
New-Sum: A Novel Online ABFT
Scheme For General Iterative Methods

Dingwen Tao (University of California, Riverside)
Shuaiwen Leon Song (Pacific Northwest National Laboratory)

Sriram Krishnamoorthy (Pacific Northwest National Laboratory)
Panruo Wu (University of California, Riverside)
Xin Liang (University of California, Riverside)

Eddy Z. Zhang (Rutgers University)
Darren Kerbyson (Pacific Northwest National Laboratory)

Zizhong Chen (University of California, Riverside)

1

Introduction

2

u Supercomputers are increasingly susceptible to Silent Data
Corruption (SDC)
Ø Large number of complex architecture components (e.g., novel memory designs)
Ø Each component has growing on-chip transistor density
Ø Limited power and energy consumption

u This phenomena has been already
observed on several real-world
leadership-class supercomputers

u Titan/Jaguar case study†

Ø Constant stream of single bit flips
Ø Double-bit flip every 24 hrs.
Ø 20 faults per hour

l Heartbeat fault every 3 minutes
l 12 kernel panics in 3 days

†Al Geist, How To Kill A Supercomputer, 2016

Outline

3

u Algorithm-Based Fault Tolerance (ABFT)

u Limitations of Traditional ABFT for matrix-vector multiplication (MVM)

u Limitations of Existing Techniques for FT-Iterative Methods

Outline

4

u Algorithm-Based Fault Tolerance (ABFT)

u Limitations of Traditional ABFT for matrix-vector multiplication (MVM)

u Limitations of Existing Techniques for FT-Iterative Methods

u Our Designs
Ø Novel Error-Preserving Checksum for MVM
Ø New Online ABFT Schemes

Outline

5

u Algorithm-Based Fault Tolerance (ABFT)

u Limitations of Traditional ABFT for matrix-vector multiplication (MVM)

u Limitations of Existing Techniques for FT-Iterative Methods

u Our Designs
Ø Novel Error-Preserving Checksum for MVM
Ø New Online ABFT Schemes

u Theoretical Comparison

u Empirical Evaluation

u Conclusions

Algorithm-Based Fault
Tolerance (ABFT)

6

u Algorithm-Based Fault Tolerance (ABFT) is a checksum-based
approach to detect and correct/locate SDCs at a low cost

u Traditional checksum encoding scheme
Ø Encoding: augment the input matrices with a checksum computed from the rows or
columns
Ø Computation: perform a matrix operation on the augmented matrices and compute
a checksum for the output matrix automatically
Ø Verification: any error in the computation will break the encoding relationship
between the output matrix and its checksum

Algorithm-Based Fault
Tolerance (ABFT)

7

u Algorithm-Based Fault Tolerance (ABFT) is a checksum-based
approach to detect and correct/locate SDCs at a low cost

u Traditional checksum encoding scheme
Ø Encoding: augment the input matrices with a checksum computed from the rows or
columns
Ø Computation: perform a matrix operation on the augmented matrices and compute
a checksum for the output matrix automatically
Ø Verification: any error in the computation will break the encoding relationship
between the output matrix and its checksum

u Example: applying traditional
checksum encoding scheme
[Huang and Abraham] to matrix-
vector multiplication (MVM)

Algorithm-Based Fault
Tolerance for MVM

8

u Encoding:

Ø c is a predefined vector, normally, c = (1, 1, …, 1)T

u Computation on encoded matrix and vectors:

u Verification:
Ø Checksum relationship
Ø Satisfied: no error in the computation
Ø Not Satisfied: error(s) occurred in the computation

A→ A*=

A
c
!T A

⎛

⎝
⎜

⎞

⎠
⎟

y
!
= A x

!
=

A
c
!T A

⎛

⎝
⎜

⎞

⎠
⎟ x
!
= Ax

!

c
!T Ax
!

