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Introduction
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u Supercomputers are increasingly susceptible to Silent Data 
Corruption (SDC)
Ø Large number of complex architecture components (e.g., novel memory designs)
Ø Each component has growing on-chip transistor density
Ø Limited power and energy consumption

u This phenomena has been already 
observed on several real-world 
leadership-class supercomputers

u Titan/Jaguar case study†

Ø Constant stream of single bit flips
Ø Double-bit flip every 24 hrs.
Ø 20 faults per hour

l Heartbeat fault every 3 minutes
l 12 kernel panics in 3 days

†Al Geist, How To Kill A Supercomputer, 2016
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u Algorithm-Based Fault Tolerance (ABFT) is a checksum-based 
approach to detect and correct/locate SDCs at a low cost

u Traditional checksum encoding scheme
Ø Encoding: augment the input matrices with a checksum computed from the rows or 
columns
Ø Computation: perform a matrix operation on the augmented matrices and compute 
a checksum for the output matrix automatically
Ø Verification: any error in the computation will break the encoding relationship 
between the output matrix and its checksum
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u Algorithm-Based Fault Tolerance (ABFT) is a checksum-based 
approach to detect and correct/locate SDCs at a low cost

u Traditional checksum encoding scheme
Ø Encoding: augment the input matrices with a checksum computed from the rows or 
columns
Ø Computation: perform a matrix operation on the augmented matrices and compute 
a checksum for the output matrix automatically
Ø Verification: any error in the computation will break the encoding relationship 
between the output matrix and its checksum

u Example: applying traditional 
checksum encoding scheme 
[Huang and Abraham] to matrix-
vector multiplication (MVM)
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u Encoding: 

Ø c is a predefined vector, normally, c = (1, 1, …, 1)T

u Computation on encoded matrix and vectors: 

u Verification: 
Ø Checksum relationship
Ø Satisfied: no error in the computation
Ø Not Satisfied: error(s) occurred in the computation
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u Consider an error in x before the MVM, resulting in an erroneous 
vector x’

u Computation:

u Verification: 
Ø Checksum relationship for erroneous computed vector y still holds
Ø Checking the output vector’s checksum relationship cannot identify all SDCs 

Problems With the Traditional ABFT Scheme: 
(1) Traditional encoding scheme may FAIL for MVM 
(2) Traditional encoding scheme can NOT address cache/register bit-

flips and protect preconditioners
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ABFT for Iterative Methods
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u Iterative Methods are widely used for solving systems of equations 
or computing eigenvalues of large sparse matrices

u Existing fault tolerant techniques for iterative methods

Ø [Shantharam et al., ICS’12]: requires matrix A to be strictly 
diagonally dominant – NOT GENERAL
Ø [Chen, PPoPP’13]: only covers a subset of Krylov methods that 
can offer orthogonality – NOT GENERAL
Ø [Sloan et al., DSN’13]: uses the traditional checksum-encoding 
mechanism – MAY FAIL

u Developing a general and low-cost ABFT scheme with good 
coverage for iterative methods is in high demand
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u New Encoding Mechanism
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u Computation

u Checksum can be updated separately after MVM y = Ax
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u Vector Linear Operation (VLO): z = αx + βy and Solving Preconditioned System 
(PCO): Mz = r
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Novel Error-Preserving 
Checksum for MVM (cont.)
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u Theorem: For any matrix-vector multiplication (MVM), vector
linear operation (VLO), preconditioning operation (PCO), the
checksum relationship of the output vector is preserved if and
only if there are no soft errors before or during the operation.
(key theorem)
Proof: see our paper for the details.

u Verification: 

Ø No error occurred before or during the computation <=> 
checksum(y) = cTy

Ø Any errors => Checksum relationship will preserve to be BROKEN in 
the subset iterations
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u Based on our new designed checksum encoding scheme, 
we design efficient online ABFT solutions for iterative 
methods

u “Lazy” Detection: Low-Cost Online ABFT Algorithm

u “Eager” Recovery for MVM: Triple Checksums

u “Hybrid” Detection: Two-Level Online ABFT Algorithm
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u Step 1: update checksum after each MVM, 
VLO, PCO (red in algorithm 1)

u Step 2: low-cost error detection
Ø Verify checksum relationship after every MVM, 

VLO, PCO – high detection cost

Ø Do we need to verify the checksum relationship 
every iteration?
² Observation 1: Soft errors in p, x, r will 

propagate to the subsequent iterations
² Verify checksum relationship every 

several iterations (blue in algorithm 1)

Ø Do we need to verify all the operations?
² Observation 2: Soft errors in z, p, q will 

eventually propagate to x and r
² Only verify 2 checksum relationships, x

and r (blue in algorithm 1)



“Lazy” Detection: Low-Cost 
Online ABFT Algorithm (cont.)
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u Step 3: low-cost error recovery
Ø Error detect every several iterations => 

Checkpoint/Rollback
Ø Do we need to checkpoint every vector?

