ACM HPDC 2018

The 27th International Symposium on High-Performance Parallel and Distributed Computing
Tempe, Arizona, USA - June 11-15, 2018

e

Improving Performance of Iterative
Methods by Lossy Checkpointing
Dingwen Tao (University of California, Riverside) I% I V E R S I D E

Sheng Di (Argonne National Laboratory)

Xin Liang (University of California, Riverside)

Zizhong Chen (University of California, Riverside) A rgo n n e é

Franck Cappello (Argonne National Laboratory) NATIONAL LABORATORY

June 2018

AAAAAAAAAAAAAAAAAA

Outline

>Introduction
- Why we need to checkpoint iterative methods?

AAAAAAAAAAAAAAAAAA

Outline

>Introduction
- Why we need to checkpoint iterative methods?

»Background
- Traditional checkpointing for iterative methods

- Performance model of traditional checkpointing

Outline

>Introduction
- Why we need to checkpoint iterative methods?

»Background
- Traditional checkpointing for iterative methods
- Performance model of traditional checkpointing

»>QOur Designs
- Lossy checkpointing for iterative methods

- Performance model of our new checkpointing

Argon ne° R

AAAAAAAAAAAAAAAA

Outline

>Introduction
- Why we need to checkpoint iterative methods?

»Background
- Traditional checkpointing for iterative methods
- Performance model of traditional checkpointing

»0ur Designs
- Lossy checkpointing for iterative methods

- Performance model of our new checkpointing

»>Theoretical Analysis
- Impact of lossy checkpointing for different methods

- Expected fault tolerance overhead

Argon ne° R

AAAAAAAAAAAAAAAA

Outline

>Introduction
- Why we need to checkpoint iterative methods?

»Background
- Traditional checkpointing for iterative methods
- Performance model of traditional checkpointing

»0ur Designs
- Lossy checkpointing for iterative methods

- Performance model of our new checkpointing

»>Theoretical Analysis
- Impact of lossy checkpointing for different methods

- Expected fault tolerance overhead

»>Experimental Evaluation

AAAAAAAAAAAAAAAA

Outline

>Introduction
- Why we need to checkpoint iterative methods?

»Background
« Traditional checkpointing for iterative methods
« Performance model of traditional checkpointing

»QOur Designs
 Lossy checkpointing for iterative methods

 Performance model of our new checkpointing

»Theoretical Analysis
« Impact of lossy checkpointing for different methods

« Expected fault tolerance overhead

»Experimental Evaluation

Why Need to Checkpoint Iterative Methods?

>|terative methods used for solving large, sparse linear system
« ”Gaia” mission by European Space Agency (ESA)

|2 THE BILLION STAR SURVEYOR

Producing 5-parameter astrometric catalogue at the microarcsecond for
1 billion stars in Galaxy

Resulting a very large, sparse linear system of 72 billion equations o e :
9 ESAC T e
Scientists use LSQR iterative algorithm ~ European Space Astronomy Centre i

Madrid; Spai

Takes more than 54 hours on 2,048 BlueGene/Q nodes | lseptemberddls

. 11:30:CEST.»

B Execution Time M Number of Iterations :
20000 7E+05 - Largest symmetric indefinite sparse matrix from UFL sparse
matrix collection (KKT240 with 28 million linear equations)

15000
- OE+05 «2,048 cores / 64 nodes on Bebop cluster at Argonne
O 10000
& <000 5E+05 « GMRES solver implemented in PETSc
o I RS0 - Relative convergence tolerance of 10, execution time > 1 hour

1024 2048

Number of Processes « MTBF of Sunway TaihuLight supercomputer can be hourly or less

than 1 hour

Importance of Improving Checkpointing
Performance of Iterative Methods

>Scientific simulations involving PDEs
- Solve linear systems within each timestep
- Sparse linear systems include most of the variables
- E.g., 3D CFD problems from Navier-Stokes equations

« Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm
5 out of 9 fluid-flow variables need to be checkpointed in iterative method

»>Significantly Improve Checkpointing Performance of Iterative methods

‘ Significantly Improve Application Performance

AAAAAAAAAAAAAAAAAA

State-of-the-Art: Failure-Stop Failure

Comp Proc 1 Comp Proc k

Stable
Storage

Checkpoint/Restart Model

* Periodical checkpoint to file system is expensive
e Difficult to scale up due to bottleneck of I/O bandwidth

AAAAAAAAAAAAAAAAAA

State-of-the-Art: Failure-Stop Failure

Comp Proc 1 Comp Proc k Ckpt Proc
EEEEEEERN
tabl
torage
Diskless checkpoint (J. Plank) 2 steps:

G+ ... +C,=C 1. Checkpointing state of each

application processor in memory
« 2X or more memory overhead (cons) = Reduce usable memory and problem size 2. Encoding these in-memory

* Only able to tolerate with partial failures , not for a whole system failure (cons) checkpoints and storing the encodings
in checkpointing processors

* More scalable (pros)

* Requires spare nodes and dedicates processors (cons)

Failures and Checkpointing

AAAAAAAAAAAAAAAAAA

Hours

Timerequiredto . gemee
write acheckpoint =~ 4

Optimized Techniques to Improve Scalability of

Checkpoint

Diskless checkpoint

Multi-level checkpoint
Asynchronized checkpoint
Lossless-compressed checkpoint

Question: Can we use lossy compression to (1) reduce

Size of supercomputer checkpointing size and overhead and (2) improve the
performance and scalability?

AAAAAAAAAAAAAAAAAA

Failures and Checkpointing

Timerequiredto . qum
write acheckpoint =~ 4

Question: Can we use lossy compression to (1) reduce
checkpointing size and overhead and (2) improve the
performance and scalability?

mmm) Lossy checkpointing

Hours

Two important questions:

(1) What is the impact of the lossy checkpointing data on
the execution performance?

(2) Can lossy checkpointing actually improve the overall
performance (including C/R and lossy compression) in the
context of restarting with alternated data?

Size of supercomputer

AAAAAAAAAAAAAAAA

Outline

>|ntroduction
« Why we need to checkpoint iterative methods?

»Background
- Traditional checkpointing for iterative methods
« Performance model of traditional checkpointing

»QOur Designs
 Lossy checkpointing for iterative methods

 Performance model of our new checkpointing

»Theoretical Analysis
« Impact of lossy checkpointing for different methods

« Expected fault tolerance overhead

»Experimental Evaluation

agomme™ |UCR
Traditional Checkpointing for Iterative Methods

>Checkpoint Algorithm 1 Fault-tolerant preconditioned conjugate gradient
1. Checkpoint static variables (e.g., A, M) at the beginning (PCG) algorithm with traditional checkpointing.

Input: linear system matrix A, preconditioner M, and right-hand
2. Checkpoint dynamic variables (e.g., i, p, p, X) every several iterations side vector b
Output: approximate solution x
1 Compute r'? = b — Ay 2O = p=1,0 pO = 0 50 =
r®720) for some initial guess x'”)
I fori=0.1--do
1% if ((i > 0) and (i%ckpt_intvl = 0)) then

Iy Checkpoint: i, p; and p', x'V) :
- endif - — - ————-—m - m e !
& if ((i > 0) and (recover)) then

% Recover: AL M, i, py, p'!), x'¥)

8 Compute r'/) = b - Ax'!

o endif

10 ql!'i - Apl“

o a;=pifp g?

