiple-data

(SIMD) processing in CPUs can provide high frequency and

computation power. Its utility, however, is reduced as the target

computation strays from dense, regular operations. This is also

the case to some extent in the analogous modes in GPUs

and FPGAs. Overall, the heterogeneity of GCN implies that

emerging heterogeneous hardware such as Xilinx ACAP may

provide an opportunity for further acceleration.

200

2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)

1946-1488/22/$31.00 ©2022 IEEE
DOI 10.1109/FPL57034.2022.00040

To this end, we propose H-GCN, an accelerator designed

to mirror the heterogeneous computing paradigm of GCNs. In

particular, H-GCN leverages the heterogeneity of the Versal

ACAP to efficiently process different types of subgraphs. The

computation of tightly clustered components is mapped onto

dense AIEs to fully utilize their high frequency and paral-

lelism from SIMD and very-long instruction word (VLIW)

processors. The computation of loosely clustered components

is executed on sparse AIEs to reduce computation latency. The

computation of scattered nodes is finished on programmable

logic (PL) to utilize its programming flexibility. Its perfor-

mance is not be bounded by the low frequency since the

proportion of scattered nodes is relatively small.
In contrast with previous efforts using heterogeneous archi-

tectures to process the two GCN phases—Aggregation and

Combination—we focus rather on the heterogeneity in the

graph itself, which is the fundamental problem in large graph

processing. To the best of our knowledge, this is the first work

that implements a GCN accelerator on real-world heteroge-

neous hardware ACAPs and tackles sparse tensor computation

on the Versal AIEs. Our contributions are summarized as:

• We propose H-GCN—an ultra-efficient, systolic tensor-

based hardware accelerator—that incorporates the fea-

tures of the PL and AIE for fully utilizing the ACAP’s

heterogeneous compute capability in GCN computation.

• We study the heterogeneity of graphs and heterogeneity-

aware GNN acceleration.

• We are the first to study the use of the AIE compiler in

graph processing and sparse matrix processing.

• We design a lightweight grouping strategy to enable

sparse tensor computation on the Versal AIEs.

• We develop an efficient method to process tiles of a sparse

matrix to enable an automatic mapping of SpMM onto

the systolic tensor array.

• Experimental results show that compared with CPU and

GPU solutions (i.e., PyG-CPU, PyG-GPU, DGL-CPU,

and DGL-GPU), H-GCN achieves up to 155.2× and

36.8× speedups, respectively. Compared with a state-

of-the-art FPGA accelerator, H-GCN achieves 1.1∼2.3×
speedup on the tested graph datasets.

In Section II, we present background about GCN and ACAP.

In Section III, we discuss related work on GCN accelerator

in detail, comparing them and discussing their limitations. In

Section IV, we describe our system architecture. In Section V,

we present the experimental results on various graph datasets.

In Section VI, we conclude and discuss future work.

II. BACKGROUND AND MOTIVATION

In this section, we will introduce some background infor-

mation, including GCNs and Versal ACAPs.

A. Graph Convolutional Networks
GCNs are composed of stacked graph convolutional layers.

Each GCN layer follows the Aggregation and Combination

paradigm. Particularly, the widely used 2-layer GCN model is

X2 = σ (Ã · σ (Ã ·X0 ·W 1) ·W 2), (1)

Fig. 2. Xilinx Versal Adaptive Compute Acceleration Platforms (ACAPs).

where W l ∈ R
hl−1×hl

is the weight matrix of the lth layer and

X l is the feature vector of the lth layer. Ã = D−
1
2 ·A ·D− 1

2 .

Here A = A + I is the self-loop adjacency matrix; D is the

Laplacian matrix with Dii =
∑

j Aij ; and σ denotes non-

linear activation functions.

As introduced above, the key computation pattern in GCNs

is abstracted into a matrix chain multiplication A·X ·W . There

can be two alternative computation orders: Aggregation first

(A·X)·W , or Combination first A·(X ·W). Note that previous

works [12], [15] have shown that A is ultra-large and sparse, X
is moderate sparse, and W is generally small and dense, thus

the “Combination-first” approach can better utilize the sparsity

of matrix A to reduce arithmetic computation. Consequently,

our work H-GCN adopts this Combination-first approach.

B. Xilinx Versal ACAP

Figure 2 shows the Xilinx Versal ACAP architecture. ACAP

[16], [17] is a fully software-programmable, heterogeneous

compute platform that combines three components: (1) the

Processor System (PS)—Scalar Engines that include the ARM

processors, (2) Programmable Logic (PL)—Adaptable Engines

that include the programmable logic blocks and memory, and

(3) Artificial Intelligence Engines (AIEs) with leading-edge

memory and interfacing technologies.

The PL kernels can be C/C++ kernels or RTL kernels. Its

programming model is the same as traditional FPGA. Xilinx

AIEs are an array of VLIW processors with SIMD vector units,

which are highly optimized for compute-intensive applications.

The AIE array provides three levels of parallelism: (1) SIMD -

vector registers that allow multiple elements to be computed in

parallel, (2) instruction level - VLIW architecture that allows

multiple instructions to be executed in a single clock cycle, and

(3) multi-core - AIE array where up to 400 AIEs can execute

in parallel. The AIE kernels are C/C++ programs written

using specialized intrinsic calls [18] or AIE APIs [19] for the

VLIW processor. In this work, we mainly use intrinsic calls

to implement our AIE kernels and use the Vitis AI compiler

“AIE” to compile these codes.

