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ABSTRACT
Emerging high-performance computing platforms, with large
component counts and lower power margins, are anticipated
to be more susceptible to soft errors in both logic circuits and
memory subsystems. We present an online algorithm-based
fault tolerance (ABFT) approach to efficiently detect and
recover soft errors for general iterative methods. We design
a novel checksum-based encoding scheme for matrix-vector
multiplication that is resilient to both arithmetic and mem-
ory errors. Our design decouples the checksum updating
process from the actual computation, and allows adaptive
checksum overhead control. Building on this new encod-
ing mechanism, we propose two online ABFT designs that
can effectively recover from errors when combined with a
checkpoint/rollback scheme. These designs are capable of
addressing scenarios under different error rates. Our ABFT
approaches apply to a wide range of iterative solvers that
primarily rely on matrix-vector multiplication and vector
linear operations. We evaluate our designs through com-
prehensive analytical and empirical analysis. Experimental
evaluation on the Stampede supercomputer demonstrates
the low performance overheads incurred by our two ABFT
schemes for preconditioned CG (0.4% and 2.2%) and precon-
ditioned BiCGSTAB (1.0% and 4.0%) for the largest SPD
matrix from UFL Sparse Matrix Collection. The evaluation
also demonstrates the flexibility and effectiveness of our pro-
posed designs for detecting and recovering various types of
soft errors in general iterative methods.
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1. INTRODUCTION
Supercomputers are being built with an increasing number

of complex components, each of which has growing on-chip
transistor density [20]. Together with a renewed emphasis
on limiting power and energy consumption, this is antici-
pated to result in these systems being increasingly suscepti-
ble to soft errors [5, 15], errors that do not lead to noticeable
system crashes, but to silent data corruption (SDC). This
phenomenon has already been observed on several real-world
leadership-class supercomputers [5, 15].

Algorithm-based fault tolerance (ABFT) is an approach
to detect and possibly correct errors at a lower cost than
double- or triple-modular redundancy. These approaches
exploit the characteristics of an algorithm to encode a small
amount of redundancy into the computation. This redun-
dancy is later used to detect and correct errors. In this
paper, we present an ABFT approach to tolerate soft errors
in general iterative methods. These methods, used in a wide
variety of applications [1], primarily consist of matrix-vector
multiplication (MVM) and vector linear operations (VLOs).

Novel checksum-encoding scheme. The effectiveness and
efficiency of an ABFT scheme depends on the checksum-
encoding mechanism employed and its coverage in terms of
number and type of errors detected. Much existing work
on ABFT strategies is built on a checksum-encoding scheme
designed for matrix-matrix multiplication [11]. While this
scheme has been extended to cover a wide range of related
algorithms [18, 19, 23], we show that it is not sufficient to
construct ABFT schemes for matrix-vector multiplication
(MVM) due to its inability to detect soft errors if the input
vector is corrupted. We present a novel checksum-encoding
scheme that can tolerate soft errors in both logic circuits
(e.g., arithmetic operations) and the memory subsystems
(e.g., memory, cache and register bit-flips). Our new scheme



separates the checksums from their corresponding encoded
matrix and vectors, enabling checksum updates across mul-
tiple operations to improve overall performance. We show
that our checksum scheme also can be used in the context
of preconditioners employed in iterative methods.

Flexible detection latency. Error detection latency refers
to the latency between the manifestation of an error and its
detection. In general, longer error detection latencies enable
reduced detection costs but might lead to increased recov-
ery overhead due to the error corrupting a larger fraction
of the application state. ABFT schemes for iterative meth-
ods often require error detection after each matrix-vector
multiplication (MVM) or each iteration. We show that our
checksum scheme supports eager (immediate) and lazy (after
several iterations) error detection by detecting an arbitrary
number of errors across multiple operations.

Two-level ABFT. ABFT schemes often employ redundancy
proportional to the number of errors to be detected and cor-
rected. This requires careful consideration of anticipated
error rates and performance penalties proportional to the
number of errors that need to be corrected. Alternatively,
checkpoint-rollback incurs significant recovery penalties to
recover even from one error, say impacting one arithmetic
operation. We present a two-level ABFT algorithm that
combines the best aspects of both strategies. In the most
compute-intensive component of iterative methods, the matrix-
vector multiplication (MVM), we employ a low-cost inner-
level recovery scheme to efficiently correct one error and de-
tect multiple errors. When multiple errors are detected, the
algorithm resorts to immediate rollback. Multiple errors in
an MVM as well as errors in the VLOs are protected by an
outer-level rollback strategy that is invoked every few itera-
tions. This two-level approach protects the most compute-
intensive parts efficiently while ensuring sufficient coverage
for other parts of the computation.

Contributions. The proposed ABFT schemes in this paper
are applicable to all the iterative methods constructed from
matrix-vector multiplication and vector linear operations.
In particular, all the Krylov solvers, including Richardson,
Chebyshev, CG variants, quasi-minimal residual (QMR),
conjugate residuals (CR), generalized conjugate residuals
(GCR), variations of GMRES, minimum residual (MINRES),
SYMMLQ, and LSQR, can be protected using the presented
ABFT approaches.

We compare our online ABFT designs with the state-of-
the-art techniques and demonstrate benefits in terms of cov-
erage for different types of soft errors, generality for address-
ing iterative methods, and overhead introduced. We also
evaluate the overall performance of our two schemes (i.e., ba-
sic online ABFT and two-level online ABFT ) under various
error scenarios on a leadership-class supercomputer. Exper-
imental results show that our proposed designs encounter
trivial overhead for both erroneous (single error or multiple
errors) and error-free execution. Additionally, we compare
the two schemes through theoretical and empirical analysis,
demonstrating the scenario under which each scheme should
be applied to achieve the better overall performance.

The primary contributions of this paper are:

• A novel checksum encoding scheme for matrix-vector
multiplication and preconditioners, separating the check-
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Figure 1: Main loops of several representative iterative methods:
Jacobi, preconditioned conjugate gradient (PCG), preconditioned
Chebyshev.

sums from their corresponding encoded matrix and
vectors, leading to schemes that compute the output
checksum directly from the inputs’ checksums;
• Proof that the new checksum scheme can detect soft

errors in both the logic circuits and the memory sub-
system;
• An ABFT scheme for iterative methods that allows the

errors to be detected eagerly or lazily;
• A technique to efficiently correct one error and detect

the presence of multiple errors in a vector;
• Two online ABFT designs based on the new encoding

mechanism;
• Detailed theoretical and empirical comparison between

the proposed designs and state-of-the-art approaches.

2. ALGORITHM-BASED FAULT
TOLERANCE FOR ITERATIVE METH-
ODS

Iterative methods are widely used for solving systems of
equations or computing eigenvalues of large sparse matri-
ces. The key feature of iterative methods is the use of
matrix-vector multiplication (MVM) to iteratively compute
approximations to the solution vector until desired accuracy
is achieved. Figure 1 shows three representative iterative
methods: Jacobi, preconditioned CG, and preconditioned
Chebyshev. As illustrated, iterative methods consist of a
few key operations: matrix-vector multiplications (MVM),
vector linear-operations (VLOs), and solving preconditioned
systems (PCO). Among them, MVM and PCO consume the
largest fraction of the total computation time, making them
particularly vulnerable to soft errors.