12 xUH) = x4 gpld)

13 D = p) - gl

14 solve Mz = pli+D)

1% Pisl = DT Li+1)

16 Pi = pis1/pi

i pli* D) = 2D 4 gyl

18 check convergence; continue if necessary
19 end for

agomme™ |UCR
Traditional Checkpointing for Iterative Methods

[orithm 1 Fault-tolerant preconditioned conjugate gradient
»Checkpoint Algorith ult-tolerant preconditioned gate grad
1. Checkpoint static variables (e.g., A, M) at the beginning (PCG) algorithm with traditional checkpointing.
.) . .]) Input: linear system matrix A, preconditioner M, and right-hand
2. Checkpoint dynamic variables (e.g., i, p, p, X) every several iterations side vector b
Output: approximate solution x
»>Recovery 1: Compute r'? = b = Ax'" 20 = M~1AD pO) = 20 54 =
. . 7T) - (0)
1. Recover a correct computational environment , ;mz: Of‘l”_s_‘?“;)'"“‘“' guess X
2. Recover static variables 1sif ((> 0) and (ickpt_intol = 0)) then !
. . Iy Checkpoint: i,p; and p'"), x'! [
3. Recover dynamic variables S l
. 16 if (i > 0) and (recover)ithen™ ~ ~ ~ " " "7 '
4. Recover recomputed variables (e.g., r) , 17 Recover: AM,i,pi,pl, xU) !
T Compute r'!) = b - Ax'?) ;
e S i
10 qlii - Apl“
o= p'_/pm'rqm
1z x*) =) gpD)
14 solve Mz'\I*1) = pi+1)
15 Pisl = rl_i+1)7'zli+ll
16 Pi = pis1/pi

17 P“”’ = g+l +ﬁ.‘p“'
18 check convergence; continue if necessary
19 end for

Argonne° ‘ R

AAAAAAAAAAAAAAAAAA

Traditional Checkpointing for Iterative Methods

>Checkpoint Algorithm 1 Fault-tolerant preconditioned conjugate gradient
1. Checkpoint static variables (e.g., A, M) at the beginning (PCG) algorithm with traditional checkpointing
)))))) Input: linear system matrix A, preconditioner M, and right-hand
2. Checkpoint dynamic variables (e.g., i, p, p, X) every several iterations side vector b
Output: approximate solution x
»>Recovery 1 Compute r'% = b = Ax'?, 29 = M~1H9 O = 210 py =

0!

r'97 2% for some initial guess x'"

1. Recover a correct computational environment 2 foriz=0.1-.- do
2. Recover static variables (s if (i > 0)and (i%ckpt_intvl =0) then :
L Checkpoint: i, p; and p'"!, x'V) 1
3. Recover dynamic variables I:f::'=1"_“_*’:::::::::::::::::::::::::'
4. Recover recomputed variables (e.g., r) , E' o 2:c::’r“:d“,“f;‘:°;33,":f,'.' i
»>C/R cost dominated by dynamic variables o - m:::pftfil:i_-fﬂ-”- oo -:
- Static variables not checkpointed along iterations (at most once) :': q"= Af”l::,
- Static variables: linear system matrix A and preconditioner M 18 .x'l'*“p :* +aip'!
- A usually has 1x ~ 10x nnz than dynamic variables’ size (i.e., vector size) :: ;:l;:;zr,l,tlf :‘:’,I,':,,
- M is much sparse than A, e.g., block Jacobi, ILU 15 pisr = rFDT I+
« Checkpoint frequency is usually much higher than failure rate :‘ ﬁ.ﬂif’:jﬁﬂ. + pip®
+ MTTI =4 hrs., Time,, = 18 s = Checkpoint interval (Young’ formula) = 12 mins :; mfdh;_‘:': convergence; continue if necessary

. Checkioint freiuenci is 30x hliher than recoveri freiuenci

Argon ne° R

AAAAAAAAAAAAAAAAAA

Traditional Checkpointing for Iterative Methods

>Checkpoint Algorithm 1 Fault-tolerant preconditioned conjugate gradient
. . . . PCG) algorithm with traditional checkpointing.
1. Checkpoint static variables (e.g., A, M) at the beginning (PCG) algorithm with traditional checkpointing

Input: linear system matrix A, preconditioner M, and right-hand

2. Checkpoint dynamic variables (e.g., i, p, p, X) every several iterations side vector b
Output: approximate solution x
»>Recovery 1 Compute r'? = b = Ax'? 20 = M71A0 pOF = 200 5y =
.] 7T _0) IO A0)
1. Recover a correct computational environment . fin Of‘l".“_‘f":ii)‘“““" guicss
2. Recover static variables 1 if ((i > 0) and (i%ckpt_intol = 0)) then :
_) 4 Checkpoint: i, p; and p'"', x'V I
3. Recover dynamic variables o m e — m m m mmm o m e m e l
. 16 if ((i > 0) and (recover)jthen” ~ ~ ~ ~ ~~ "~ """ "7 :
4. Recoverrecomputed variables (g, r) i Recover A,M,i,py,pl), x0 !
_ _ _ 8 Compute r') = b - Ax'") :
»>C/R cost dominated by dynamic variables I — emdHf- — = — == ————————m—m—————— =
. ' L) - A i)
- Static variables not checkpointed along iterations (at most once) o ;;,M o)
1 aj=pj q
- Static variables: linear system matrix A and preconditioner M 1z xUH) =)
13 U

« A usually has 1x ~ 10x nnz than dynamic variables’ size (i.e., vector size) " Focus on reducing C/R overhead

+ M is much sparse than A, e.g., block Jacobi, ILU ‘w of dynamic variables in iterative
« Checkpoint frequency is usually much higher than failure rate “ methods by lossy compressors.

1% p
+ MTTI =4 hrs., Time,, = 18 s = Checkpoint interval (Young’ formula) = 12 mins 18 cdh;ck Conn e
1% en or

. Checkioint freiuenci is 30x hiiher than recoveri freiuenci

AAAAAAAAAAAAAAAA

Outline

>|ntroduction
« Why we need to checkpoint iterative methods?