In general, if we compare ACAP to a conventional comput-

ing system, the PS plays the role of CPU, the PL implements

all the FPGA functions, and the AIEs are responsible for the

computational acceleration like GPU. Thus, ACAP illustrates

a strong heterogeneity. However, there is no work that takes

advantage of such strong heterogeneity in GCN acceleration.

In addition, intrinsic calls or APIs are designed and optimized

201

for dense computation, so there is no prior work that optimizes

sparse computation on the AIEs.

III. RELATED WORK

There have been ongoing researches on designing dedi-

cated hardware architecture to accelerate GCNs. For example,

HyGCN [20] designs hybrid architecture with individual mod-

ules for Aggregation and Combination, respectively, to tackle

the hybrid computing pattern of Graph Neural Networks.

AWB-GCN [12] proposes an autotuning strategy to solve

the workload imbalance in GCN acceleration. BoostGCN

[13] uses hardware-aware partition centric feature aggregation

scheme to increase on-chip data reuse. I-GCN [21] reorders

graphs using islandization to improve the data locality so as

to achieve better on-chip data reuse and less off-chip mem-

ory access. Islandization targets low frequency, fine-grained,

high flexible PL devices and requires fine-grained hardware

architecture, which is not suitable for 2D-mesh AIEs. In the

evaluation, we will compare our work with HyGCN, AWB-

GCN, BoostGCN, and I-GCN.

Different from all prior work, our proposed H-GCN can

fully enable the computational power of the emerging hetero-

geneous compute platform—Xilinx Versal ACAP—for GCN

acceleration by leveraging its strong heterogeneity (e.g., ARM

processor, FPGA, and SIMD vector units). To fully explore the

capability of ACAP, we propose to mix sparse/dense systolic

tensor arrays to accelerate the hybrid computing pattern of

GCNs. We will describe our detailed design in Section IV.

In addition, there are a few applications that already lever-

aged Versal ACAPs. For example, Corradi and Jensen [22]

implemented real-time synthetic aperture and plane wave

ultrasound imaging on the AIEs. However, there has been no

work that explores the way to implement and optimize sparse

computation on AIEs.

IV. SYSTEM ARCHITECTURE

In this section, we introduce the architecture of our proposed

H-GCN, followed by the architecture of the sparse tensor

engine for feature aggregation. We then explain the design

of systolic tensor array for feature update in detail.

A. Overview of Our Proposed Architecture

Figure 3 shows the overview architecture of our proposed H-

GCN. It consists of a platform controller in processing system,

a sparse-dense matrix-matrix multiplications (SpMM) unit and

a PL controller in programmable logic, a sparse/dense systolic

tensor array and activation/exponential unit implemented in the

AIEs, an network on chip (NoC), four DDR4 SDRAM. The

platform controller is used to control the whole system, send

instructions to the SpMM unit, PL controller, and sparse/dense

systolic tensor array to control their executions, and collect

their statuses. Specifically, the PL controller controls SpMM

unit to cooperate with the sparse/dense systolic tensor arrays

to perform all GCN computations. It starts the SpMM unit

when it detects that the sparse or dense systolic tensor array

has generated enough data. We were inspired by MatRaptor

Fig. 3. Overview of our hardware system design.

[23] to design our SpMM unit, which adopts row-wise product

approach. The PL controller also includes a DDR controller

to work with the NoC to perform data reading and writing.

Moreover, the sparse/dense systolic tensor array, which is

interconnected side-by-side in a chain/ring fashion, targets the

acceleration of both dense and sparse matrix addition and

multiplication. It includes both sparse systolic tensor array and

dense systolic tensor array; the sparse systolic tensor array

is designed for sparse-dense matrix-matrix multiplications in

GCNs, while the dense systolic tensor array is mainly for

dense-dense matrix-matrix multiplications in GCNs. In addi-

tion, our system first performs graph reordering (Section IV-B)

to improve the data locality/reuse and then maps different

computations, i.e., dense matrix-matrix multiplication and our

optimized SpMM (Section IV-C and IV-D), onto different

computation engines, i.e., AIEs and PL, based on the matrix

density (will be detailed in Section V-A).

B. Input Graph Reordering

Graph reordering is to optimize both the computation order

and the data layouts (e.g., graph-level data locality [24]) by

modifying the order of vertices. Our goal of reordering is to

group the vertices with more shared neighbors together to im-

prove the data reuse when conducting aggregation reductions.

The reason reordering can provide better data reuse is that real-

world graphs show a “community” structure [25], in which

some vertices may have more common neighbors or have a

closer relationship with each other. Thus, by grouping them

together, the data locality during execution will be significantly

improved. Note that graph reordering does not change the

graph structure but only affects the execution order in the

graph.

In this work, we perform the graph reordering at the training

stage [26] for only once using mt-metis [27]. mt-metis is the

latest release of an OpenMP version of Metis partitioning and

ordering routines. More discussion about this overhead will be

in Section V.

202

Fig. 4. The effect of reordering on Cora (left) and Pubmed (right) [28].