⎛

⎝
⎜

⎞

⎠
⎟

 checksum(y) = c
!T y
!

computed vector y

checksum(y)

Limitations of Traditional
ABFT for MVM

9

u Consider an error in x before the MVM, resulting in an erroneous
vector x’

u Computation:

u Verification:
Ø Checksum relationship for erroneous computed vector y still holds
Ø Checking the output vector’s checksum relationship cannot identify all SDCs

Problems With the Traditional ABFT Scheme:
(1) Traditional encoding scheme may FAIL for MVM
(2) Traditional encoding scheme can NOT address cache/register bit-

flips and protect preconditioners

y
!
'*= A* x

!
' =

A
c
!T A

⎛

⎝
⎜

⎞

⎠
⎟ x
!
' = Ax

!
'

c
!T Ax
!
'

⎛

⎝
⎜

⎞

⎠
⎟

erroneous computed y

erroneous checksum(y)

ABFT for Iterative Methods

10

u Iterative Methods are widely used for solving systems of equations
or computing eigenvalues of large sparse matrices

u Existing fault tolerant techniques for iterative methods

Ø [Shantharam et al., ICS’12]: requires matrix A to be strictly
diagonally dominant – NOT GENERAL
Ø [Chen, PPoPP’13]: only covers a subset of Krylov methods that
can offer orthogonality – NOT GENERAL
Ø [Sloan et al., DSN’13]: uses the traditional checksum-encoding
mechanism – MAY FAIL

u Developing a general and low-cost ABFT scheme with good
coverage for iterative methods is in high demand

Outline

11

u Algorithm-Based Fault Tolerance (ABFT)

u Limitations of Traditional ABFT for matrix-vector multiplication (MVM)

u Limitations of Existing Techniques for FT-Iterative Methods

u Our Designs
Ø Novel Error-Preserving Checksum for MVM
Ø New Online ABFT Schemes

u Theoretical Comparison

u Empirical Evaluation

u Conclusions

12

u New Encoding Mechanism

A→ A*= A 0
!

c
!T A − dc

!T d

⎛

⎝
⎜

⎞

⎠
⎟

x
!
→ x
!
*= x

!

c
!T x
!

⎛

⎝
⎜

⎞

⎠
⎟

y
!
= A x

!
*

= A 0
!

c
!T A − dc

!T d

⎛

⎝
⎜

⎞

⎠
⎟

x
!

c
!T x
!

⎛

⎝
⎜

⎞

⎠
⎟ =

Ax
!

c
!T Ax
!

⎛

⎝
⎜

⎞

⎠
⎟

Novel Error-Preserving
Checksum for MVM

 checksum(y) = c
!T y
!

Checksum
Relationship
Maintained

Novel Error-Preserving
Checksum for MVM (cont.)

13

u Computation

u Checksum can be updated separately after MVM y = Ax

y
!
= A x

!
*

= A 0
!

checksum(A) d

⎛

⎝
⎜

⎞

⎠
⎟

x
!

checksum(x
!
)

⎛

⎝
⎜

⎞

⎠
⎟ =

Ax
!

checksum(A)x
!
+ d i checksum(x

!
)

⎛

⎝
⎜

⎞

⎠
⎟

Separation

 checksum(y
!
) = checksum(A)x

!
+ d i checksum(x

!
)

Novel Error-Preserving
Checksum for MVM (cont.)

14

u Vector Linear Operation (VLO): z = αx + βy and Solving Preconditioned System
(PCO): Mz = r

 checksum(z
!
) =α i checksum(x

!
)+ β i checksum(y

!
)

 checksum(z
!
) = (checksum(M)z

!
− checksum(r

!
)) / d

Novel Error-Preserving
Checksum for MVM (cont.)

15

u Theorem: For any matrix-vector multiplication (MVM), vector
linear operation (VLO), preconditioning operation (PCO), the
checksum relationship of the output vector is preserved if and
only if there are no soft errors before or during the operation.
(key theorem)
Proof: see our paper for the details.

u Verification:

Ø No error occurred before or during the computation <=>
checksum(y) = cTy

Ø Any errors => Checksum relationship will preserve to be BROKEN in
the subset iterations

Outline

16

u Algorithm-Based Fault Tolerance (ABFT)

u Limitations of Traditional ABFT for matrix-vector multiplication (MVM)

u Limitations of Existing Techniques for FT-Iterative Methods

u Our Designs
Ø Novel Error-Preserving Checksum for MVM
Ø New Online ABFT Schemes

u Theoretical Comparison

u Empirical Evaluation

u Conclusions

New Online ABFT Schemes

17

u Based on our new designed checksum encoding scheme,
we design efficient online ABFT solutions for iterative
methods

u “Lazy” Detection: Low-Cost Online ABFT Algorithm

u “Eager” Recovery for MVM: Triple Checksums

u “Hybrid” Detection: Two-Level Online ABFT Algorithm

“Lazy” Detection: Low-Cost
Online ABFT Algorithm

18

u Step 1: update checksum after each MVM,
VLO, PCO (red in algorithm 1)

u Step 2: low-cost error detection
Ø Verify checksum relationship after every MVM,