»Background
« Traditional checkpointing for iterative methods
-« Performance model of traditional checkpointing

»QOur Designs
 Lossy checkpointing for iterative methods

 Performance model of our new checkpointing

»Theoretical Analysis
« Impact of lossy checkpointing for different methods

« Expected fault tolerance overhead

»Experimental Evaluation

Theoretical Analysis of Checkpointing argonne® |UCR
Overhead for Iterative Methods

o N T;
 Overall execution time T; = NT;; + Tckp? + T_(Trc +Typ)

f Tit Mean time of an iteration
g ™~ Tekp Mean time to perform a checkpoint
Iteration time Checkpoint time Recover/rollback time . Mean time to recover the application with the correct
rc

environment and data from the last checkpoint
Mean time to perform a rollback of some redundant

Trb computations
Iy Mean time to interruption
OC;)IZ vheag | Mean time overhead of checkpoint/recovery
A Failure rate, ie, 1/Tf¢
K Checkpoint frequency - a checkpoint is performed

every k iterations
N Number of iterations to converge without failures

Theoretical Analysis of Checkpointing weome™ UCR
Overhead for Iterative Methods

] . N T;
* Overall execution time T; = NTiz + Tegp - + - (Tre + Trp)

f Tit Mean time of an iteration
g ™~ Tekp Mean time to perform a checkpoint
lteration time Checkpoint time Recover/rollback time . Mean time to recover the application with the correct
re environment and data from the last checkpoint
* Based on Young’s formula and Expected mean time of arollback |, Mean time to perform a rollback of some redundant
e =L - — computations — — — — = = — = = = — — =
k-T:;+ = 12T - T Trb = kTit / 2 1| Iy Mean time to interruption !
it f " Ackp e M___________________.-
o erhead ean time overhead of checkpoint/recovery
NT;; A Failure rate, ie, 1/Tf¢
* Overall time can be simplified to Ty = K Checkpoint frequency - a checkpoint is performed
11— IZATckp — ATy ¢ every k iterations
N Number of iterations to converge without failures

Theoretical Analysis of Checkpointing
Overhead for Iterative Methods

Arg?ﬂﬂ&ﬁ U C R

N T
Overall execution time T; = NT;; + Tckp? + T—t(Trc +Typ)

Iteration time Checkpoint time Recover/rollback time

e Based on Young’s formula and Expected mean time of a rollback

k-Tie = \J2T5 - Torp Trp = kTt /2
NTi;
1 - 1 IZATCkp - ATrc
TCR \ IZATCICP + ATT‘C

=Tt — NTjt = NTj; -

* Overall time can be simplified to T;: =

Tit Mean time of an iteration

Tekp Mean time to perform a checkpoint

T Mean time to recover the application with the correct
re environment and data from the last checkpoint

7 Mean time to perform a rollback of some redundant
rb computations

Ty Mean time to interruption

Toc;ﬁ vheag | Mean time overhead of checkpoint/recovery

A Failure rate, ie, 1/Tf¢

K Checkpoint frequency - a checkpoint is performed

every k iterations
N Number of iterations to converge without failures

* Fault tolerance overhead

overhead ~— v—
]. - ZATCkp - ATrc

CR ,/ZAT + AT
* Fault tolerance overhead (%) Toverhead _ ckp ckp

NTi; 1— [22Terp = ATekp

(assume Texp~Thc)

Theoretical Analysis of Checkpointing T | Mean time of an fteration
Tekp Mean time to perform a checkpoint
Ove rh eaq d fo r Ite rative M eth Od S T Mean time to recover the application with the correct
e environment and data from the last checkpoint
7 Mean time to perform a rollback of some redundant
T rb computations
* Overall execution time T; = NT;; + Tckp E + T_(Trc +T,p) Ty Mean time to interruption
o f ~ Toc;ﬁ vhead Mf.:an time o?ferhead of checkpoint/recovery
lteration time Checkpoint time Recover/rollback time A Failure rate, ie, 1/Tf
K Checkpoint frequency - a checkpoint is performed
,) every k iterations
* Based on Young’s formula and Expected mean time of a rollback N Number of iterations to converge without failures
k-Tit = 2T - Texyp Trp = kTt /2
Fault Tolerance Overhead with MTTF and One Checkpoint Time
: o NT;;
* Overall time can be simplified to T;: =
\ ’2)171:k17 + ;l]jrc é gitls
* Fault tolerance overhead TS =T = NTi; = NT;; - 280
1- Z)llifk]D _')llzwc %lg 0.4
V 36

|
TCR 2AT, kp T AT, k
'Fault tolerance overhead (%) _cverhead _ N~ %% ~ P

|
_ |
| NTi; 1— m—)ﬁckp : |
I x10"

_________________________________ | ’ 60
. 40
20

=
o

[]
=i

140

Failure rate (1/s) 0 o
Time of one checkpoint (s)

Theoretical Analysis of Checkpointing T | Mean time of an fteration
Tekp Mean time to perform a checkpoint
Ove rh eaq d fo r Ite rative M et h Od S T Mean time to recover the application with the correct
e environment and data from the last checkpoint
7 Mean time to perform a rollback of some redundant
T rb computations
* Overall execution time T; = NT;; + Tckp — + —(Tye + T,p) Ty Mean time to interruption
k Tf CR " .
o ~ T heaq | Mean time overhead of checkpoint/recovery
lteration time Checkpoint time Recover/rollback time A Failure rate, ie, 1/Tf
K Checkpoint frequency - a checkpoint is performed
,) every k iterations
* Based on Young’s formula and Expected mean time of a rollback N Number of iterations to converge without failures
k-Tit = 2T - Texyp Trp = kTt /2
Fault Tolerance Overhead with MTTF and One Checkpoint Time
NTi;

* Overall time can be simplified to T;: =

1 - 1 ’2ATCI€P - ATrc 1
CR /2)LT + AT,
Toverhead _ ckp ckp
NTi; 1- JZATCkp — ATckp

* For example, MTTl is 1 hour (A = 2.7x10%)
Topt = 120 s, expected FT overhead ~ 40% ;
* Checkpoint x (GMRES) on 64 nodes (2,048 cores) on Bebop at ANL 10

o
3

=
o

* Fault tolerance overhead (%)

Fault Tolerance
Overhead (%)
=
-9

=
)

=i

140

60
40

Failure rate (1/s) 0 o 4

Time of one checkpoint (s)

Theoretical Analysis of Checkpointing Tie Mean time of an iteration

Tekp Mean time to perform a checkpoint

Ove rh eaq d fo r Ite ratlve M et h Od S To. Mea}n time to recover the application with th.e correct
environment and data from the last checkpoint

Mean time to perform a rollback of some redundant

N T Trb computations
e Overall execution time Ty = NT;; + TCka + T—(Trc +T,p) Ty Mean time to interruption
o f ~ Toc;ﬁ vheag | Mean time overhead of checkpoint/recovery
lteration time Checkpoint time Recover/rollback time A Failure rate, ie, 1/T
K Checkpoint frequency - a checkpoint is performed

every k iterations
Number of iterations to converge without failures

* Based onYoung’s formula and Expected mean time of a rollback [

k-Tit = 2T - Texyp Trp = kTt /2

Fault Tolerance Overhead with MTT

-

and One Checkpoint Time

NTi;

1 - 1 ’2/1Tckp - ATrc 1
TCR \ IZATckp + ATckp

* Fault tolerance overhead (%) —overhead _
NTi 1- JZATCkp - ATCkp

* For example, MTTl is 1 hour (A = 2.7x10%)
Topt = 120 s, expected FT overhead ~ 40% ;
* Checkpoint x (GMRES) on 64 nodes (2,048 cores) on Bebop at ANL 10
Tt = 25 s, expected FT overhead ~ 14% (significantly reduced!)

C

* Overall time can be simplified to T;: =

o
3

=
o

Fault Tolerance
Overhead (%)
=
~

=
)

=i

140

60
40

Failure rate (1/s) 0 o 4

Time of one checkpoint (s)

AAAAAAAAAAAAAAAA

Outline

>|ntroduction
« Why we need to checkpoint iterative methods?