Figure 4 shows the effect of reordering on the Cora and

Pubmed dataset [28]. It illustrates that most of the vertices

are concentrated in the diagonal area forming relatively dense

rectangular areas (each dense area is marked with an auxiliary

line in the figure). The effect of concentrating vertices in

rectangular areas has three advantages: (1) The potential of

data reuse is increased. (2) The denser the data distribution,

the higher the computational efficiency of the AIEs. (3) The

numbers of vertices in different rectangular areas are relatively

similar, which can effectively avoid the workload-imbalance

issue. After the reordering, to fully utilize the resources of PL

and AIEs, we will map the feature aggregation of the vertices

in the dense rectangular areas and in the remaining areas onto

the AIEs and the PL, respectively. Note that both computations

can be performed completely in parallel.

C. AIE-based Sparse Tensor Engine

As introduced in Section II-A, the computation mode of

GCNs is two-phase matrix multiplication. The essence of ma-

trix multiplication is multiply-accumulate (MAC) operations.

Matrix multiplication can be further decomposed into vector

operations. An AIE provides a floating-point 512 bits SIMD

vector unit, particularly two intrinsic calls, FPMAC and FPMUL,

for vector multiplication and accumulation operations on the

vector unit. FPMAC performs multiplication and accumulation

for single-precision real number real times floating-point vec-

tors. FPMUL does multiplication for single precision real times

real floating-point vectors. Those intrinsic calls are designed

and optimized for dense matrix multiplication.

After the graph reordering, the density of rectangular areas

is still lower than 10% based on our extensive profiling

results. Thus, we propose a lightweight strategy that enables

efficient SpMM on AIEs, which improves the computation ef-

ficiency by avoiding zeros be involved in the computation and

fully utilizes the high-frequency, single-instruction-multiple-

data AIEs. It is worth noting that, without our work, SpMM

on AIEs is much slower than running the corresponding dense

GEMM directly. Besides, we also use the row-wise SpMM

and the traditional sparse storage format CSR to increase the

generality of our sparse tensor engine.

Sparse row-wise product method is all the non-zero ele-

ments from a single row of matrix A are multiplied with

corresponding rows of matrix B, where the row index of

matrix B is the column index of the non-zero value from

matrix A. The results are accumulated in the corresponding

row of the output matrix (i.e., C[i; :] =
∑N

k=0 A[i; k] ·B[k; :])
[23]. Note that multiple rows can be computed in parallel.

Figure 5 illustrates an example of row-wise SpMM. The

challenges of implementing row-wise SpMM include: (1) The

number of the innermost loops is not fixed because the number

of non-zeros in each row of matrix A is not fixed. The compiler

cannot use pipeline or loop flatten to optimize such loops with

a variable number of loops, resulting in the final performance

being worse than the dense matrix multiplication with the same

size, even though we have theoretically reduced the amount

of calculations. (2) CSR format leads to random row data

accesses, which causes low memory bandwidth utilization.

Fig. 5. Row-wise sparse-dense matrix multiplication.

We note that although directly flatten the outermost loop

(each row of A corresponding to a loop) can make the

innermost loop fixed, each AIE has limited programming

space, and direct expansion will cause compilation failures

due to insufficient programming space. To solve this issue, we

design a lightweight strategy (shown in Figure 6) that divides

the outermost loop into multiple loops with fixed number of

innermost loops. This allows the compiler to fully optimize

both loops. We propose to use “moving average” to divide

the rows of matrix A into multiple groups. Our goals include

(1) each group contains as many rows as possible to save

programming space, and (2) each group has as little padding

as possible to reduce unnecessary calculations on zeros.

Fig. 6. Grouped sparse-dense matrix and corresponding program.

We describe our proposed grouping algorithm in Algorithm

1 in detail. We do not need to calculate the non-zeros of each

203

Algorithm 1: Proposed grouping algorithm.

Inputs : A: input array; nnzs rows: non-zeros of each row;
rows: the number of rows of A; τ : threshold of changing
group

Outputs: group dic: dictionary of group information; density:
density after padding

1 moving ave ← MovingAverage(); group dic ← dict();
idx g ← 0

2 for i ← 0 to rows− 1 do
3 if not exist(nnzs rows) then
4 nnz row i ← count nonzero(A[i, :])
5 else
6 nnz row i ← nnzs rows[i]
7 end
8 pre ave ← cur ave
9 cur ave ← moving ave.update(nnz row i)

10 if pre ave == 0 then
11 pre ave ← cur ave # Prevent division by 0.
12 end
13 if abs(cur ave− pre ave)/pre ave ≥ τ then
14 group dic[idx g] ← g; g ← [] # update group.
15 moving ave.reset(); moving ave.update(nnz row i)
16 else
17 g.append(i)
18 end
19 end
20 widensity ← calc density(group dic)

line if nnzs rows has already existed (lines 3-7). We use

pre ave to record the previous moving average, and cur ave
saves the current moving average (lines 8-9). Moreover, we

also need to prevent dividing by zero since RESET() function

will set cur ave to zero (line 15). If the change of the moving

average exceeds threshold τ , we put the data from row j to

row i−1 into a group, and we will pad each row in this group

to ensure the same number of non-zero elements in each row,

where j is the first row of this group (lines 13-18).

D. Sparse Systolic Tensor Array on AIEs

Two-dimensional (2D) systolic array is a pipelined 2D

array of processing elements (PEs). Classical systolic array is

generalized into a family of systolic tensor array by replacing

the traditional scalar PEs with tensor PEs (TPEs). Each TPE

is responsible for processing one tile of tensor or matrix.