Algorithm-based fault tolerance (ABFT) techniques ex-
ploit specific algorithmic properties of a given computation
to detect and possibly locate/correct errors. More com-
monly, ABFT techniques for matrix computations augment
the input matrices with a checksum computed from the rows
or columns of the matrices. It is then shown that performing
a matrix operation on this augmented matrix automatically
computes the checksum for the output matrix as part of the
computation, as shown in Figure 2(a). Any error in the com-
putation will result in the encoding relationship between the
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Figure 2: Checksum encoding mechanisms discussed in this pa-
per: (a) Traditional checksum; (b) Traditional checksum applied
to matrix-vector multiplication; (c) Our proposed checksum en-
coding; (d) Separation scheme of our new checksum; (e) Multiple-
checksums encoding for our new checksum.

output matrix and its checksum being violated. Variants of
this scheme have been designed to verify the encoding rela-
tionship online—at intermediate steps within the execution
rather than at the end.

The notion of ABFT was introduced by Huang and Abra-
ham [11] in the form of a checksum-based approach to verify
matrix-matrix multiplication and LU decomposition. Sev-
eral subsequent ABFT techniques employ the same encoding
strategy [16, 18, 19, 23] illustrated for matrix A as follows:

A
encode−−−−→ A∗ :=

[
A
cTA

]
where c is a predefined vector with all non-zero entries and
cTA is matrix A’s checksum. A matrix-vector multiplica-
tion y = Ax is replaced with a multiplication of the en-
coded operands, y∗ = A∗x, shown in Figure 2(b). We use
checksum(y) to denote the checksum computed in y∗ as
part of the operation. In this example, checksum(y) is
the last entry of the vector y∗. In the absence of faults,
checksum(y) = cTy1. This checksum relationship can be
used to detect errors in the computation of y. For example,
consider an error in an arithmetic operation resulting in y′∗

that is not equal to y∗. In this case, it can be shown that
checksum(y′) 6= cTy.

This encoding was designed for matrix-matrix multipli-
cation and has some limitations when applied to iterative
methods. For example, consider an error in x before the
operation, resulting in an erroneous vector x′. The encoded

1This holds subject to the inexactness of floating point arith-
metic, which we account for in the overall algorithm.

matrix-vector multiplication y = Ax becomes:

y′∗ = A∗x′ =

(
A
cTA

)
x′ =

(
Ax′

cTAx′

)
We observe that the checksum relationship for y holds

even in the presence of an error in x. In the absence of
additional protection, this can lead to silent data corruption,
making the encoding scheme unusable in detecting faults
in the input vector. In other words, under this encoding
scheme, the output vector’s checksum relationship cannot
be used to identify all soft errors.

Dealing with cache errors. Although adding additional
checksum verification cost for x may capture the erroneous
output vector sometimes, a more insidious case is a cache er-
ror in x. Consider an error that affects a value of x in cache
(e.g., a cache bit-flip while memory still holds the correct
value). This erroneous value then resides in cache for the du-
ration of the calculation, corrupting the computation of both
the matrix-vector multiplication and the associated check-
sums. Given that the entire calculation consistently used the
incorrect input value, the output checksums will be consis-
tent, which makes verifying output checksum useless. Now if
we add extra cost to verify x, it may still not detect the error
because cache lines can be evicted and the erroneous value x
is replaced by the correct value loaded from the main mem-
ory. This error will now escape detection. Manifestation of
this error depends on various factors such as compiler opti-
mizations that reorder instructions, cache replacement and
eviction policies, hardware cache configurations, etc. Tol-
erating faults in cache or registers in this scheme requires
verifying every access to the vectors, which could be much
more expensive. Because matrix-vector multiplication is in-
voked in every iteration of the iterative methods, and the
traditional encoding scheme may lead to undetected errors,
these errors need to be effectively detected every iteration.

Protecting preconditioners. Another limitation of the pre-
ceding checksum scheme is its inability to deal with precon-
ditioned systems (PCOs) used to accelerate convergence in
iterative solvers. For example, when solving preconditioned
system Mz = r in CG, where matrix M and vector r are
input operands, the above encoding scheme cannot compute
the checksum for z as part of the encoded computation.

State-of-the-art online ABFT schemes. The two most re-
lated state-of-the-art online ABFT schemes are from Chen [6]
and Sloan et al. [19]. Chen proposed to exploit the vectors’
orthogonal relationship to detect soft errors for a subset of
algorithms in Krylov subspace methods. Every several it-
erations, the algorithm will check if the orthogonality re-
lationship or the residual relationship r(i+) = b−Ax(i+)

is valid. If either relationship is broken, execution is rolled
back to the nearest checkpoint. Although good in terms
of coverage for many operations (MVM, VLO, PCO, vector
dot product, etc), this method has several limitations. First,
it is not general enough to cover all iterative methods be-
cause some of them do not have orthogonal relationship of
vectors, e.g., Jacobi and Chebyshev methods shown in Fig-
ure 1. Even if there are orthogonality relations between vec-
tors, it still cannot detect soft errors that do not propagate
to these vectors. Checking the residual requires an expen-
sive MVM operation. This higher error detection overhead
necessitates less frequent error checking, leading to a higher
rollback recovery cost when errors are detected.



Sloan et al. [19] apply the traditional checksum discussed
above to identify only arithmetic errors in the MVM op-
eration (detection), and then use binary search to locate
and partially correct the erroneous element(s) in the output
vector (recovery). However, several issues can occur when
this approach is used in the context of iterative methods.
First, they focus on MVM and assume that no soft errors
occur in other operations such as VLOs and PCOs. Second,
they assume the input vector to the MVM is correct. As
demonstrated previously, the traditional checksum cannot
detect the error(s) by verifying the output vector’s check-
sum relationship if the input vector is corrupted (e.g., mem-
ory bit-flips before MVM or arithmetic errors carried from
the previous iteration). If the detection technique fails, all
the benefits from the recovery scheme disappear. Third,
to avoid such undetectable propagation of errors, Sloan’s
method needs to conduct expensive checksum verification
for error detection every iteration, and then apply binary
search to locate and correct the errors. This might be only
beneficial under high error rates. While soft errors are more
likely to occur in future systems, errors affecting the com-
putation every few iterations is not a common or practically
anticipated scenario. We present theoretical and empirical
evaluation of Sloan’s approach in Sections 6.2 and 6.3.

These issues motivate the design of new online ABFTs
scheme that can be applied to general iterative methods to
effectively tolerate various types of soft errors.

3. ERROR MODEL
We focus on errors affecting matrices and vectors em-

ployed in iterative methods. Specifically, we focus on errors
in matrix-vector multiplication (MVM), vector linear op-
erations (VLOs)—addition, scaling, assignment, etc.—and
solving preconditioned systems (PCOs). We assume other
low-computation operations (e.g., scalar operations, vector
dot-product, etc.) not amenable to general ABFT checksum-
encoding are protected using other schemes (e.g., duplicated
execution or definition-use checksums [22]).

We consider errors in arithmetic operations or values used
in these operations. These correspond to soft errors in the
ALU or the memory subsystem. We consider errors in any
part of the memory subsystem—main memory, caches, reg-
isters, etc.—that can affect the result of multiple (but not
necessarily all) arithmetic operations.

We only consider errors that affect the data in the matrices
and vectors used in the iterative method. As is the case
with other ABFT schemes, we assume that errors do not
affect scalar variables, control flow, program stack, etc. We
model an error as a random additive contribution e to a
value. For example, an error in x before computing Ax can
be represented as A(x+ e) where e represents the error
introduced. We assume that errors do not get canceled or
get hidden during the algorithm execution. This notion is
specified in the form of the following assumptions:

Non-zero scaling factor assumption: In any operation
y = αx, we assume that α 6= ~. We exploit this prop-
erty to ensure that any error in x is reflected in the
output of the operation, enabling efficient detection by
checking only y. A complete solution needs to check,
at runtime, the scaling factor α and detect errors in x
if α is close to zero.