»Background
« Traditional checkpointing for iterative methods
« Performance model of traditional checkpointing

»>QOur Designs
- Lossy checkpointing for iterative methods

 Performance model of our new checkpointing

»Theoretical Analysis
« Impact of lossy checkpointing for different methods

« Expected fault tolerance overhead

»Experimental Evaluation

agomme™ |UCR
Lossy Checkpointing Scheme for Iterative Methods

»>Lossy checkpointing scheme for iterative methods has two steps Algorithm 2 Fault-tolerant preconditioned conjugate gradient al-
gorithm with lossy checkpointing technique

e Compress dynamic variables with lossy compressor before each
checkpointing

Input: linear system matrix A, preconditioner M, and right-hand
side vector b

* Decompress compressed dynamic variables after each recovering Output: approximate solution x
1: Initialization: same as line 1 in Algorithm 1
2z fori=0,1,--- do

if ((i > 0) and (i%ckpt _intvl = 0)) then
(i)

% Compress: x''’ with lossy compressor

5: Checkpoint: i and compressed x'"

6 endif

7. if ((i > 0) and (recover)) then

8 Recover: A, M, i and compressed x\

9: Decompress: x'") with lossy compressor
10: Compute ') = b — Ax'V

11: Solve Mz!V = ¥

2 pli) =200

13: pPi = r”’Tz“’

14 endif

15: Computation: same as lines 10-17 in Algorithm 1
16: end for

Lossy Checkpointing Scheme for Iterative Methods

»>Lossy checkpointing scheme for iterative methods has two steps Algorithm 2 Fault-tolerant preconditioned conjugate gradient al-
gorithm with lossy checkpointing technique

e Compress dynamic variables with lossy compressor before each

. . Input: linear system matrix A, preconditioner M, and right-hand
checkpointing A d v .

side vector b

* Decompress compressed dynamic variables after each recovering Output: approximate solution x
1: Initialization: same as line 1 in Algorithm 1
»>O0rthogonality dependent iterative methods 2 fori=0.1,--- do

if ((i > 0) and (i%ckpt _intvl = 0)) then

* For example, CG maintains a series of orthogonality relations (i)

with lossy compressor
(i)

Compress: x
Checkpoint: i and compressed x
end if
if ((i > 0)and (recover)) then

Recover: A, M, i and compressed x
(i)

« p and Agl), rlk) and pl), rlk) and rl) for any j < k

* CG’s superlinear convergence relies on these orthogonality
(i)

L A A S

* CG after lossy checkpointing may lose superlinear convergence

Decompress: x''’ with lossy compressor
10: Compute r'") = b — Ax'V

11: Solve Mz'! = pl¥)

12 p¥) =z

" P ULU

14: endif

15: Computation: same as lines 10-17 in Algorithm 1
16: end for

Argon ne° R

AAAAAAAAAAAAAAAA

Lossy Checkpointing Scheme for Iterative Methods

»>Lossy checkpointing scheme for iterative methods has two steps Algorithm 2 Fault-tolerant preconditioned conjugate gradient al-
gorithm with lossy checkpointing technique

e Compress dynamic variables with lossy compressor before each

. . Input: linear system matrix A, preconditioner M, and right-hand
checkpointing A 4 v .

side vector b

* Decompress compressed dynamic variables after each recovering Output: approximate solution x
1: Initialization: same as line 1 in Algorithm 1
»>O0rthogonality dependent iterative methods 2 fori=0.1,--- do

3 if ((i > 0) and (i%ckpt_intvl = 0)) then

* For example, CG maintains a series of orthogonality relations (i)

it Compress: x''’ with lossy compressor
. . . . c. ~ . (i)
. p(k) and Aq(j)’ rk) and p(j)’ rk) and rY for any j<k ; en((_l.f;;akpomt. i and compressed x
* CG’s superlinear convergence relies on these orthogonality 7. if ((i > 0)and (recover)) then _
_— . 8 Recover: A, M, i and compressed x'")
* CG after lossy checkpointing may lose superlinear convergence (i) s
9: Decompress: x''' with lossy compressor
10: Compute ') = b — Ax'?)
»>Restarted scheme . Solve Mz = 0
. . . . o ege 9. (i) — (i)
« Periodically treat current approximate solution as new initial guess e P —(Z_ 'T .
13 pi =r) z)
- Advantages & endif
« Less time and space complexity, such as GMRES ~ O(N2), where N is time step !5 CO;HP“tationi same as lines 10-17 in Algorithm 1
16: end for

- Restarted scheme may not delay but even accelerate the convergence (jump
out of local search)

Argon ne° R

AAAAAAAAAAAAAAAAAA

Lossy Checkpointing Scheme for Iterative Methods

»>Lossy checkpointing scheme for iterative methods has two steps Algorithm 2 Fault-tolerant preconditioned conjugate gradient al-
gorithm with lossy checkpointing technique

e Compress dynamic variables with lossy compressor before each

. . Input: linear system matrix A, preconditioner M, and right-hand
checkpointing A 4 v .

side vector b

* Decompress compressed dynamic variables after each recovering Output: approximate solution x
1: Initialization: same as line 1 in Algorithm 1
»Restarted scheme 2 fori=0,1,--- do

b

if ((i > 0) and (i%ckpt _intvl = 0)) then

- Periodically treat current approximate solution as new initial guess (1) with lossy compressor

(i)

Compress: x
Checkpoint: i and compressed x
end if
if ((i > 0)and (recover)) then

Recover: A, M, i and compressed x
(i)

- Advantages

« Less time and space complexity, such as GMRES ~ O(N?), where N is time step

. (i

- Restarted scheme may not delay but even accelerate the convergence (jump out of Y
local search)

b - B A

Decompress: x''’ with lossy compressor
10: Compute r'") = b — Ax'V

. . . . Solve M () _ (i)
»Lossy checkpointing with restarted scheme b ez
- Checkpoint only approximate solution x; 3 p= D0
. re 14 endif
* Lossy decompressed X;as new initial guess 15: Computation: same as lines 10-17 in Algorithm 1
- Reconstruct orthogonal relations and superlinear convergence 16: end for

AAAAAAAAAAAAAAAA

Outline

>|ntroduction
« Why we need to checkpoint iterative methods?

»Background
« Traditional checkpointing for iterative methods
« Performance model of traditional checkpointing

»>QOur Designs
 Lossy checkpointing for iterative methods

- Performance model of our new checkpointing

»Theoretical Analysis
« Impact of lossy checkpointing for different methods

« Expected fault tolerance overhead

»Experimental Evaluation

UCR

Argonne

NATIONAL LABORAT ORY

Performance Model of Lossy Checkpointing

Overall execution time T; = NT;j; +

ez

I[teration time

lossy N
Tckp ?
—

Lossy checkpoint time

Mean extra iterations to convergence
caused by one lossy recovery

+ Lt:(N'T; '+ T,{ gs Y 4 T,p) | Tcomp Mean time of performing lossy compression
(f)) Tjecomp | Mean time of performing lossy decompression
Y trad ; ; . ;
, T Mean time of performing one traditional checkpoint

Recover/rollback time Cl’gfsy P B P

T kp Mean time of performing a lossy checkpointing
;Zisr‘l;lif ; | Time overhead of performing lossy checkpoint/recovery