When using systolic tensor array to perform matrix operations,

TPEs in the same row are required to perform exactly the

same calculation mode (e.g. MAC) because one tile of data

will flow to each TPE in the same row in turn. It is very

easy to satisfy such requirements when performing dense

matrix multiplication, because each TPE only needs to perform

vector-based MAC operations. But it is difficult to meet such

requirements when performing SpMM using systolic tensor

array, since each tile has a completely different number of

non-zero element and computational model.

To solve this issue, we propose an efficient method to

process tiles of a sparse matrix to enable mapping SpMM

onto the systolic tensor array automatically. Our idea is to pad

the tiles in the same row as little as possible to make them

have the same calculation pattern. Algorithm 2 describes the

simplified workflow of automatic pre-processing of tiles and

corresponding tensor PEs generation. We generate different

sparse or dense codes for the systolic tensor PEs in the same

Algorithm 2: Proposed automatic tensor PEs genera-

tion algorithm.

Inputs : A: input sparse matrix; rows: the number of rows of A;
cols: the number of columns of A; tile size: tile size; δ:
ratio by which the number of non-zeros changes. p:
coverage percentage; d: density threshold of generating
dense tensor PE.

Outputs: Sparse or dense code for systolic tensor PEs in the same
row.

1 tiles row = rows
tile size

; tiles col = cols
tile size

2 for i ← 0 to tiles row do
3 nnzs rows ← [0]× tile size
4 for j ← 0 to tile size do
5 nnzs row j ← [0]× tiles col
6 for k ← 0 to tiles col do
7 nnzs row j[k] ←

count nonzero(A[i× tile size+ j, k × tile size :
(k + 1)× tile size])

8 end
9 ave nnz ← sum(nnzs row j)/len(nnzs row j)

10 max nnz ← max(nnzs row j)
11 if max nnz

ave nnz
≥ δ then

12 nnzs rows[j] ← find nnz(nnzs row, p)
13 else
14 nnzs rows[j] ← max nnz
15 end
16 end
17 group dic, density ← grouping(nnzs rows)
18 if density ≥ d then
19 gen dense tensor PE(i)
20 else
21 gen sparse tensor PE(i, group dic)
22 end
23 end

row as the distributions of non-zeros in different tiles are

different. Specifically, (1) we count the non-zeros of tiles in the

same row (lines 6-8). (2) We calculate the average non-zeros

(ave nnz) and maximum non-zeros (max nnz) of all tiles

in the same row (lines 9-10). (3) We attempt to find a suitable

number of non-zeros (line 12) for all tiles in the same row if

the difference between ave nnz and max nnz is larger than

the pre-defined ratio δ; if we cannot find a suitable number,

we will select max nnz as ideal non-zeros for all tiles in

the same row (line 14). The purpose of this step is to reduce

padding as much as possible. The function FIND NNZ is to

find the number of non-zeros which covers p percentage of all

tiles in the same row. The remaining non-zeros are calculated

by SpMM in PL. (4) We use the grouping algorithm described

in Algorithm 1 to group the rows (enable efficient SpMM on

each AIE) after generating the number of non-zeros in each

row (line 17), and obtain the final density after padding. (5) We

directly use dense tensor PE for those tiles if their final density

is larger than d; otherwise, we use sparse tensor PE to process

those tiles (lines 18-22). Based on our profiling experiments,

there is no speedup of using spare tensor PE when density

higher than 50% (shown in Figure 8).

E. Pipelining SpMM Chains
Intra-Layer SpMM Pipelining. As described in Section

II-A and Equation 1, SpMM chains A · (X ·W) are executed

on three different hardware, i.e., dense systolic tensor array,

sparse systolic tensor array, and PL for SpMM. Figure 7

illustrates how to map such computation pattern onto the

204

Fig. 7. Our proposed computation mapping strategy and pipelining.

AIEs. Note that “:” means all indices along this axis. For

instance, B[:, 0:32] means a slice from B containing 32

columns across all the rows. Note that there are 400 AIEs

distributed in 8 rows and 50 columns. The upper 4 lines of

the AIEs are used to implement the mixed sparse or dense

systolic tensor PEs (STPEs/TPEs) to perform the computation

of A · B. We use Algorithm 2 to automatically generate

corresponding STPEs/TPEs based on the sparsity. According

to our experiment, over 90% of generated systolic tensor

PEs are sparse. The remaining 4 lines of the AIEs are used

to implement the dense systolic tensor PEs to perform the

computation of X ·W , where B is the intermediate variable

generated by X ·W .

The tile size (i.e., the size of a tile in the blocked matrix-

matrix multiplication) of A·B (SpMM) is 64×64. The reasons

for choosing this tile size are: (1) A is represented in a CSR

format, so such a tile of A can be completely stored in the on-

chip memory of an AIE. (2) Feeding a large amount of data

can ensure the computation efficiency of the AIE. The tile

size of X ·W (dense matrix-matrix multiplication) is 32×32,

which is the maximum size that an AIE can hold after forming

systolic tensor array. The remaining 4 lines of the AIEs will be

reconfigured to STPEs/TPEs after finishing the entire X ·W ,

maximizing the use of all AIE resources. Note the matrix size

equals the tile size multiplied by the number of tensor PEs.