Cancellation-less error assumption: ∀x, e, e : x+ e
6= ~ and x · e 6= ~ and e+ e 6= ~, where x is an

arbitrary program variable and e and e are the er-
rors introduced. This assumption ensures that existing
errors in a variable do not get canceled out by subse-
quent errors.

4. ERROR PRESERVING CHECKSUM FOR
MATRIX-VECTOR MULTIPLICATION

In this section, we present our checksum scheme that ad-
dresses the aforementioned limitations. Given an N × N
matrix A, we define checksum(A) (Figure 2(c)) as:

checksum(A) = cTA− dcT ,

where c is a predefined N × 1 vector and d is a prede-
fined non-zero scalar larger than n||c||∞||A||∞/min(c) (see
Lemma 2). Here min(c) = min1,··· ,n |ci| and ci is the i-th
element of the vector c.

We encode matrix A to matrix A∗ as

A∗ =

(
A ~

cTA− dcT d

)
. (1)

As shown in Figure 2(c), we encode all the vectors x with
their own column checksums:

x∗ =

[
x
cTx

]
The ABFT form of a given operation, such as matrix-

matrix multiplication, often performs the same operation
on the encoded matrix (Figure 2(c)). For example, A ·B is
replaced with A∗ ·B∗. In the case of our checksum scheme,
encoding the symmetric matrix A leads to A∗ that is no
longer symmetric. This will cause some iterative meth-
ods (e.g., CG) that solve symmetric and positive-definite
(SPD) systems to converge slowly, or even diverge. There-
fore, we develop a different scheme on ABFT that separates
the checksum(s) from the encoded input matrix and vec-
tors, shown in Figure 2(d). This allows the original opera-
tion to proceed unchanged while the checksum of the output
vector computed directly from the checksums of the input
operands. For example,

y∗ = A∗x∗ =

(
A ~

cTA− dcT d

)(
x

checksum(x)

)
=

(
Ax

(cTA− dcT )x+ d · checksum(x)

)
=

(
Ax

checksum(A) · x+ d · checksum(x)

)
As can be seen, the output checksum checksum(y) can

be computed as (checksum(A)x + d · checksum(x)). In
this way, computing the output vector’s checksum does not
rely on the operations of the encoded input operands (i.e.,
checksum(y) and y∗ = A∗x can be computed separately).
The output checksum for MVM, VLO and PCO operations
are computed as follows:

Matrix-vector multiplication y = Ax:

checksum(y) = checksum(A)x+d·checksum(x) (2)

Vector linear-operation z = αx+ βy:

checksum(z) = α · checksum(x) + β · checksum(y)
(3)



Preconditioner Say the preconditioned systemMz(i) = r(i)

needs to be solved to compute the preconditioned sys-
tem’s residual vector z(i), whereM is a preconditioner
and r is the original system’s residual. The precondi-
tionerM can be expressed either explicitly as a matrix
or implicitly as a sequence of operations. If M is ex-
pressed explicitly, according to the Equation (2), the
checksum of z can be computed from r as:

checksum(z) =
(checksum(M)T z(i) − checksum(r))

d
(4)

If the preconditionerM is expressed implicitly, e.g., in-
complete factors or algebraic multigrid, it will be com-
posed of several matrix-vector multiplications (MVMs)
and vector-linear operations (VLOs). Thus, even if
the preconditioner M cannot be directly encoded, the
checksum of z can be computed through updating each
checksum of the output vector after these MVMs and
VLOs using Equations (2) and (3).

Since the implicitly expressed preconditioner can be en-
coded as a composition of encoded MVMs and VLOs, we
only consider the explicit expression of M in the following
discussion. However, we note that implicit preconditioners
composed of MVMs and VLOs can also be efficiently pro-
tected by the schemes described in this paper.

We now prove that this checksum scheme can detect soft
errors for the key operations in iterative methods, even if
the input vectors of these operations are corrupted. We
refer to the following operations that can generate a vector
in iterative methods as vector-generating operations:

Table 1: Vector-generating operations and their expression

Vector-generating operations Expression
MVM w := Au
PCO Mw := u

VLO scaling w := αu
VLO addition w := u+ v

M is a preconditioner and ‘:=’ is assignment. Note that
iterative methods are primarily composed of these vector-
generating operations (e.g., shown in Figure 1).

Lemma 1. For any vector-generating operation, if the check-
sum relationship holds for the input operands and there is no
soft error during the operation, the checksum relationship of
the output vector is maintained.

Proof. We prove for each vector-generating operation:

1. Consider an MVM, w := Au. We have w = Au and,
from Equation (2), checksum(w) = cTAu + d(checksum(u)

- cTu). Combining the two:

checksum(w) − cTw = d(checksum(u) − cTu).

If checksum(u) = cTu, checksum(w) = cTw.

2. Consider a PCO, Mw := u. Together with Equation
(4), we have

checksum(w)− cTw =
checksum(u)− cTu

d
.

If checksum(u) = cTu, checksum(w) = cTw.

3. Consider a VLO, w = αu. We have w = αu and,
from Equation (2), checksum(w) = α · checksum(u).
Therefore,

checksum(w)− cTw = α(checksum(u)− cTu).

If checksum(u) = cTu, checksum(w) = cTw.
4. Consider a VLO,w := u+ v. We havew = u+v and,

from Equation (3), checksum(w) = checksum(u) +
checksum(v), thus,

checksum(w)− cTw = (checksum(u)− cTu)

+ (checksum(v)− cT v)

If checksum(u) = cTu and checksum(v) = cT v,
checksum(w) = cTw.

Lemma 2. For any vector-generating operation, any com-
position of the following soft errors results in the checksum
relationship of output vector being broken:

1. Arithmetic error affecting the operation;
2. Memory bit flips or arithmetic errors in input vectors

carried from the previous operations;
3. Cache or register bit flips that affect the input vector(s)

during the operation.

Proof. Due to space constraints, we only present the proof
for the MVM operation. The proof of the PCO operation is
similar. The proof for the VLO operations is the same as in
the case of traditional checksum schemes.

Using our new checksum mechanism, we perform an MVM
w := Au with checksum update.

1. If there are arithmetic errors during the operation and
ea represents arithmetic errors, the erroneous output
vector w can be represented as Au+ ea.

2. If the input vector is corrupted by memory bit flips or
arithmetic errors (possibly carried from previous op-
erations) before its first use in this operation and em
represents the errors, the erroneous output vector can
be represented as w = A(u+ em).

3. If cache or register bit flips corrupt the input vector
during the operation and ec, · · · , eck are cache or
register errors, assume A = Ane +Ae + · · ·+Aek,
where Ane represents the rows that are used in the
computation without being affected by soft errors and
Aei (i = 1, · · · , k) represents the i-th row of A if it is
affected by a combination of ec, · · · , eck in the com-
putation. Then the erroneous output vector w can be
represented as Aneu+

∑k
i=1Aei(u+

∑k
j=1 αijecj) =

Au+
∑k
i=1

∑k
j=1 αijAeiecj , where αij ∈ {0, 1}.

Under any composition of these soft errors, the erroneous
output vector w can be represented as

w = A(u+ em) + ea +

k∑
i=1

k∑
j=1

αijAeiecj

Because the checksum update is calculated after a soft error
occurs, we have two scenarios:

1. If the checksum update is not affected by the soft error,

checksum(w) = checksum(A)(u+ em) + d · checksum(u)

= cTA(u+ em)− dcT em

Thus, checksum(w)−cTw = −cT (
∑k
i=1

∑k
j=1 αijAeiecj)

−dcT em − cT ea.