N’ Mean number of extra iterations caused by per lossy recovery

Argonne U C R

NATIONAL LABORAT ORY

Performance Model of Lossy Checkpointing

Mean extra iterations to convergence
caused by one lossy recovery

I lossy N = T ! : : :
* Overall execution time 7; = NT;; + Tczssy — + —t(N’Tit + Trgssy + Trb) Teomp Mean time of performing lossy compression
/ Pk Tf Tiecom Mean time of performing lossy decompression
‘(/// \. J ; p
_ _ L he _ T! 'o Mean time of performing one traditional checkpoint
lteration time Lossy checkpoint time Restart/rollback time : P

T Mean time of performing a lossy checkpointing
ckp
;Zisr‘l;lff ; | Time overhead of performing lossy checkpoint/recovery

N’ Mean number of extra iterations caused by per lossy recovery

NTi;

e Similarly, overall time can be simplified to T; =

lossy

1— 22795 _7l0Y _AN'T;,

ckp

* Fault tolerance overhead of lossy checkpointing

2TV AT AN,
lossyCR

overhead

= NTj; -

ckp

1— 22105 _)Ty _NvTy,

Theoretical Analysis of N’ for agome®™ |UCR
Performance Gain

To have the lossy checkpointing overhead lower than that How to use Theorem 17
Tolgzglgid < THR b oad » For example, MTTlis 1 hour (A = 2.7x10%4)
* Lossy compression reduces T, from 120 seconds

lossy lossy trad trad
VAT i ATy, +AN'Ti < VAT kp AT to 25 seconds

ZATIOSSy—ATIOSSy—AN’Ti B 1— zATtrad_ATtrad ® Tit = 1.2 S fOF GMRES (7160 S Wlth 5875 |trS)
NV cke ckp ‘ Vo ckp ckp « Based on Theorem 1, lossy checkpointing is

o /ZAT:L’;‘%AT:‘:;")—(,/ZAT:z;Sy+){T!L’;Sy) worthwhile if N’ <= 500
N < AT;, * |f one lossy recovery causes 500 (~ 9% of total
itrs) or fewer extra itrs to converge, lossy

THEOREM 1. Denote A and T;; by the expected failure rate and checkpointing can improve overall performance
expected execution time of an iteration, respectively. The lossy check-

pointing scheme will improve the execution performance for an itera-
tive method as long as the following inequality holds.

N' < (fF(TLa®.2) = f(THe 1)/ (ATie),
where f(t,A) = VoAt + At

of traditional checkpointing:

(9)

AAAAAAAAAAAAAAAA

Outline

>|ntroduction
« Why we need to checkpoint iterative methods?

»Background
« Traditional checkpointing for iterative methods
« Performance model of traditional checkpointing

»>QOur Designs
 Lossy checkpointing for iterative methods

 Performance model of our new checkpointing

»>Theoretical Analysis
- Impact of lossy checkpointing for different methods

« Expected fault tolerance overhead

»Experimental Evaluation

Impact Analysis of Lossy Checkpointing on argonne® |UCR
lterative Methods

e Stationary lterative Methods

* Conjugate Gradient (CG) Method

* Generalized Minimum Residual (GMRES) Method

Impact Analysis of Lossy Checkpointing on argonne® |UCR
lterative Methods

e Stationary lterative Methods
* Most classic

* Conjugate Gradient (CG) Method
* Most popular for SPD systems

* Generalized Minimum Residual (GMRES) Method
* Most general (asymmetric, indefinite, ...), robust

Impact Analysis of Lossy Checkpointing on agomne®™ |UCR
lterative Methods — Stationary Iteration

e Stationary iterative methods: x® = Gx=1 4+ ¢

o Ix@ —x*|| = R+ ||x(© — x|
R is the spectral radius of matrix G (the largest eigenvalue of G, R < 1)
x* is the exact solution, x(9 is the initial guess

Impact Analysis of Lossy Checkpointing on
lterative Methods — Stationary Iteration

Stationary iterative methods: x® = Gx¢=1 4+ ¢
1x® —x*|| = R+ |]x(© — x*||
* Risthe spectral radius of matrix G (the largest eigenvalue of G, R< 1)
If stationary methods encounter a failure and restarts at tt" iteration
Lossy compression introduces an error vector e with a relative error bound eb
xi(t) - x’l@| <eb- |xi(t)| forl1<i<n

Computation restarts from alternated vector x'®) = x® + ¢

Impact Analysis of Lossy Checkpointing on agonne® |UCR
lterative Methods — Stationary Iteration

[]
wn
—+
Q)
.
o
>
Q
]

r<
=
M
-
Q)
.
<
™
3
M
—
-
o
o
N
=

~

\:/.

Il
D
=

o

I
[y
~—

I

a

[]
—
2.
I
=
¥
—
1
>
| ~.
(.
<
e
I
}g
*

__________ J
* Risthe spectral radius of matrix G (the largest eigenvalue of G, R< 1)

If stationary methods encounter a failure and restarts at tt" iteration
Lossy compression introduces an error vector e with a relative error bound eb

xi(t) - x’l@| <eb- |xi(t)| forl1<i<n

Computation restarts from alternated vector x'®) = x® + ¢
After a series of derivations, upper bound of N’ is t — logr (Rt + eb) = ub(t)

Impact Analysis of Lossy Checkpointing on agonne® |UCR
lterative Methods — Stationary Iteration

e Stationary iterative methods: x® = Gx=1 4+ ¢
|1x® = x*|| = R" - [|x©) — x|
* Risthe spectral radius of matrix G (the largest eigenvalue of G, R< 1)
 |If stationary methods encounter a failure and restarts at tt" iteration
* Lossy compression introduces an error vector e with a relative error bound eb

xi(t) - x’l@| <eb- |xi(t)| forl1<i<n

« Computation restarts from alternated vector x’® = x® + ¢
 After a series of derivations, upper bound of N’ is t — logr (Rt + eb) = ub(t)

N+1

* Expected upper bound of N’ falls into [% —logr\R 2 + eb), N —loggr (RN + eb)]

* Due to ub(t) is monotonic function, E[ub(t)] < ub(T)
* Duetoub(t) is convex function, E[ub(t)] = ub(E|[t]) (based on Jensen inequality)

THEOREM 2. Based on the convergence rate (Equation (10)), the
expected upper bound of the number of extra iterations for the station-
ary iterative methods falls into the interval | ¥ - logR(R'\;_T! + eb),
N - logR(RN + eb)|, where eb is a constant relative error bound and
R and N remain the same definitions as in the earlier discussion.

Impact Analysis of Lossy Checkpointing on agonne® |UCR
lterative Methods — Stationary Iteration

e Stationary iterative methods: x® = Gx=1 4+ ¢
|1x® = x*|| = R" - [|x©) — x|
* Risthe spectral radius of matrix G (the largest eigenvalue of G, R< 1)
 |If stationary methods encounter a failure and restarts at tt" iteration
* Lossy compression introduces an error vector e with a relative error bound eb

xi(t) - x’l@| <eb- |xi(t)| forl1<i<n

« Computation restarts from alternated vector x’® = x® + ¢
 After a series of derivations, upper bound of N’ is t — logr (Rt + eb) = ub(t)

N+1

* Expected upper bound of N’ falls into [% — logp\R 2 + eb), Qv}— logp (:R}V +l:I;,‘)]

* Due to ub(t) is monotonic function, E[ub(t)] < ub(T)
* Duetoub(t) is convex function, E[ub(t)] = ub(E|[t]) (based on Jensen inequality)

THEOREM 2. Based on the convergence rate (Equation (10)), the
expected upper bound of the number of extra iterations for the station-
ary iterative methods falls into the interval | ¥ - logR(R'\;_T! + eb),
N - logR(RN + eb)|, where eb is a constant relative error bound and
R and N remain the same definitions as in the earlier discussion.