Note that A is constant during the inference of a certain

graph, once a partial result pB of B is calculated, we can

start the multiplication of pB with A on STPEs/TPEs and PL

for SpMM immediately without waiting for the entire X ·W
to finish. Therefore, we can exploit the parallelism between

consecutive SpMMs–X ·W and A·(X ·W)—in a layer through

fine-grained pipelining, as shown in Figure 7. When generating

a tile (i.e., 32×32) of intermediate data B, we perform A ·B
immediately. This pipelining design has two major benefits:

(1) It gains extra parallelism and reduce the overall latency.

(2) It avoid a part of hardware stalls.

V. EXPERIMENTAL EVALUATION

In this section, we first introduce the experimental setup

and analyze the performance impact of graph reordering and

mapping methodologies. Then, we compare the performance

of H-GCN with the state of the art GCN accelerators.

A. Experimental Setup

Dataset. Our Graph accelerator evaluation covers a widely

used spectrum of mainstream graph datasets [21], [29] includ-

ing Cora [30], Citeseer [30], Pubmed [30], Flickr [31], Reddit

[31], Yelp [31], and AmazonProducts (Amazon) [31]. Details

of these datasets are listed in Table I.

GCN Model. Similar to the previous works [12], [20], we

evaluate our solution on two-layer Vanilla-GCN model [5]

with the hidden dimension of 128.

Our Platform. We use Xilinx Versal VCK5000 (data center

development card) [32] and its development kit for implemen-

tation. VCK5000 features the Xilinx Versal ACAP XCVC1902

device. XCVC1902 device contains 400 AIEs distributed in 8

rows and 50 columns. For PL resources, XCVC1902 device

includes 1,968 DSP engines, 1,799,680 CLB Flip-Flops (FFs),

899,840 LUTs, and 34 MB Block RAM. VCK5000 board

is equipped with four discrete DDR4 with 72-bit memory

interface. The external memory has 100 GB/s peak memory

bandwidth with four memory channels. Each channel can

provide 25 GB/s peak memory bandwidth. We compile our

design using Vitis unified software platform 2020.2.

Baseline Platforms. We compare our H-GCN with two ad-

vanced, well-optimized geometric deep learning frameworks,

i.e., PyG [33] and DGL [34], on general-purpose processors

(i.e., CPU and GPU) and the state-of-the-art GCN accelerators,

i.e., HyGCN [20], AWB-GCN [12], I-GCN [21], and Boost-

GCN [13]. The CPU platform is equipped with two 28-core

Intel Xeon Gold 6238R @2.2GHz processors with 384 GB

DRAM. The GPU platform is equipped with an NVIDIA RTX

2060 SUPER with 8 GB memory. We denote PyG and DGL

running on CPU and GPU platforms as PyG-CPU, DGL-CPU,

PyG-GPU, and DGL-GPU, respectively. PyTorch version and

CUDA version are 1.11.0 and 11.3, respectively.

Implementation Details. First, we map different partitioned

computations to different engines as follows: (1) when the

density is higher than 50%, we map the computation of tightly

clustered subgraphs onto dense AIEs; when the density is

lower than 50% but higher than 1.0%, we map the computation

of loosely clustered subgraphs onto sparse AIEs; and when

the density is lower than 1.0%, we map the computation of

TABLE I
TEST GRAPH DATASETS.

Dataset # Vertices A’s Density # Features

Cora 2,708 0.14% 1,433
Flickr 89,250 0.011% 500

Citeseer 3,327 0.08% 3,703
Reddit 232,965 0.04% 602

Pubmed 19,717 0.023% 500
Yelp 716,847 0.0027% 300

Amazon 1,569,960 0.011% 200

205

Fig. 8. Speedups of sparse tensor engine with different grouping strategies under different matrix sizes.

TABLE II
COMPARISON OF INFERENCE TIMES (T) IN μS AND ENERGY EFFICIENCY (E) IN GRAPHS/KJ. OOM IS SHORT FOR “OUT OF MEMORY”.

Dataset PyG-CPU DGL-CPU PyG-GPU DGL-GPU HyGCN AWB-GCN I-GCN BoostGCN H-GCN (our work)
T E T E T E T E T E T E T E T E T E

Flickr 3.5E5 17.37 2.4E5 25.43 1.6E4 3.51E2 1.1E4 5.1E2 N/A N/A N/A N/A N/A N/A 2.01E4 N/A 1.02E4 1.0E3
Reddit 6.5E6 0.83 5.4E5 11.26 OoM N/A 6.6E4 87.07 2.89E5 5.17E2 5.0E4 1.5E2 4.6E4 2.2E2 9.81E4 N/A 4.18E4 2.46E2

Yelp 5.9E6 1.03 8.6E5 7.09 OoM N/A 2.5E5 23.12 N/A N/A N/A N/A N/A N/A 1.93E5 N/A 1.2E5 85.85
Amazon OoM N/A 2.9E6 2.1 OoM N/A OoM N/A N/A N/A N/A N/A N/A N/A 7.94E5 N/A 5.15E5 19.93E

TABLE III
COMPARISON OF INFERENCE TIMES (T) IN μS AND ENERGY EFFICIENCY

(E) IN GRAPHS/KJ.