2. If checksum update is affected by the soft error,

checksum(w) =

checksum(A)(u+ em +
∑k

i= eci) + d · checksum(u)

= cTA(u+ em +
∑k

i= eci)− dc
T (
∑k

i= eci + em)

Thus, checksum(w)− cTw is∑k
i=1(cTA− dcT − cT

∑k
j=1 αjiAej)eci − dcT em − cT ea

=
∑k
i=1(cTAe − dcT )eci − dcT em − cT ea

Since Ae is a part of A, the absolute value of each el-
ement in vector cTAe is no larger than n||c||∞||A||∞,
which means ||cTAe||∞ ≤ n||c||∞||A||∞. Moreover,
we choose d to be larger than n||c||∞||A||∞/min(c),
thus, the absolute value of each element in vector dcT

is larger than n||c||∞||A||∞, which means min(dcT ) >
n||c||∞||A||∞. Therefore, min(dcT ) > ||cTAe||∞. It
demonstrates that cTAe can not be equal to dcT , thus,
cTAe − dcT 6= ~.

Therefore, if any of ea, em, ec, · · · , eck is not equal to ~,
according to our error model, checksum(w) 6= cTw.

Theorem 3. For any vector-generating operation, the check-
sum relationship of the output vector is preserved if and only
if there are no soft errors before or during the operation.

Proof. The proof follows from Lemma 1 (if part) and Lemma 2
(only-if part).

Based on Theorem 3, if the checksum relationship of the
output vector from a vector-generating operation is broken,
soft errors must have occurred before (memory bit flips or
arithmetic errors carried from the previous operations) or
during (memory bit flips of the input vector or arithmetic
errors) the operation. On the other hand, if the checksum
relationship of the output vector is maintained, the check-
sum relationship of any input vector is held and this can
guarantee that no soft error (arithmetic errors, or bit flips
in memory, caches or registers) happened before or during
the operation. This provides an efficient approach to soft
error detection for all the vector-generating operations: we
only need to identify if the checksum relationship of the out-
put vector is broken.

As mentioned in Section 2, the traditional checksum and
its encoding for MVM and PCO does not propagate the
inconsistency of the input vector to the output vector when
the input vector is corrupted before the operation. In order
to get better coverage for error detection, ABFT approaches
based on prior checksum schemes need to check every input
and output vector in all operations, incurring large detection
overheads. This is evaluated in greater detail in Section 6.

5. NEW ONLINE ABFT SCHEMES
We now use the checksum encoding scheme described above

to design efficient online ABFT solutions for iterative meth-
ods. While widely applicable to iterative solvers, for simplic-
ity and clarity, we will illustrate the designs in the context of
the widely-used preconditioned conjugate gradient (PCG).

5.1 “Lazy” Detection: Low-Cost Online ABFT
Algorithm Using Checksum Update

The preconditioned conjugate gradient (PCG) method is
one of the most commonly used iterative methods to solve

Table 2: Computation relationships among various vectors
in PCG.

Output Vector Input Vector(s) Operation

z r z = M−r
p z, p p = z + βp
q p q = Ap
x x, p x = x+ αp
r r, q r = r − αq

the sparse linear system Ax = b when the coefficient matrix
A is symmetric and positive definite (SPD). PCG consists
of three major computation components: successive approx-
imations to the solution, residuals corresponding to the ap-
proximate solution, and search directions used to update
both the approximate solutions and the residuals [13]. Each
iteration consists of one sparse MVM, three vector updates,
and two vector inner-products (Figure 1). Figure 3 outlines
our first proposed online ABFT algorithm (Algorithm 1)
for PCG based on the proposed checksum mechanism. The
figure also illustrates the cost (in terms of operation count)
for the added code lines. In Algorithm 1, after each vector-
generating operation (i.e., MVM, VLO and PCO), we effi-
ciently update the checksum for each output vector accord-
ing to Equations (2), (3), and (4).

To detect soft errors, the simplest method is to verify
the checksum relationship of each output vector after ev-
ery vector-generating operation. However, this incurs high
detection overhead. The most practical recovery strategy
for iterative solvers involves checkpoint/rollback. When any
soft error is detected, the program will be rolled back to
the nearest checkpoint. Minimizing the fault tolerance cost
requires balancing the checkpointing overheads with the po-
tential to lose significant amount of work in the event of an
error-induced rollback. To reduce the overall error check-
ing and recovery overhead, we analyze the computational
relationships among all the involved vectors in the vector-
generating operations and see if their checksums really need
to be verified after every operation.

We make the following three observations based on the
summarized computational relationships between the vec-
tors in PCG, shown in Table 2:

• Soft errors, if present, in vectors z, p, or q will eventu-
ally propagate to the vectors x and r. Therefore, ver-
ifying the checksum relationship of the vector x and r
is adequate to cover all the other vectors.
• Computing vectors p, x, and r requires their results

from the previous iteration, which means that soft er-
rors in p, x and r, if presented in an iteration, will
propagate to the subsequent iterations.
• At each iteration, we can use vectors p and x to com-

pute the other three vectors q, r, and z.

Corresponding to these three observations, we identify
three optimizations to significantly reduce the overhead
of the error detection and recovery for PCG:

1. Rather than verifying each output vector’s checksum
relationship after every vector-generating operation,
we only need to verify two checksum relationships,
namely checksum(x) = cTx(i) and checksum(r) =

cT r(i), to detect the soft errors in any vector (line 6
in Algorithm 1);

2. We only need to verify the checksum relationship be-
tween x and r every several iterations rather than ev-
ery iteration (line 5 in Algorithm 1);

3. We only need to checkpoint two vectors, p and x. In



2	VDP	(4n	FLOPS)�

2	Mcpy	+	4	Vcpy�

2	Vcpy�

1	MVM	(nnz	FLOPS)�

1	VDP	(2n	FLOPS)�

1	VDP	(2n	FLOPS)�

1	VLO	(2n	FLOPS)�
2	FLOPS�

1	VLO	(2n	FLOPS)�
2	FLOPS�
1	PCO�

1	VDP	(2n	FLOPS)�

1	VDP	(2n	FLOPS)�

1	FLOPS�

2	FLOPS�
1	VLO	(2n	FLOPS)�

MVM:	Matrix-Matrix	Mul?plica?on 	VDP:	Vector	Dot-Product	
VLO:	Vector	Linear	Opera?on 	 	PCO:	Precondi?oned	Opera?on	
Mcpy:	Matrix	Copy 	 	 	Vcpy:	Vector	Copy�

Figure 3: online ABFT algorithm for preconditioned conjugate
gradient (PCG) based on our new checksum mechanism. The op-
eration count for checksum updates, error detection, and recovery
(checkpoint/restart) are also listed.

the event of an error, we can use the checkpointed ver-
sion of the two vectors to recover all the other vectors
and checksums (line 9 in Algorithm 1) .

Algorithm 1 in Figure 3 shows a low-cost online ABFT-
based PCG algorithm that includes these optimizations. In
Figure 3 and 4, black represents the original code of PCG;
pink represents the checkpoints; red represents the checksum
updates; blue represents the error detection and rollback.
Pink, red, and blue show the extra operations introduced
over the original code. This scheme enables “lazy” error de-
tection mode that only checks errors every several iterations
based on the assumption that under a lower error rate, im-
mediate checksum verification after every vector-generating
operation is too expensive. Note that we still update the
checksums of the output vector after each operation using
the low-cost scheme described earlier. For error detection in
Algorithm 1, we verify the checksum relationship of x and r
every error detection interval (d), based on the optimization
(1) and (2) above. The overhead of such detection is only
the checksum verification for two VLOs (line 6), which is
O(n) FLOPS. For error recovery, according to optimization
(3), we only need to checkpoint the two vectors p and x ev-
ery checkpoint interval (cd), which can significantly reduce
the checkpointing overhead and the large memory space re-
quirements. Note that for the purpose of high scalability in
parallel computation, all the checkpoints and checksums are
saved locally in our proposed designs. We will discuss error

detection interval d and checkpoint interval cd in the later
section.