Impact Analysis of Lossy Checkpointing on agomne®™ |UCR
lterative Methods — GMRES

* Not easy to analyze N’ for nonstationary methods
(unlike stationary methods)

Impact Analysis of Lossy Checkpointing on agomne®™ |UCR
lterative Methods — GMRES

* Not easy to analyze N’ for nonstationary methods
(unlike stationary methods)

* GMRES can converge to the same accuracy with no
delay or even exhibit an acceleration sometimes if
restarted residual is close to previous residual

J. Langou, Z. Chen, G. Bosilca, and J. Dongarra. Recovery patterns
for iterative methods in a parallel unstable environment. SIAM
Journal on Scientific Computing, 30(1):102—-116, 2007.

Impact Analysis of Lossy Checkpointing on
lterative Methods — GMRES

AAAAAAAAAAAAAAAAAA

* Not easy to analyze N’ for nonstationary methods
(unlike stationary methods)

* GMRES can converge to the same accuracy with no
delay or even exhibit an acceleration sometimes if
restarted residual is close to previous residual

J. Langou, Z. Chen, G. Bosilca, and J. Dongarra. Recovery patterns
for iterative methods in a parallel unstable environment. SIAM
Journal on Scientific Computing, 30(1):102—116, 2007.

1. GMRES is easy to stagnate in practice

2. Lossy recovered data can form a new approximate solution
with different spectral properties

3. A failure happened during stagnation may help GMRES jump
out of stagnation

Impact Analysis of Lossy Checkpointing on agonne® |UCR
lterative Methods — GMRES

* Not easy to analyze N’ for nonstationary methods

THEOREM 3. For the GMRES method, after a restart with lossy

(unlike stationary methods) e . .
: checkpointing, the new residual norm is controlled close to or at least
* GMRES can converge to the same accuracy with no . . .)
on the same order as the previous residual if the relative error bound

delay or even exhibit an acceleration sometimes if eb is set to O(||r]|/||b]]).
restarted residual is close to previous residual

J. Langou, Z. Chen, G. Bosilca, and J. Dongarra. Recovery patterns
for iterative methods in a parallel unstable environment. SIAM
Journal on Scientific Computing, 30(1):102—116, 2007.

Proor. Similar to Equation (11), we have the following.

171 = 11 = Ax" O] = Ib - Ax'®) + AG = x"O)]|

1. GMRES is easy to stagnate in practice < 1PN + [1Aell < 11D + b - [JAx]]
2. Lossy recovered data can form a new approximate solution = [Ir'D||+eb - ||b-rD| < (1 +eb)||r'D]| +eb - ||b]]
with different spectral properties

~ |[A1) .
3. A failure happened during stagnation may help GMRES jump < [P+ eb - 1]l (14)
out of stagnation If eb is set to O(|[r®||/||b|]). then eb - [|b]| is O(|r®|): hence,
* An adaptive error bound scheme for GMRES I1F D] + eb - ||b]| is O(||r'?||), which means that the new resid-
* Based on Theorem 3:if eb is set to ||T(t) [1/1Ibll, new ual norm ||r"{*)|| will be of the same order as the previous residual
residual norm is close to the previous residual norm ||r'*)]| based on Equation (14), =

* Error-bound lossy compressors (such as SZ and ZFP)
can control the distortion of data within eb - ||x(®]|

Impact Analysis of Lossy Checkpointing on

lterative Methods — GMRES

AAAAAAAAAAAAAAAAAA

* Not easy to analyze N’ for nonstationary methods
(unlike stationary methods)

* GMRES can converge to the same accuracy with no
delay or even exhibit an acceleration sometimes if
restarted residual is close to previous residual

J. Langou, Z. Chen, G. Bosilca, and J. Dongarra. Recovery patterns
for iterative methods in a parallel unstable environment. SIAM
Journal on Scientific Computing, 30(1):102—116, 2007.

1. GMRES is easy to stagnate in practice

2. Lossy recovered data can form a new approximate solution
with different spectral properties

3. A failure happened during stagnation may help GMRES jump
out of stagnation

* An adaptive error bound scheme for GMRES
 Based on Theorem 3:if ebis set to || D ||/||b]|, new
residual norm is close to the previous residual
* Error-bound lossy compressors (such as SZ and ZFP)
can control the distortion of data within eb - ||x(®]|

THEOREM 3. For the GMRES method, after a restart with lossy
checkpointing, the new residual norm is controlled close to or at least
on the same order as the previous residual if the relative error bound

eb is set to O(||r')||/||b]|).

Proor. Similar to Equation (11), we have the following.

Ol =11 - A+ A - 2"
Ael| < [|r'D]] + eb - ||Ax!")]|
[+eb-|lb—rD)| < (1 +eb)|[rD]| +eb-|[b]]

~ (||| +eb - ||b]] (14)
If eb is set to O(||r'?||/||b||), then eb - ||b]| is O(|r'*]|); hence,
I1F D] + eb - ||b]| is O(||r'?||), which means that the new resid-

ual norm ||r(!)|| will be of the same order as the previous residual
norm ||r'*)|| based on Equation (14). O

Impact Analysis of Lossy Checkpointing on argonne® |UCR
lterative Methods — CG

e Extra convergence steps N’ for CG exhibit randomness (even if ensure close restarted residual)

 We adopt empirical evaluation for N’
 Randomly select an iteration to compress and decompress x in each execution

Impact Analysis of Lossy Checkpointing on
lterative Methods — CG

e Extra convergence steps N’ for CG exhibit randomness (even if ensure close restarted residual)
* We adopt empirical evaluation for N’

 Randomly select an iteration to compress and decompress x in each execution

* Average N’ varies from 10% to 25% with different eb

30%

25%

20%

~ 15%
X

— 10%

5%

0%

1.0E-03 1.0E-04 1.0E-05 1.0E-06
Relative Error Bounds

Average Extra Itearations

Impact Analysis of Lossy Checkpointing on argonne® |UCR
lterative Methods — CG

e Extra convergence steps N’ for CG exhibit randomness (even if ensure close restarted residual)
* We adopt empirical evaluation for N’

 Randomly select an iteration to compress and decompress x in each execution

* Average N’ varies from 10% to 25% with different eb

30% N’ = 25%-N for

25%

20%

~ 15%
X

— 10%

5%

0%

1.0E-03 1.0E-04 1.0E-05 1.0E-06
Relative Error Bounds

CGif eb=10%

Average Extra Itearations

Argon ne° R

AAAAAAAAAAAAAAAAAA

Performance Evaluation

»>Experimental platform
* 2048 cores from 64 nodes (each node with 2 Intel Xeon E5-2695 v4 processors + 128 GB memory) in