Method Cora Citeseer Pubmed
T E T E T E

PyG-CPU 1.1E4 5.36E2 1.7E4 3.65E2 5.7E4 1.07E2
DGL-CPU 7.5E3 8.08E2 2.4E4 2.50E2 2.9E4 2.07E2
PyG-GPU 2.2E3 2.55E3 2.7E3 2.16E3 3.7E3 1.53E3

DGL-GPU 4.1E3 1.39E3 4.6E3 1.23E3 4.96E3 1.15E3
H-GCN 1.1E2 9.18E4 2.9E2 3.56E4 1.03E3 9.93E3

scattered nodes onto PL. Second, we follow three steps to

conduct this allocation: (1) we compile the code of AIEs for

the computation of clustered or loosely clustered nodes (after

reordering) using the Vitis AI compiler; (2) we compile the

HLS kernels of PL for the computation of scattered nodes

using the v++ command; and (3) we use the v++ command

to link the compiled objects with the target platform (i.e.,

VCK5000). Third, the frequency of NoC, PL, and AIEs is

800 MHz, 273 MHz, and 1GHz, respectively. The hardware

resource utilization and frequency are obtained from the gen-

erated report by place-and-route. Note that the frequencies of

PL and NoC are defined by our design choice, while AIEs—-

an array of VLIW processors with SIMD vector units—-have

a fixed frequency of 1 GHz. Fourth, the SpMM module only

accounts for 15.3%, 84.6%, 14.7%, and 26.6% of BRAM,

DSP, FFs, and LUTs, respectively. Last, the evaluation results

shown in the following discussion are based on simulations.

Xilinx provides a profiling tool called “Vitis Analyzer” [35],

which can accurately model the execution time of AIEs.

B. Speedup of Sparse Tensor Engine

First, we evaluate the impact of the grouping algorithm on

the overall speedup. We perform the experiments on different

matrix sizes and densities as illustrated in Figure 8. Since an

AIE can only hold up to 64 × 64 + 64 × 8 floating-point

numbers, we test matrix sizes up to 64. Compared to the

original dense algorithm, our grouping algorithm (i.e., CSR-

fixed-nnz) provides 2.9×, 2.1×, and 2.5× speedup over the

original dense method on matrices of size 64, 32, and 16,

respectively, when density is 0.1.

The row-wise SpMM with variable loops (i.e., CSR-

variable-nnz), however, is much slower than the dense method

even though we theoretically avoid computation on zeros. This

is because the Vitis AIE compiler cannot use pipelining or loop

flattening to optimize those variable loops.

The speedup gradually decreases to 1 as the density in-

creases, and the speedup disappears when the density is higher

than 50%. The reasons are the increase in non-zero elements

leads to increases in both the overhead of random access data

and the computational delay. Thus, we switch to dense matrix-

matrix multiplication when the density is higher than 50%.

We also evaluate the impact of sparsity on the effective

FLOPS of an AIE. The effective FLOPS is 7.1 GFLOPS per

AIE for dense matrix multiplication. We calculate the effective

FLOPS based on nonzeros. FLOPS will increase as the density

increases. This is because SpMM needs to convert to dense

vector operations for executing on AIEs. For example, the

effective FLOPS per AIE for SpMM of 32×32 by 32×32 is

1.6 GFLOPS, 2.5 GFLOPS, 3.1 GFLOPS, 3.4 GFLOPS, 3.5

GFLOPS, and 3.7 GFLOPS, when the density is 10%, 20%,

30%, 40%, 50%, and 60%, respectively.

C. Comparison with State of The Art

We evaluate the inference latency, and energy efficiency

of H-GCN and compare it with other approaches (including

software and accelerator solutions).

First, the “T” columns in Table II show that H-GCN

outperforms the best accelerator I-GCN by 1.1× in terms

206

of inference latency. Moreover, compared with other prior

accelerators, H-GCN provides speedups of 1.5×∼2.3× (1.9×
on average) over BoostGCN, 1.2× over AWB-GCN, and 6.9×
over HyGCN. In addition, H-GCN significantly outperforms

PyG and DGL on both CPU and GPU: it achieves average

speedups of 79.5× over PyG-CPU, 12.2× over DGL-CPU,

1.59× over PyG-GPU, and 1.58× over DGL-GPU.

The performance improvement is because of (1) the better

data locality and hence higher data reuse after the graph

reordering, (2) the full use of AIEs via efficient sparse systolic

tensor computation, and (3) our proposed scheduling approach

for reducing the number of stalls in the overall pipeline.

The “E” columns in Table II show that H-GCN is 1.12×
and 1.64× more energy-efficient than I-GCN and AWB-GCN,

respectively, which were previously the most energy-efficient

solutions. This is due to the ACAP’s more efficient dynamic

power management [36]. Note that we measure the energy

efficiency of H-GCN by using Xilinx Power Estimator [36].

For relatively small graphs, dataflow accelerators such as

I-GCN normally preload the graph data into their on-chip

buffer and thereby avoid off-chip data access achieving lower

inference latency. Therefore, we compare H-GCN with CPU

and GPU platforms for Cora, Citeseer, and Pubmed. Table III

compares inference latency and energy efficiency of relatively

small graphs in CPU and GPU platforms. It achieves average

speedups of 71.1× over PyG-CPU, 59.8× over DGL-CPU,

10.9× over PyG-GPU, and 19.2× over DGL-GPU.

D. Performance Breakdown

To demonstrate that the performance improvement is due to

the proposed method rather than the graph reordering, we map

the computation of dense rectangular areas into AIEs without

the approach (using dense systolic tensor array). The inference

time of Cora, Citeseer, Pubmed, Flickr, Reddit, Yelp, and

Amazon increases by 2.0×, 2.9×, 4.3×, 5.9×, 1.9×, 4.3×,

and 3.9×, respectively.