We use θ = 10−10 as threshold in our experimental eval-
uations. In reality, we perform all the operations using
floating-point arithmetics with round-off errors. When the
checksum relationships of x and r are used to detect errors,
the effects of round-off errors need to be carefully investi-
gated. In Algorithm 1, as the problem size n increases, the
accuracy of the round-off error (i.e., checksum(x) − cTx)
decreases. When verifying checksum relationship, we ap-
ply (checksum(x)− cTx)/n to reduce the accuracy loss for
round-off errors. When the errors are close to the machine
accuracy ε, we cannot detect them. However, because we
only focus on numerically stable solvers and well-conditioned
problems, these errors do not need to be detected since they
will not significantly impact the performance of numerically
stable algorithms and well-conditioned problems.

5.2 “Eager” Online Recovery for MVM Using
Triple Checksums

In order to reduce the chances of a rollback, we would like
to correct errors as soon as possible without requiring roll-
back. In iterative methods, since MVM operations are the
most computation-intensive, and therefore the most vulner-
able operations, they could benefit from a faster recovery
under a high error rate.

According to coding theory, 2m + 1 checksums (i.e., in-
dependent equations) can be used to locate and correct m
errors. For instance, Figure 2(e) shows the case of two sep-
arate checksums in our scheme for detection and correction.
However, this requires a strong assumption of a bound m on
the maximum number of soft errors in an MVM. A larger
number of errors than m can lead to the recovery mechanism
mis-identifying some locations as erroneous and correcting
them, resulting in cases of “fake correction”. We illustrate
this scenario and present a solution.

Consider a double-checksum used to detect errors and cor-
rect up to one error in the output vector. Shown in Fig-
ure 2(e), let the output vector be y = (y1, y2, · · · , yn)T . We
encode it with double checksums as y∗ = (y, cT y, c

T
 y)T . In

this example, we use c = (1, 1, · · · , 1)T and c = (1, 2, · · · , n)T .
The double checksums checksum1(y) and checksum2(y) can
be represented as

checksum1(y) = cT y =
∑n
i=1 yi

checksum2(y) = cT y =
∑n
i=1 iyi

Now, say the output vector y′ = (y′1, y
′
2, · · · , y′n)T has one

erroneous element. Specifically, y′j 6= yj , where the error po-
sition j is to be determined to locate the error. The presence
of the error can be detected as:

δ1 =
∑n
i=1 y

′
i − checksum1(y) = y′j − yj 6= 0

δ2 =
∑n
i=1 iy

′
i − checksum1(y) = j(y′j − yj) 6= 0

One common way to locate the error position j is to calcu-
late a simple division δ2/δ1 = j, and then apply δ1 = y′j−yj
to correct the erroneous computed value y′j through y′j =
y′j − δ1. In reality, we do not know the number of soft er-
rors that has affected a given MVM. For instance, one error
could occur in the input vector and propagate to the output,
forming multiple errors. Using the two checksums, we can
only tell if the MVM result is erroneous, but cannot know if
it has only one soft error. If there are actually k erroneous
elements y′j1 , · · · , y

′
jk

(k > 1), but the assumption is that



there is only one error, we calculate δ1 and δ2 as

δ1 =
∑k
i=1(y′ji − yji), δ2 =

∑k
i=1 ji(y

′
ji − yji)

If y′j1 − yj1 = · · · = y′jk − yjk and j1 + · · · + jk is multiples
of k, δ2/δ1 = (j1 + · · ·+ j2)/k is an integer. Therefore, the
double-checksum mechanism will lead to a fake correction
of y′, which may result in slow convergence or divergence of
the underlying iterative method.

Inspired by Fasi et al. [10], we propose a triple-checksum
detection and correction mechanism to identify if there is
only one error, and if so, correct it. Specifically, we introduce
a different third checksum with vector c = (1, 1

2
, · · · , 1

n
)T .

Assuming that there are k erroneous elements y′j1 · · · y
′
jk

. δ1,
δ2 and δ3 are computed as:

δ1 =
∑k
i=1(y′ji − yji), δ2 =

∑k
i=1 ji(y

′
ji − yji), δ3 =

∑k
i=1

y′ji
−yji
ji

Now we can use the relationship between δ1, δ2 and δ3
to identify if there is only one error, eliminating the fake
correction case above. Since in the fake correction case,
y′j1 − yj1 = · · · = y′jk − yjk , we have

δ2/δ1 = j1+···+jk
n

, δ1/δ3 = n
1
j1

+···+ 1
jk

Therefore, δ2/δ1 and δ1/δ3 are the arithmetic mean and
harmonic mean, respectively, of j1, · · · , jk. The relation be-
tween the two means requires that δ2/δ1 = δ1/δ3 if and
only if j1 = · · · = jk. However, since the position in-
dices j1, · · · , jk are all different, δ2δ3 = δ21 if and only if
k = 1. Therefore, we are able to use this simple verifica-
tion δ2δ3 = δ21 to identify if the output vector is erroneous
when there is only a single error. If it is a single error, we
can locate and correct the error right away using this triple-
checksum mechanism.

In order to match the triple-checksum encoding in the
vectors, the matrices are encoded in the following fashion:

A∗ =


A ~ ~ ~

cTA− d1cT − d2cT − d3cT d1 d2 d3
cTA− d2cT − d3cT − d1cT d2 d3 d1
cTA− d3cT − d1cT − d2cT d3 d1 d2


Therefore, applying triple-checksum encoding, we can: (1)

detect if there is any error, (2) identify whether or not there
is more than one error, and (3) if there is only one error,
locate and correct it.

5.3 “Hybrid” Detection: Two-Level Online ABFT
Algorithm Using Triple-Checksum

Based on this triple-checksum protection mechanism and
Algorithm 1, we present a two-level online ABFT scheme
for iterative methods that uses the triple-checksum for im-
mediate single error detection and recovery in MVM (inner-
level), and the checksum relationship verification to recover
from multiple errors (outer-level). The general procedure to
construct a two-level online ABFT version of a given itera-
tive solver is as follows:

1. Encode matrices and vectors using triple-checksum;
2. Form the checksum update formulas for the output

vectors based on the encoded matrices and vectors;
3. Compute these checksum updates after each vector-

generating operation (MVM, VLO, PCO);
4. Analyze the dependency relationships between vectors;
5. Every d iterations, invoke the outer-level protection:

verify the checksum relationships of the vectors that
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Figure 4: Two-level online ABFT algorithm for preconditioned
conjugate gradient (PCG)

the other vectors will eventually propagate to every d
iterations;

6. At the beginning of every cd iterations, checkpoint the
minimum number of the vectors based on the depen-
dency relationships from Step 4 and scalars that can
calculate the other vectors;

7. After each MVM, add the inner-level protection:

(a) Use one out of the three checksums of the output
vector to identify if there is any error in MVM

(b) If there are no errors, update the vector check-
sums and continue the execution

(c) If the output vector is erroneous, use the tripe-
checksum mechanism to identify if it is one error
or multiple errors

(d) If there is one error in MVM, apply triple-checksum
to correct immediately

(e) If there are multiple errors, rollback to the previ-
ous checkpoint

We illustrate this procedure for the PCG solver in Algo-
rithm 2. For the outer-level protection (lines 5–11), we
verify the checksum relationship of the vectors x and r for
detecting the potential error(s) in VLOs and multiple errors
that cannot be recovered in MVM, and then rollback to the
latest secure state if the condition is not satisfied (recov-



ery). For the inner-level protection (lines 16–27), after the
MVM operation q = Ap, we verify the checksum relation-
ship of the output vector q (line 19). If it does not hold, it
indicates that soft error has affected the MVM. Then we use
the simple check δ2δ3 = δ21 (line 20) to determine the cause
of the inconsistency in q: a single error or multiple errors.
If the verification fails, it indicates that there are multiple
errors. Since our triple-checksum mechanism cannot correct
more than one error, the program is rolled back to the clos-
est checkpoint immediately for recovery, in order to avoid
the waiting till the beginning of the next d interval. If the
verification passes, it indicates that there is only one error
and the error is corrected immediately via triple-checksum.