Bebop cluster at Argonne | , ,
* |/O and storage are typical high-end supercomputer facilities y- |

»>Implementation
« FTl checkpointing library (v0.9.5)
« MPI-IO mode to write checkpoint data to PFS
 SZ lossy compression library (v1.4.12)
« SZ has better compression performance on 1D data
- Iterative methods implemented in PETSc (v3.8)

A\
\
\
'

XS

£y
YAV I 2 e

//‘ .
WNYNA
o
.‘; ‘
\ N
Egl
0
RAR
AR
233

N
kR
N T
A3
R
L2203

»>Experimental Setup
- Jacobi for stationary methods, CG, and GMRES(30)

- Default preconditioner (block Jacobi with ILU/IC)

- eb =10*for Jacobi and CG, adaptive eb for GMRES
- Relative convergence tolerance of 104, 10%, 107 for Jacobi, GMRES, CG

AAAAAAAAAAAAAAAAA

Linear System Configuration

Weak-scaling study
Choose largest problem size that can be held in memory

. Linear system (arising from 3D Poisson)

An3><n3xn3><1 = bn?’xl’

where by using 64 nodes for GMRES(30)
Mprgp: Ipispe m——==== - . .
Inzsen Mpzyne Inpip? ;| Num. Problem I Checkpoint Size Per Proc (!
Apignd = : : I of Size | Traditional Lossless
Losnt Mprgne Dyzwpe | | Proc I Checkpointing Checkpointing
Lpixnt Mpiyp | !_lacobi GMRES | CG | Jacobi | GMRES | CG
1| 256 1088° |'38.4 384 | 768 | 599 346 | 695
Taxn Inxn i
Lixn Toxn Inxn 1| 512 13683 382 | 382 [764] 596 | 340 [712
Myosey = [768 1568° |,383 | 383 |766| 598 | 341 | 736
Len Toxn Do F{ 1024 | 1728° |,384 | 384 |768| 599 | 340 | 694
| 3
Lixn T V| 1280 | 1856" [;399 | 399 [798] 624 | 336 [691
6 1 (11536 | 1968° 1397 | 397 [794] 620 [331 [692
1 -6 1 I 1792 2064° 1 39.3 39.3 78.6 | 6.13 32.8 70.7
Ty = ([2048 | 2160 [1394 | 394 [788] 615 [327 [679

1 -6 1
1 -6
* 3D Poisson matrix can increase the problem size

as the scale increases

One vector (double precision) of size 21603 (~10%°) ~ 80 GB

Argonne U C R

NATIONAL LABORAT ORY

Lossy Checkpointing Performance

Num. Checkpoint Size Per Proc (MB)
Problem o

of Size Traditional Lossless Lossy

Proc. Checlepointing Checkpointing Checkpainting
Jacobil| GMRES |,CG | Jacobil| GMRES |,CG | Jacobil| GMRES | CG

256 1088’ 384 1| 384 [;76.8 | 599 1] 346 [,695]| 1331 123 | 169

512 1368° 382 1| 382 |;764| 596 1 340 |[;71.2] 1351 113 |158

768 1568 383 1| 383 |y76.6 | 598 1 341 [;736| 1371 121 | 147

1024 | 1728 384 '| 384 [;76.8 | 599 '| 340 [;69.4| 1281 118 |1.49

1280 | 1856° 399 1| 399 [j79.8 | 624 ' 336 [169.1] 1331 119 | 146

1536 | 1968° 39.7 0 397 [79.4 | 620 || 331 [j69.2| 1231 117 |142

1792 | 2064 393 | 393 [178.6 | 613 | 328 [170.7 | 130 | 117 [41.35

2048 | 2160° 394 | 394 [1788 | 615 | 327 [1679 | 116 1| 116 [j1.33

' '

* Experiment for one checkpoint/recovery performance
* Fixed C/R frequency
* Average time and size over the entire execution

* Average checkpointing size
* Lossless compression reduces checkpoint size up to 1/6
* Lossy compression reduces checkpoint size to 1/20 ~ 1/60

Argonne° U c R

NATIONAL LABORATORY

Lossy Checkpointing Performance

Jacobi GMRES CG
STRGhionsl SEoaias Loy W Traditional Wlossless M Lossy W Traditional MLossless M Lossy
100 140 140
80 120 120
_ _ 100 100
Z 60 ? 80 "é' 80
E 60
20 I 20 II
0 Il- Il- III Il I I 0 I I I I I I 0 II
512 768 1024 1280 1536 1792 2048 768 1024 1280 1536 1792 2048 768 1024 1280 1536 1792 2048
Number of Processes Number of Processes Number of Processes
(a) Checkpoint (a) Checkpoint (a) Checkpoint
M Traditional MLossless ™ Lossy M Traditional ™ Lossless ™ Lossy M Traditional MLossless MLossy
100 120 200
80 100 150
£ E 60 g 100
= 40 40 =
2°I I||I2° I |l ||”||I
I I 1D || 1l I 0 |ll “l o e 0 I
512 768 1024 1280 1536 1792 2048 768 1024 1280 1536 1792 2048 768 1024 1280 1536 1792 2048
Number of Processes Number of Processes Number of Processes

(b) Recovery (b) Recovery (b) Recovery .

Lossy checkpointing Argonne° U c R
can significantly

Lossy Checkpointing Performance

reduce C/R time!

Jacobi GMRES CG
100 140 140
80 120 120
— _ 100 | 100
2 60 < 80 < 80
E a0 E 60 E 60
= [= =
: | AN |
e B b DL 1. 1L s i = |I
512 768 1024 1280 1536 1792 2048 768 1024 1280 1536 1792 2048 768 1024 1280 1536 1792 2048
Number of Processes Number of Processes Number of Processes
(a) Checkpoint (a) Checkpoint (a) Checkpoint
B Traditional MLossless ™ Lossy M Traditional ™ Lossless ™ Lossy M Traditional MLossless MLossy
100 120 200
80 100 150
2 60 z 80)
£ E 60 g 100
= 40 40 =
”I I||I2° I |l ||”||||
I I 1N || 1l I 0 |ll “l o il 0 I
512 768 1024 1280 1536 1792 2048 768 1024 1280 1536 1792 2048 768 1024 1280 1536 1792 2048
Number of Processes Number of Processes Number of Processes

(b) Recovery (b) Recovery (b) Recovery .

AAAAAAAAAAAAAAAA

Outline

>|ntroduction
« Why we need to checkpoint iterative methods?