We compare the performance of SpMM (i.e., 64×64 by

64×32) on PL and AIEs with different sparsities. Specifically,

when the densities are 0.1%, 0.5%, 1.0%, 5.0%, and 10.0%,

the run times of PL are 0.18 μs, 0.88 μs, 1.75 μs, 8.41 μs,

and 16.82 μs, respectively. The run times of AIE are 1.1 μs,

2.07 μs, 3.84 μs, 7.97 μs, and 10.44 μs, respectively. This

illustrates that SpMM on PL is faster than on AIE when the

density is less than 1.0%. Thus, we propose to use “density”

as our criterion to determine whether to map SpMM onto PL

or AIE.

In addition, we propose to prefetch and cache data through

the PL controller because the theoretical PL-AIE bandwidth

can reach 1.3 TB/s, whereas AIE-NoC bandwidth is only

around 12 GB/s. Our evaluation shows that PL-DDR band-

widths of Cora, Citeseer, Pubmed, Flickr, Reddit, Yelp, and

Amazon are 72.6 GB/s, 71.9 GB/s, 69.3 GB/s, 81.7 GB/s,

79.0 GB/s, 74.5 GB/s, and 75.7 GB/s, respectively. Note that

since Xilinx provides DDR controller IP, we implement our

own DDR controller on PL. To calculate the throughput we

use RTL simulations to measure the total clock cycles for

transferring the graph data.

E. Overhead of Graph Reordering

Finally, we evaluate the time overhead of the graph re-

ordering, as shown in Table IV. Note that as aforementioned,

the graph reordering can be integrated into the training pro-

cess [26], so we take this overhead as the offline overhead.

The OpenMP version of Metis takes advantage of multiple

cores/threads in the CPU to reorder large graphs in parallel.

For the Amazon dataset with 1,569,960 vertices, the graph

reordering on 56 CPU cores only takes 7.31 seconds.

TABLE IV
GRAPH REORDERING TIME (mS).

Cora Citeseer Pubmed Flickr Reddit Yelp Amazon

11.5 11.2 33.6 193 648 1650 7310

Since graph can evolve dynamically, especially for inductive

GNNs, we will support this online graph reordering in our

future work. Specifically, we plan to use the host’s CPU to

reorder the initial graph offline (by only once) and the ACAP’s

ARM CPU to fine-tune the order online (by multiple times) as

the graph evolves. This will help eliminate the communication

cost of transferring node indices between the host and ACAP.

VI. CONCLUSION AND FUTURE WORK

The heterogeneity of graph structure is a significant factor in

limiting the performance of GCN inference. Moreover, since

typical graphs consist of tightly clustered subgraphs, loosely

clustered subgraphs, and scattered nodes, it is not possible

to use a unified hardware architecture/device to accelerate

all parts of a GCN computation. To solve these issues, we

propose H-GCN, an ultra-efficient, systolic tensor-based hard-

ware accelerator, with heterogeneous computation paradigm

to corresponding to GCNs. We leverage the heterogeneity of

the Xilinx Versal ACAP to process those three types of sub-

graphs efficiently. Our broad experiments have demonstrated

that, compared with a state-of-the-art FPGA accelerator, H-

GCN achieves speedups of 1.1∼2.3×. In the future work,

we will address computation of gradually evolving GCNs by

exploiting online graph reordering by leveraging the ARM

processors in the Versal ACAPs.

ACKNOWLEDGMENT

This work was partially supported by the National Science

Foundation through awards OAC-2034169 and CCF-1919130.

This work was also partially supported by the Compute-

Flow-Architecture (CFA) project under PNNL’s Data-Model-

Convergence (DMC) LDRD Initiative. The Pacific Northwest

National Laboratory is operated by Battelle for the U.S.

Department of Energy under Contract DE-AC05-76RL01830.

207

REFERENCES

[1] F. Zhou, C. Cao, K. Zhang, G. Trajcevski, T. Zhong, and J. Geng,
“Meta-gnn: On few-shot node classification in graph meta-learning,” in
Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, 2019, pp. 2357–2360.

[2] M. Zhang and Y. Chen, “Link prediction based on graph neural net-
works,” Advances in Neural Information Processing Systems, vol. 31,
pp. 5165–5175, 2018.

[3] F. Errica, M. Podda, D. Bacciu, and A. Micheli, “A fair compari-
son of graph neural networks for graph classification,” arXiv preprint
arXiv:1912.09893, 2019.

[4] X. Zhang, H. Liu, Q. Li, and X.-M. Wu, “Attributed graph clustering via
adaptive graph convolution,” arXiv preprint arXiv:1906.01210, 2019.

[5] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[6] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proceedings of the 31st International
Conference on Neural Information Processing Systems, 2017, pp. 1025–
1035.

[7] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein, “Cayleynets:
Graph convolutional neural networks with complex rational spectral
filters,” IEEE Transactions on Signal Processing, vol. 67, no. 1, pp.
97–109, 2018.

[8] X. Li, X. Yan, Q. Gu, H. Zhou, D. Wu, and J. Xu, “Deepchemstable:
chemical stability prediction with an attention-based graph convolution
network,” Journal of chemical information and modeling, vol. 59, no. 3,
pp. 1044–1049, 2019.

[9] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M. Bron-
stein, “Geometric deep learning on graphs and manifolds using mixture
model cnns,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 5115–5124.