This two-level algorithm effectively protects all the vector-
generating operations in an iterative method. Specifically,
we identify the essential vectors that need to be checkpointed,
recover from the most common case of single error by locat-
ing and correcting the error rather than rolling back, while
ensuring that the outer-level detector catches possible er-
rors from the other operations. In the common case, where
there are no errors, the inner-level detector checks for errors
with a single checksum. This operation incurs O(n) cost
per MVM operation per time step. For sparse matrices with
number of non-zeros being much larger than vector length,
say nnz > 10n, this check adds very little overhead. The
efficient check and correction employed by the inner-level
scheme enables us to reduce the frequency of the outer-level
protection (i.e., increasing the outer protection interval d).
Additionally, since the outer protection is using the higher-
cost checkpoint/restart technique for recovery, at a high er-
ror rate, our two-level protection mechanism may signifi-
cantly lower the overhead introduced by checkpoint/restart
and, therefore, the overall overhead (see Section 6.2 and 6.3).

6. RESULTS AND ANALYSIS
In this section, we start by comparing the following five

soft-error tolerating schemes in terms of features and cover-
age: (1) the offline residual checking at the end of compu-
tation (denoted by offline residual), (2) the state-of-the-
art online matrix-vector multiplication (MVM) scheme using
the traditional checksum proposed in [11] (denoted by on-
line MV), (3) the online orthogonality checking proposed in
[6] (denoted by online orthogonality), (4) our proposed
“lazy” online ABFT scheme using checksum updates and
checkpoint/rollback (Algorithm 1 in Section 5.1, denoted
by basic online ABFT), and (5) our proposed two-level
online ABFT algorithm using triple-checksum mechanism
(Algorithm 2 in Section 5.3, denoted by two-level on-
line ABFT). After that, we theoretically compare the cost
of applying online-MV scheme with that of applying our
two schemes, assuming they have the same error coverage.
Finally, we empirically evaluate our two schemes on a lead-
ership supercomputer under different error scenarios, and
compare their costs with those using online MV.

We conduct our evaluation with the widely used precondi-
tioned conjugate gradient (PCG) solver and preconditioned
biconjugate gradient stabilized (PBiCGSTAB) solver [17].
The former has the orthogonality relations between essen-
tial vectors, but the latter does not. For input, we use the
sparse matrix ‘G3 circuit’, the largest SPD matrix available
from the University of Florida Sparse Matrix Collection [7].
It contains 1,585,478 rows and columns with 7,660,826 non-
zero elements. We implement our proposed online ABFT
schemes in PETSc [1], one of the most popular toolkits pro-

Table 3: Comparison of features and error coverage among
different fault-tolerance techniques for iterative methods

Offline
residual

Online
MV

Online
orthogonality

Basic/two-level
online ABFT method

Can protect
arithmetic error

Yes Yes Yes Yes

Can protect
memory bit flips

Yes Yes Yes Yes

Can protect cache
or register bit flips

Yes No No Yes

Can be applied to
all iterative methods

Yes Yes No Yes

Not necessary to check
every iteration

Yes No Yes Yes

Not necessary to check
every operation

Yes No Yes Yes

viding parallel solutions of scientific applications modeled
by PDEs. All of our experiments are conducted using 2048
cores (i.e., 256 nodes, each node with two Intel Xeon E5-
2680 processors) on the Stampede supercomputer at Texas
Advanced Computer Center (TACC).

6.1 Error Coverage and Feature Comparison
Table 3 compares features and error coverage of differ-

ent fault tolerance schemes for iterative methods. The ta-
ble clearly shows that only the offline residual scheme and
our proposed two designs have all the six soft-error toler-
ance features. The offline-residual scheme simply verifies
the residual at the end of computation to identify if there
is any error. If there is, the offline-residual scheme has to
recompute the entire program. Under the best-case scenario
where the convergence iteration number is set to that of the
correct execution, the offline-residual scheme incurs 100%
overhead. Therefore, the offline-residual scheme will most
likely perform worse than the well-designed online schemes
if any soft error occurs during the program execution [6].
Therefore, it is excluded from the following performance
evaluation. For the online-MV scheme, we will evaluate it
both theoretically (Section 6.2) and empirically (Section 6.3)
against our approaches. To further demonstrate better cov-
erage of our schemes over the online-orthogonality approach,
we will use the preconditioned biconjugate gradient stabi-
lized (PBiCGSTAB) solver in addition to PCG, to evaluate
our designs in Section 6.3.

6.2 Theoretical Performance Comparison
As previously discussed in Section 4 and Table 3, although

the online MV approach (i.e., using the traditional check-
sum encoding schemes) cannot protect cache or register bit-
flips, we still would like to explore the performance of ap-
plying it to iterative methods when those error scenarios are
absent. We also want to conduct theoretical performance
comparison between online MV and our two approaches un-
der different error rates. We select the recent online ABFT
scheme from Sloan et al. [19] that uses traditional check-
sum encoding method for comparison. Note that Sloan’s
method only considers soft errors in matrix-vector multipli-
cation (MVM). For the purpose of a fair comparison, we ap-
ply the standard triple modular redundancy (TMR) to pro-
tect other operations in iterative methods such as VLOs and
PCOs, since the traditional encoding mechanism cannot en-
code PCOs. We also exclude cache or register bit-flips from
the error scenarios for this comparison because the online-
MV approach cannot protect them. To be consistent with
the use case in [19], we use PCG as the candidate iterative
method. The algorithm cost analysis for our approaches are



Expected	Tim
e	(secs)�

� Expected	Tim
e	(secs)�

�

(b)�

Error	Detec3on		
Interval	(d)�

Error	Detec3on		
Interval	(d)�

Checkpoint	
Interval	(cd)�

Checkpoint	
Interval	(cd)�

(a)�

Error	Rate	=	1.0	

Figure 5: Expected execution time of our basic online ABFT
scheme for (a) PCG and (b) PBiCGSTAB for G3 circuit with
error rate λ = 1.0.

shown in Figures 3 and 4. Due to space limitation, we refer
the reader to [19] for the details of Sloan’s algorithm.

We denote the error detection interval as d (i.e., outer-loop
error detection happens every d iterations in our approaches)
and checkpoint interval as cd (i.e., checkpointing necessary
data every cd iterations). d and cd are integers and cd > d.
We use I to denote the total number of iterations and assume
I = k× cd where k > 1. Since Sloan’s approach is not based
on checkpoint/rollback technique, d does not exist in Online-
MV. The following three error-rate scenarios are explored in
this comparison:

• Scenario 1: One error in MVM during the entire exe-
cution (I iterations).
• Scenario 2: One error in MVM every cd iterations.
• Scenario 3: One error in MVM every iteration.