² Observation 3: Using p and x can 
compute the other 3 vectors

² Only checkpoint 2 vectors, p and x (in 
purple)

u Overhead Summary 
Ø Checksum update: 2 vector dot-products 

every iteration
Ø Error detection: 2 vector dot-products every 

d iterations
Ø Rollback recovery: 2 matrix copies every cd

iterations
Ø Checkpoint: 2 vector copies every cd

iterations
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u Step 3: low-cost error recovery
Ø Error detect every several iterations => 

Checkpoint/Rollback
Ø Do we need to checkpoint every vector?

² Observation 3: Using p and x can 
compute the other 3 vectors

² Only checkpoint 2 vectors, p and x (in 
purple)

u Overhead Summary 
Ø Checksum update: 2 vector dot-products 

every iteration
Ø Error detection: 2 vector dot-products every 

d iterations
Ø Rollback recovery: 2 matrix copies every cd

iterations
Ø Checkpoint: 2 vector copies every cd

iterations
Ø Original algorithm: 1 MVM and 1 PCO
Ø MVM and PCO >> vector dot-product, 

matrix and vector copy



“Eager” Recovery for MVM: 
Triple Checksums
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u MVM: computation-intensive, vulnerable => faster recovery under a high error 
rate can be beneficial

u Encoding: 

u Checksum update: similar to 1 checksum (see in the paper)

u Verification:
Ø Detect if there is any error:
Ø Identify whether there is more than one error:

Ø Choose c1 = (1, 1, …, 1)T, c2 = (1, 2, ..., n)T, c3 = (1, 1/2, ..., 1/n)T

Ø If there is one error, locate and correct:
Ø Erroneous locate: 
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“Hybrid” Detection: Two-Level 
Online ABFT Algorithm
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u Inner protection
Ø Detect a single error in MVM: locate

and correct
Ø Detect multiple errors in MVM:

rollback immediately
u Outer Protection

Ø Detect error(s) in VLOs and multiple
errors can not be recovered in inner
protection



“Hybrid” Detection: Two-Level 
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General procedure to construct a Two-Level ABFT:

1. Encode matrices and vectors

2. Compute checksum updates after MVM, VLO, PCO

3. Analyze dependency relationship between vectors

4. Every d iterations, invoke the outer-level protection

5. Every cd iterations, checkpoint the minimum number of vectors

6. After each MVM, add the inner-level protection
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Offline residual: verify residual at the end of computation and recompute
Online MV: online MVM scheme using the traditional checksum proposed by [Sloan 
et al., DSN’13]
Online Orthogonality: online orthogonally checking proposed by [Chen, PPOPP’13]
Basic Online ABFT: our proposed “lazy” online ABFT using checksum updates and 
C/R
Two-Level ABFT: our proposed two-level online ABFT using triple-checksum 
mechanism



Theoretical Comparison -
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u 3 designed scenarios
Ø One error in MVM during the entire execution – low error rate
Ø One error in MVM every cd iterations – medium/high error rate
Ø One error in MVM every iteration – extremely high error rate

u Theoretical Comparison on PCG
u Low error rate: basic online ABFT has the lowest overhead
u Medium/high error rate: two-level online ABFT has the lowest overhead
u Extremely high error rate: two-level online ABFT has the lowest overhead

u Overall, no matter the error rate, one of our approaches will 
outperform the online MV for PCG.



Empirical Evaluation –
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u Platforms
Ø Stampede supercomputer at TACC, each node with 2 Intel Xeon E5-2680 

processors
Ø Tianhe-2 supercomputer (No.1 in Top 500), each node with 2 Intel Xeon E5-

2692 processors

u Implemented our proposed online ABFT schemes in PETSc

u Evaluated solvers
Ø Preconditioned Conjugate Gradient (PCG): has orthogonality relation
Ø Preconditioned Biconjugate Gradient Stabilized (PBiCGSTAB): no 

orthogonality relation (against [Chen, PPOPP’13])

u Input Matrix: G3_circuit
Ø The largest SPD matrix from the University of Florida Sparse Matrix 

Collection
Ø 1,585,478 rows and columns with 7,660,826 nonzero elements



Empirical Evaluation –
Results
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(a) Comparison with PCG on Stampede (b) Comparison with PBiCGSTAB on Stampede

u Empirical comparison
Ø Failure-free: overhead is low for both proposed online ABFT (0.4%

and 1.3% for PCG, 1.0% and 4.0% for PBiCGSTAB)
Ø Low error rate: basic online ABFT has the lowest overhead
Ø Medium/high error rate: two-level online ABFT has the lowest 

overhead
Ø Extremely high error rate: two-level online ABFT has the lowest 

overhead (online MV is 48% higher than two-level)

Consistent
with 

theoretical 
analysis
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(c) Comparison with PCG on Tianhe-2 (d) Comparison with PBiCGSTAB on Tianhe-2

Similar conclusions as on Stampede.
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(e) Comparison with PCG under a high error-rate scenario on Stampede 

Two-level online ABFT outperforms basic online ABFT by 
32.1% on average under  the high error rate scenario.
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u HPC platforms are anticipated to be more susceptible to soft 
errors in both logic circuits and memory subsystems 

u Proposed a new checksum encoding mechanism

u Developed two online ABFT algorithms for general iterative 
methods – “basic” and “two-level” – that allow errors to be 
detected eagerly and lazily

u Experimental results demonstrate our designs are efficient and 
effective to detect and recover soft errors for general iterative 
methods
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