[10] L. Yao, C. Mao, and Y. Luo, “Graph convolutional networks for text
classification,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 33, no. 01, 2019, pp. 7370–7377.

[11] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry, “Challenges in
parallel graph processing,” Parallel Processing Letters, vol. 17, no. 01,
pp. 5–20, 2007.

[12] T. Geng, A. Li, R. Shi, C. Wu, T. Wang, Y. Li, P. Haghi, A. Tumeo,
S. Che, S. Reinhardt, and M. Herbordt, “AWB-GCN: a graph convolu-
tional network accelerator with runtime workload rebalancing,” in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2020, pp. 922–936.

[13] B. Zhang, R. Kannan, and V. Prasanna, “Boostgcn: A framework
for optimizing gcn inference on fpga,” in 2021 IEEE 29th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 2021, pp. 29–39.

[14] H. Zeng and V. Prasanna, “Graphact: Accelerating gcn training on cpu-
fpga heterogeneous platforms,” in Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 2020,
pp. 255–265.

[15] S. Liang, Y. Wang, C. Liu, L. He, L. Huawei, D. Xu, and X. Li, “Engn:
A high-throughput and energy-efficient accelerator for large graph neural
networks,” IEEE Transactions on Computers, 2020.

[16] B. Gaide, D. Gaitonde, C. Ravishankar, and T. Bauer, “Xilinx adaptive
compute acceleration platform: Versaltm architecture,” in Proceedings of
the 2019 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 2019, pp. 84–93.

[17] xilinx, https://www.xilinx.com/products/silicon-devices/acap/versal.
html, 2022, online.

[18] Xilinx, https://www.xilinx.com/html docs/xilinx2021 2/aiengine
intrinsics/intrinsics/index.html, 2022, online.

[19] ——, https://www.xilinx.com/html docs/xilinx2021 2/aiengine api/
aie api/doc/index.html, 2022, online.

[20] M. Yan, L. Deng, X. Hu, L. Liang, Y. Feng, X. Ye, Z. Zhang, D. Fan,
and Y. Xie, “Hygcn: A gcn accelerator with hybrid architecture,” in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2020, pp. 15–29.

[21] T. Geng, C. Wu, Y. Zhang, C. Tan, C. Xie, H. You, M. Herbordt,
Y. Lin, and A. Li, “I-GCN: a graph convolutional network accelerator
with runtime locality enhancement through islandization,” in MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitecture,
2021, pp. 1051–1063.

[22] G. Corradi and J. A. Jensen, “Real time synthetic aperture and plane
wave ultrasound imaging with the xilinx versal™ simd-vliw architec-
ture,” in 2020 IEEE International Ultrasonics Symposium (IUS). IEEE,
2020, pp. 1–4.

[23] N. Srivastava, H. Jin, J. Liu, D. Albonesi, and Z. Zhang, “Matraptor:
A sparse-sparse matrix multiplication accelerator based on row-wise
product,” in 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2020, pp. 766–780.

[24] J. Arai, H. Shiokawa, T. Yamamuro, M. Onizuka, and S. Iwamura,
“Rabbit order: Just-in-time parallel reordering for fast graph analysis,”
in 2016 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS). IEEE, 2016, pp. 22–31.

[25] M. Girvan and M. E. Newman, “Community structure in social and
biological networks,” Proceedings of the national academy of sciences,
vol. 99, no. 12, pp. 7821–7826, 2002.

[26] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh,
“Cluster-gcn: An efficient algorithm for training deep and large graph
convolutional networks,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
2019, pp. 257–266.

[27] D. LaSalle and G. Karypis, “Multi-threaded graph partitioning,” in
2013 IEEE 27th International Symposium on Parallel and Distributed
Processing. IEEE, 2013, pp. 225–236.

[28] A. Bojchevski and S. Günnemann, “Deep gaussian embedding of
graphs: Unsupervised inductive learning via ranking,” arXiv preprint
arXiv:1707.03815, 2017.

[29] B. Zhang, H. Zeng, and V. Prasanna, “Hardware acceleration of large
scale gcn inference,” in 2020 IEEE 31st International Conference
on Application-specific Systems, Architectures and Processors (ASAP).
IEEE, 2020, pp. 61–68.

[30] Z. Yang, W. Cohen, and R. Salakhudinov, “Revisiting semi-supervised
learning with graph embeddings,” in International conference on ma-
chine learning. PMLR, 2016, pp. 40–48.

[31] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graph-
saint: Graph sampling based inductive learning method,” arXiv preprint
arXiv:1907.04931, 2019.

[32] VCK5000 Versal Development Card, https://www.xilinx.com/products/
boards-and-kits/vck5000.html, 2022, online.

[33] M. Fey and J. E. Lenssen, “Fast graph representation learning with
pytorch geometric,” arXiv preprint arXiv:1903.02428, 2019.

[34] M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, M. Li, J. Zhou,
Q. Huang, C. Ma et al., “Deep graph library: Towards efficient and
scalable deep learning on graphs.” 2019.

[35] Xilinx, https://docs.xilinx.com/r/en-US/ug1076-ai-engine-environment/
Compiling-and-Running-the-Graph-from-the-Command-Line, 2022,
online.

[36] ——, https://docs.xilinx.com/r/2020.2-English/
ug1275-xilinx-power-estimator-versal/AI-Engine-Power, 2022, online.

208