These three scenarios correspond to low error rate, medium
or high error rate, and extremely high error rate, respec-
tively. Table 4 shows the performance overhead per iter-
ation for basic online ABFT (O1), two-level online ABFT
(O2) and online MV (O3) under the three scenarios in PCG.
Note that c0 = nnz/n represents the sparsity of the matrix
A; and ∞ illustrates that the execution will not terminate
due to the repeated rollbacks. Also, all the costs shown in
Table 4 are the average values from different error locations
in cd. From Table 4, we can make the following conclusions:

1. Under low or extremely low error rate (Scenario 1),
basic online ABFT (O1) approach has the lowest
overhead: O1 < O2 < O3. This is because PCO con-
sumes much more time than vector-vector multiplica-
tion (VDP) and vector-linear operation (VLO) in CG.

2. Under medium/high error rate (Scenario 2), the per-
formance overhead of two-level online ABFT (O2)
is the lowest among the three. However, the perfor-
mance comparison between our basic online ABFT and
online MV is unclear, depending on if PCO is more
time consuming than MVM. For example, if the ma-
trix A is highly sparse, O1 < O3 because PCO in this
case consumes more time. Otherwise, if PCO is less
time-consuming, e.g., the preconditioner M is well se-
lected, O3 < O1.

3. Under extremely high error rate (Scenario 3), two-
level online ABFT (O2) wins: O2 < O3 < O1. The
basic online ABFT (O1) will not terminate.

To summarize, no matter the error rate, one of our ap-
proaches will outperform the online MV method implemented
with [19] for PCG. The methodology used here can also be
applied to analyze other iterative methods.

6.3 Empirical Performance Evaluation
We implement our proposed online ABFT schemes in PETSc,

and use its default preconditioner (block Jacobi with ILU/IC)
and convergence tolerance. We simulate an arithmetic or
storage error by significantly increasing the value of a ran-
dom element in matrices or vectors.

6.3.1 Determining Optimal cd and d

As discussed previously, the expected execution time of
an application depends on the error detection interval (d)
and checkpoint interval (cd), which are commonly deter-
mined by the system’s error rate (λ). However, it is often
difficult to determine their optimal values for different de-
signs. In order to conduct a fair evaluation and comparison,
we first estimate their optimal values under a certain error
rate. Because both our proposed designs are based on (or
partially based on) loop-level checkpoint/rollback, it is sim-
ilar to Chen’s online orthogonality approach [6]. Therefore,
we modify the expected execution time formula from that
work to accommodate our scenarios. The following equation
shows the expected time for basic online ABFT:

E(c, d) = minc,d
I
cd

[(eλcd(t+tu+td/d) − 1)( d·(t+tu)+td
1−e−λcd(t+tu+td/d)

+ tr) + tc]

(5)
where λ denotes the error rate, td denotes the time to detect
an error (i.e., loop-level detection), tc denotes the overhead
for one checkpoint, tr denotes checkpoint recovery overhead,
t denotes the time for each iteration, d denotes the error de-
tection interval (in iterations), cd denotes the checkpoint in-
terval (in iterations), and I is the total number of iterations.
Additionally, we add tu to represent the overhead for check-
sum updates per iteration in basic online ABFT. We assume
the time to failure for all processes follows an independent
and identically distributed exponential distribution. Due to
space limitations, please refer to [6] for details on how the
equation is derived.

Based on Equation (5), Figure 5 demonstrates the simu-
lated correlations between error detection interval (d), check-
point interval (cd) and the expected execution time under
a medium/high error rate, denoted as λ = 1.0. All the in-
put parameters used to construct Figure 5, such as td, tc ,
tr, and tu, are the average measurements from 50 runs on
Stampede. Based on Figure 5, we can estimate the optimal
pairs of (cd, d) for both PCG and PBiCGSTAB algorithms
implemented with basic online ABFT as (12, 1) and (10, 1).
Similarly, when the error rates are low and extremely high,
e.g., λ = 10−2 and λ = 10, the optimal (cd, d) pairs for PCG
and PBiCGSTAB implemented with basic online ABFT can
be found in Table 5. Since the goal of the empirical analysis
is to compare the overhead induced by different techniques,
optimal (cd, d) is not required for two-level online ABFT as
long as they are consistent between our two designs (see Ta-
ble 4). Thus, for simplicity, we use the same (cd, d) from ba-
sic online ABFT for error injection in two-level online ABFT
in the following comparative analysis. Note that, since the
proposed ABFT algorithms conduct a low-cost error detec-
tion every d iterations for only two vector-dot products, our
detection overhead is small under these scenarios, therefore,
the optimal strategy is to detect errors at every iteration.

6.3.2 Overhead Comparison Between Techniques
In order to validate the conclusions from the theoreti-

cal comparison in Section 6.2, we will use the same error



Table 4: Theoretical cost analysis for three schemes under different error-rate scenarios.

Basic online ABFT (O1) Two-level online ABFT (O2) Online MV (O3)

Scenario 1 (2/d+2)VDP+2VLO/cd (2/d+9)VDP+2VLO/cd 1PCO+2VDP+3VLO
Scenario 2 0.5MVM+(2/d+5)VDP+0.5PCO+(6(1+c0)/cd + 1.5)VLO (2/d+9)VDP+2VLO/cd 1PCO+(5/cd+2)VDP+3VLO
Scenario 3 +∞ (2/d+9)VDP+2VLO/cd 1PCO+7VDP+3VLO

Table 5: Optimal pairs of (cd, d) for PCG and PBiCGSTAB
algorithms implemented with basic online ABFT.

PCG PBiCGSTAB

λ = 10−2 (1000, 1) (1000, 1)
λ = 1 (12, 1) (10, 1)
λ = 10 (1, 1) (1, 1)

scenarios to conduct our empirical analysis for PCG and
PBiCGSTAB, denoting them as O1, O2, and O3. As dis-
cussed in Section 6.3.1, in corresponding to the three er-
ror scenarios, we will use the optimal (cd, d) for three error
rates (i.e., low, medium/high, extremely high) from Table
5 to setup the experiments. It is worth noting that, unlike
PCG, PBiCGSTAB does not exhibit the orthogonal prop-
erty within its essential vectors and it is more compute-
intensive than PCG (i.e., two MVMs and two PCOs ev-
ery iteration). The implementations of the basic PCG and
PBiCGSTAB algorithms are from PETSc. We use their de-
fault preconditioners. All the results are the average values
from different error locations in cd.

Figure 6 shows the overall performance comparison be-
tween three online ABFT implementations of PCG under
different error scenarios. We make the following observa-
tions. (1) The performance overhead for all three designs is
low (i.e., 0.4%, 2.2% and 1.3% respectively) when the exe-
cution is error-free. (2) Under low error rate (Scenario 1),
basic online ABFT has the lowest overhead: O1 < O2 < O3.
(3) Under medium/high error rate (Scenario 2), two-level
online ABFT performs the best: O2 < O3 < O1. As the
preconditioner M is well-selected for PCG, PCO is less time-
consuming than MVM, causing O3 < O1. (4) Under ex-
tremely high error rates (Scenario 3), two-level online ABFT
outperforms the other two again and our basic online ABFT
is unable to terminate. The overhead of online MV is 48%
higher than two-level online ABFT. Observations (2), (3)
and (4) are consistent with our theoretical analysis from
Section 6.2.