VLO, PCO – high detection cost

Ø Do we need to verify the checksum relationship
every iteration?
² Observation 1: Soft errors in p, x, r will

propagate to the subsequent iterations
² Verify checksum relationship every

several iterations (blue in algorithm 1)

Ø Do we need to verify all the operations?
² Observation 2: Soft errors in z, p, q will

eventually propagate to x and r
² Only verify 2 checksum relationships, x

and r (blue in algorithm 1)

“Lazy” Detection: Low-Cost
Online ABFT Algorithm (cont.)

19

u Step 3: low-cost error recovery
Ø Error detect every several iterations =>

Checkpoint/Rollback
Ø Do we need to checkpoint every vector?

² Observation 3: Using p and x can
compute the other 3 vectors

² Only checkpoint 2 vectors, p and x (in
purple)

u Overhead Summary
Ø Checksum update: 2 vector dot-products

every iteration
Ø Error detection: 2 vector dot-products every

d iterations
Ø Rollback recovery: 2 matrix copies every cd

iterations
Ø Checkpoint: 2 vector copies every cd

iterations

“Lazy” Detection: Low-Cost
Online ABFT Algorithm (cont.)

20

u Step 3: low-cost error recovery
Ø Error detect every several iterations =>

Checkpoint/Rollback
Ø Do we need to checkpoint every vector?

² Observation 3: Using p and x can
compute the other 3 vectors

² Only checkpoint 2 vectors, p and x (in
purple)

u Overhead Summary
Ø Checksum update: 2 vector dot-products

every iteration
Ø Error detection: 2 vector dot-products every

d iterations
Ø Rollback recovery: 2 matrix copies every cd

iterations
Ø Checkpoint: 2 vector copies every cd

iterations
Ø Original algorithm: 1 MVM and 1 PCO
Ø MVM and PCO >> vector dot-product,

matrix and vector copy

“Eager” Recovery for MVM:
Triple Checksums

21

u MVM: computation-intensive, vulnerable => faster recovery under a high error
rate can be beneficial

u Encoding:

u Checksum update: similar to 1 checksum (see in the paper)

u Verification:
Ø Detect if there is any error:
Ø Identify whether there is more than one error:

Ø Choose c1 = (1, 1, …, 1)T, c2 = (1, 2, ..., n)T, c3 = (1, 1/2, ..., 1/n)T

Ø If there is one error, locate and correct:
Ø Erroneous locate:

A→ A*=

A 0
!

0
!

0
!

c1
"!T A − d1c1

"!T − d2c2
"!" T − d3c3

"!T d1 d2 d3
c2
"!" T A − d2c1

"!T − d3c2
"!" T − d1c3

"!T d2 d3 d1
c3
"!T A − d3c1

"!T − d1c2
"!" T − d2c3

"!T d3 d1 d2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

x
!
→ x
!
*=

x
!

c1
"!TT x
!

c2
"!" TT x
!

c3
"!TT x
!

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

checksum1(x)

checksum2(x)

checksum3(x)

 checksum1(y)? = c1
!"T y
"

 (checksum1(y)− c1
!"T y
"
)2 ? = (checksum2 (y)− c2

!"! T y
"
)(checksum3(y)− c3

!"T y
"
)

 (checksum2 (y)− c2
!"! T y
"
) / (checksum1(y)− c1

!"T y
"
)

“Hybrid” Detection: Two-Level
Online ABFT Algorithm

22

u Inner protection
Ø Detect a single error in MVM: locate

and correct
Ø Detect multiple errors in MVM:

rollback immediately
u Outer Protection

Ø Detect error(s) in VLOs and multiple
errors can not be recovered in inner
protection

“Hybrid” Detection: Two-Level
Online ABFT Algorithm (cont.)