For the performance comparison among PBiCGSTAB im-
plementations shown in Figure 7, we observe behaviors dif-
ferent from those in PCG. (1) When the execution is error-
free, our proposed two techniques still incur low overhead
(1.0% and 4.0%, respectively), but much higher than those
of PCG. This is because the overhead of checksum updates
increases with more involved vectors in PBiCGSTAB. Also,
our techniques’ overhead is much lower than that of online
MV (29% lower), indicating that the triple-checksum up-
dates encounter much lower overhead than the more expen-
sive binary search and partial computation. (2) In Scenario
1, two-level online ABFT has the lowest overhead: O2 <
O1 < O3, which is different from the case for PCG. This is
because average execution time per iteration of PBiCGSTAB
(9.1×10−2 seconds) is much higher than that of PCG (4.8×
10−2 seconds). Therefore, the rollback recovery overhead
in PBiCGSTAB becomes more significant than when us-
ing the triple-checksum scheme. (3) Unlike the case with
PCG, basic online ABFT outperforms online MV in Sce-
nario 2 of PBiCGSTAB. This is because the choice of M
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Figure 6: Performance comparison of PCG implemented with
three online ABFT techniques on Stampede. ‘Inf’ means it
doesn’t terminate. Red dotted lines represent the baseline cases.
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Figure 7: Performance comparison of PBiCGSTAB implemented
with three online ABFT techniques on Stampede.

in PBiCGSTAB is not optimal, making PCOs to consume
much higher time than MVMs. (4) The performance im-
provement of our two designs over online MV is more signif-
icant than that in PCG. This is because the fraction of time
involving in updating the checksums shrinks as the compu-
tation intensity of the algorithm increases. This indicates
that our designs will benefit computation intensive solvers
with more MVMs and PCOs.

Figure 8 and 9 show the overall performance comparison
between the three online ABFT implementations of PCG
and PBiCGSTAB, respectively, under those three different
error scenarios on the supercomputer Tianhe-2. Figure 8
and 9 indicate that the peformance overhead on Tianhe-2 is
similar to Stampede.

6.3.3 Scenario with Multiple Errors
We evaluate our two techniques under a relatively high

error-rate scenario, where multiple errors occur in different
MVMs within different cd and one error occurs in a ran-
domly selected VLO during the entire execution. This sce-
nario is built on the rationale that MVM dominates most of
the execution time in PCG, so it is highly likely that several
soft errors arrive one after another, spreading out in differ-
ent checkpoint intervals (cd) during the execution when error
rate is high [23]. Figure 10 shows three scenarios of errors:
(1) 4 errors occur one after another in four different MVMs
of different checkpoint intervals; (2) 2 errors occur one after
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Figure 8: Performance comparison of PCG implemented with
three online ABFT techniques on Tianhe-2.
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Figure 9: Performance comparison of PBiCGSTAB implemented
with three online ABFT techniques on Tianhe-2.

another in two different MVMs of different checkpoint inter-
vals; and (3) 1 error occurs in a randomly selected MVM. For
the purpose of fair comparison, each of these three cases will
be accompanied with a scenario in which an error occurred
in a randomly selected VLO. As shown, the two-level on-
line ABFT, on average, outperforms the basic online ABFT
by 32.1% under the high error rate scenario, even though
it suffers from a one-time rollback cost from the outer-level
protection on the VLO’s error. Furthermore, because of the
inner-level protection, we can reduce the frequency of the
error detection in the outer-level (i.e., increasing d), which
may even gain further performance improvement. Deter-
mining d to achieve global optimal performance will be our
future work.

7. RELATED WORK
Bronevetsky et al. [5], Shantharam et al. [15] and Li et

al. [21] characterized and predicted the impact of soft errors
on scientific applications. Di et al. [8] and Bautista-Gomez
et al. [2] focused on combating SDC problems for general
HPC applications. The most straightforward method to tol-
erate soft errors is triple modular redundancy (TMR) [12].
While generally applicable, it incurs high overheads.

Algorithm-based fault tolerance (ABFT) is a checksum-

Ex
ec
u&

on
	T
im

e	
(S
ec
s)
	

80	

100	

120	

140	

160	

180	

4	M	+	1	V	 2	M	+	1	V	 1	M	+	1	V	

basic	online	ABFT	

two-level	online	ABFT	

N
um

be
r	o

f	i
te
ra
&o

ns
	

1500	

2000	

2500	

3000	

3500	

4	M	+	1	V	 2	M	+	1	V	 1	M	+	1	V	

basic	online	ABFT	

two-level	online	ABFT	

Figure 10: Performance comparison of our proposed techniques
under a relatively high error-rate scenario, where multiple errors
occur in different MVMs at different checkpoint intervals, and one
error occurs in a randomly selected VLO.

based technique developed by Huang and Abraham [11],
commonly used to locate and sometimes correct soft errors
for matrix operations. The basic check for absence of soft
errors involves verifying if the checksum relationships in out-
put are maintained in the final results. Using their checksum
encoding mechanism, Wu et al.[23] presented a design and
implementation of a fault tolerant version of the ScaLA-
PACK[3] to support online error detection and possibly re-
covery for dense linear algebra routines such as Cholesky,
QR, and LU factorizations. This traditional checksum en-
coding mechanism has also been applied to the realm of
iterative methods. Sloan et al. [18, 19] proposed tech-
niques specifically for soft error detection and correction in
matrix-vector multiplications (MVM), which can be applied
to iterative methods under some strong assumptions (dis-
cussed in Section 2). As discussed in Sections 2 and 6, the
traditional checksum-encoding mechanism cannot correctly
detect soft errors in the input vectors in MVM and PCO
without additional expensive verification. Even with such
verification, it cannot protect the computation from input
vector corruption due to cache or register errors. Chen [6]
developed a highly efficient online ABFT approach for soft
error detection by leveraging the orthogonality relationship
of two vectors. This approach, however, only covers a sub-
set of the Krylov methods that can offer such orthogonal-
ity. Shantharam et al. [16] proposed an ABFT-SpMxV al-
gorithm for PCG that guarantees the detection of a single
error striking in either computation or memory representa-
tion of the two input operands. This method requires A
to be strictly diagonally dominant, a condition that will re-
strict the practical applicability of this techniques. Unlike
these approaches, our proposed designs can be applied to
general iterative methods without the aforementioned limi-
tations while providing significantly improved error coverage
and efficient online error detection and recovery.

In [4] and [9], the authors target GMRES based on its
special characteristics and proposed a fault tolerant version
via selective reliability, which can run through soft errors
in the preconditioning phase without the need for detection
and recovery. Similar to theirs, Sao and Vuduc[14] studied
self-stabilizing corrections after error detection for CG al-
gorithm. However, these approaches potentially affect the
speed of the convergence for the underlying algorithms in
an error- and input-specific fashion. Moreover, these solu-
tions target specific features of certain iterative algorithms
and are not general enough to address the larger class of
iterative methods addressing by the our work.

8. CONCLUSION
To enable high error-detection coverage and low overhead,

we proposed a new checksum encoding mechanism that guar-
antees that only the checksum relationship of the output
vector needs to be verified to detect any soft error in MVM
or VLO operations in iterative methods. Unlike traditional
checksum schemes, our design can tolerate cache and regis-
ter bit-flips and does not require additional checksum veri-
fications after every vector-generating operation. Based on
this new checksum encoding scheme, we developed two on-
line ABFT algorithms—basic and two-level—for general it-
erative methods, allowing errors to be detected eagerly or
lazily based on system error rates. Experimental results
demonstrated that our proposed designs are efficient and
effective in tolerating various error scenarios in general iter-
ative methods.
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