23

General procedure to construct a Two-Level ABFT:

1. Encode matrices and vectors

2. Compute checksum updates after MVM, VLO, PCO

3. Analyze dependency relationship between vectors

4. Every d iterations, invoke the outer-level protection

5. Every cd iterations, checkpoint the minimum number of vectors

6. After each MVM, add the inner-level protection

Outline

24

u Algorithm-Based Fault Tolerance (ABFT)

u Limitations of Traditional ABFT for matrix-vector multiplication (MVM)

u Limitations of Existing Techniques for FT-Iterative Methods

u Our Designs
Ø Novel Error-Preserving Checksum for MVM
Ø New Online ABFT Schemes

u Theoretical Comparison

u Empirical Evaluation

u Conclusions

Theoretical Comparison - Error
Coverage and Feature

25

Offline residual: verify residual at the end of computation and recompute
Online MV: online MVM scheme using the traditional checksum proposed by [Sloan
et al., DSN’13]
Online Orthogonality: online orthogonally checking proposed by [Chen, PPOPP’13]
Basic Online ABFT: our proposed “lazy” online ABFT using checksum updates and
C/R
Two-Level ABFT: our proposed two-level online ABFT using triple-checksum
mechanism

Theoretical Comparison -
Performance

26

u 3 designed scenarios
Ø One error in MVM during the entire execution – low error rate
Ø One error in MVM every cd iterations – medium/high error rate
Ø One error in MVM every iteration – extremely high error rate

u Theoretical Comparison on PCG
u Low error rate: basic online ABFT has the lowest overhead
u Medium/high error rate: two-level online ABFT has the lowest overhead
u Extremely high error rate: two-level online ABFT has the lowest overhead

u Overall, no matter the error rate, one of our approaches will
outperform the online MV for PCG.

Empirical Evaluation –
Configurations

27

u Platforms
Ø Stampede supercomputer at TACC, each node with 2 Intel Xeon E5-2680

processors
Ø Tianhe-2 supercomputer (No.1 in Top 500), each node with 2 Intel Xeon E5-

2692 processors

u Implemented our proposed online ABFT schemes in PETSc

u Evaluated solvers
Ø Preconditioned Conjugate Gradient (PCG): has orthogonality relation
Ø Preconditioned Biconjugate Gradient Stabilized (PBiCGSTAB): no

orthogonality relation (against [Chen, PPOPP’13])

u Input Matrix: G3_circuit
Ø The largest SPD matrix from the University of Florida Sparse Matrix

Collection
Ø 1,585,478 rows and columns with 7,660,826 nonzero elements

Empirical Evaluation –
Results

28

(a) Comparison with PCG on Stampede (b) Comparison with PBiCGSTAB on Stampede

u Empirical comparison
Ø Failure-free: overhead is low for both proposed online ABFT (0.4%

and 1.3% for PCG, 1.0% and 4.0% for PBiCGSTAB)
Ø Low error rate: basic online ABFT has the lowest overhead
Ø Medium/high error rate: two-level online ABFT has the lowest

overhead
Ø Extremely high error rate: two-level online ABFT has the lowest

overhead (online MV is 48% higher than two-level)

Consistent
with

theoretical
analysis

Empirical Evaluation –
Results (cont.)

29

(c) Comparison with PCG on Tianhe-2 (d) Comparison with PBiCGSTAB on Tianhe-2

Similar conclusions as on Stampede.

Empirical Evaluation –
Results (cont.)

30

(e) Comparison with PCG under a high error-rate scenario on Stampede

Two-level online ABFT outperforms basic online ABFT by
32.1% on average under the high error rate scenario.

Conclusions

31

u HPC platforms are anticipated to be more susceptible to soft
errors in both logic circuits and memory subsystems

u Proposed a new checksum encoding mechanism

u Developed two online ABFT algorithms for general iterative
methods – “basic” and “two-level” – that allow errors to be
detected eagerly and lazily

u Experimental results demonstrate our designs are efficient and
effective to detect and recover soft errors for general iterative
methods

32

Thank you !

Contact:
Dingwen Tao (dtao001@cs.ucr.edu)
Shuaiwen Leon Song (Shuaiwen.Song@pnnl.gov)

Acknowledgement: DOE CESAR Project, DOE ADEM Project and NSF