»Background
« Traditional checkpointing for iterative methods
« Performance model of traditional checkpointing

»>QOur Designs
 Lossy checkpointing for iterative methods

 Performance model of our new checkpointing

»>Theoretical Analysis
« Impact of lossy checkpointing for different methods

- Expected fault tolerance overhead

»Experimental Evaluation

AAAAAAAAAAAAAAAAAA

Theoretical Performance Analysis

We can analyze expected fault tolerance overhead based on our lossy
checkpointing performance model
 For Jacobi, based on Theorem 2,52 < N' < 55> N =6

* For GMRES, N’ =0
* For CG, N’ =594 (25% of total iterations) based on empirical evaluation

agome®™ UCK
Theoretical Performance Analysis

We can analyze expected fault tolerance overhead based on our lossy
checkpointing performance model

 For Jacobi, based on Theorem 2,52 < N' < 55> N =6
* For GMRES, N’ =0
* For CG, N’ =594 (25% of total iterations) based on empirical evaluation

45% 20%
5 ® 18%
- 40% ——Jacobi-Trad 2 ——Jacobi-Trad
o o 16%
g 35% Jacobi-Lossless 3 Jacobi-Lossless
¥ 30% o 14% |
= —+—Jacobi-Lossy g 12% —+—Jacobi-Lossy
e -
s 25% ~8—CG-Trad < 10% —8—(CG-Trad
© 20% 2
5 —*—CG-Lossless s 8% ~—*—CG-Lossless
2 15% d
: ——CG-Lossy % 6% ——CG-Lossy
2 10% T 4%
o ~#—GMRES-Trad 9 —&—GMRES-Trad
2 5% a 2%
- —8—GMRES-Lossless ~8—GMRES-Lossless
0% 0%
256 512 768 10241280153617922048 ———GMRES-Lossy 256 512 768 10241280153617922048 —=—GMRES-Lossy
Number of Processes Number of Processes

(a) MTTI = 1 hour (b) MTTI = 3 hours

agome®™ UCK
Theoretical Performance Analysis

We can analyze expected fault tolerance overhead based on our lossy
checkpointing performance model

 For Jacobi, based on Theorem 2,52 < N' < 55> N =6

* For GMRES, N’ =0

* For CG, N’ =594 (25% of total iterations) based on empirical evaluation

45% 20%
% 40% ' Lossy checkpointin %18% *) Lossy checkpointin
2 N) Y g —4—Jacobi-Trad 2 - y P g —&—Jacobi-Trad
o o 16%
8 35% Jacobi-Lossless 8 Jacobi-Lossless
9 30% g 14% .
= —+—Jacobi-Lossy :,';; 12% —+—Jacobi-Lossy
e ey
s 25% ~8—CG-Trad < 10% —8—(CG-Trad
2 20% =
5 —#—CG-Lossless s 8% ~*—CG-Lossless
T 15% r
: ——CG-Lossy % 6% ——CG-Lossy
Z10% T 4%
o —&—GMRES-Trad 9 ~#—GMRES-Trad
g 5% x 2%
- —8—GMRES-Lossless “ —8—GMRES-Lossless
0% 0%
256 512 768 10241280153617922048 ——GMRES-Lossy 256 512 768 10241280153617922048 ——GMRES-Lossy
Number of Processes Number of Processes

(a) MTTI = 1 hour (b) MTTI = 3 hours

Argonne° U C R

NATIONAL LABORAT ORY

Theoretical Performance Analysis

Observations

* GMRES and Jacobi: lossy checkpoint is always better than lossless and traditional checkpoint
* CG: lossy checkpoint is better than lossless and traditional checkpoint when # processes > 1536 / 768

* Curves of lossy checkpoint increase much slowly than curves of other two solutions = Our proposed lossy
checkpoint is expected to achieve more performance gain as scale increases

45% 20%

= Y © -\
= 1 . . = I - -
g 40% . _1 Lossy checkpointing o—Jacobi-Trad g 18% _1 Lossy checkpointing o—Jacobi-Trad
o o 16%
8 35% Jacobi-Lossless 8 Jacobi-Lossless
2 30% o 14% .
= —+—Jacobi-Lossy :;; 12% —+—Jacobi-Lossy
e o
= % ~8—CG-Trad < 10% —8—CG-Trad
= 20% =
5 —*—CG-Lossless £ 8% ~#*—CG-Lossless
T 15% r
: ——CG-Lossy % 6% ——CG-Lossy
% 10% T 4%
o —4&—GMRES-Trad o —&—GMRES-Trad
o o
£ 5% x 2%
- —&8—GMRES-Lossless “ ~8—-GMRES-Lossless

0% 0%

256 512 768 10241280153617922048 ——GMRES-Lossy 256 512 768 10241280153617922048 ——GMRES-Lossy
Number of Processes Number of Processes
(a) MTTI = 1 hour (b) MTTI = 3 hours

AAAAAAAAAAAAAAAA

Outline

>|ntroduction
« Why we need to checkpoint iterative methods?

»Background
« Traditional checkpointing for iterative methods
« Performance model of traditional checkpointing

»>QOur Designs
 Lossy checkpointing for iterative methods

 Performance model of our new checkpointing

»>Theoretical Analysis
« Impact of lossy checkpointing for different methods

« Expected fault tolerance overhead

»>Experimental Evaluation

AAAAAAAAAAAAAAAAAA

Experimental Evaluation with Failures

>Failure Injection
* MTTI =1 hour
* Failure intervals follow an exponential distribution

Experimental Evaluation with Failures

AAAAAAAAAAAAAAAAAA

>Failure Injection
* MTTI =1 hour
* Failure intervals follow an exponential distribution

»Checkpoint Interval

. Trad . ,Lossless ., LOSSY
» Timegype ~ 120 s, Timecyye ~ 70 s, Timeg,,~ ~ 20s

- Based on checkpointing time and Young’s formula

o Intvll8? = 16 mins, Intvl[[3¢ = 12 mins, Intvl[[3¢ = 7 mins

Argonne° U C R

ABORATORY

Experimental Evaluation with Failures

Number of convergence iterations with lossy checkpointing

>Failure Injection ,
for Jacobi, GMRES, and CG

* MTTI =1 hour 6000
* Failure intervals follow an exponential distribution

u
(=]
(=]
o

M Jacobi (Failure-Free)

400 M Jacobi (Lossy)

GMRES (Failure-Free)
3000
B GMRES (Lossy)
2000 .
B CG (Failure-Free)
1000 II II I M CG (Lossy)

1024 2048
Number of Processes

o

»Checkpoint Interval

. Trad . ,Lossless ., LOSSY
» Timegype ~ 120 s, Timecyye ~ 70 s, Timeg,,~ ~ 20s

- Based on checkpointing time and Young’s formula

Number of Iterations

o Intvll8? = 16 mins, Intvl[[3¢ = 12 mins, Intvl[[3¢ = 7 mins

o

M Traditional Checkpointing ™ Lossless Checkpointing ™ Lossy Checkpointing

60%
50%

40%
30%
20%
=~ 1l I 1 1

0%
Experimental Expected Experimental Expected Experimental Expected

Fault Tolerance Overhead

Jacobi GMRES CG

Argonne° U C R

GMRES has an acceleratioh™™

Experimental Evaluation with Failures

AY
AY

»Failure In J ection Number of convergence iterations wit\h‘lossy checkpointing

for Jacobi, GMRES, and'CG
i MTTI = 1 hOUF 6000 \“
* Failure intervals follow an exponential distribution
5000 Jacobi has no delay‘_ M Jacobi (Failure-Free)
»Checkpoint Interval 4000 | oo ge pmm T W Jacobi (Lossy)

. Trad . ,Lossless ., LOSSY
» Timegype ~ 120 s, Timecyye ~ 70 s, Timeg,,~ ~ 20s

- Based on checkpointing time and Young’s formula

Number of Iterations

o Intvll8? = 16 mins, Intvl[[3¢ = 12 mins, Intvl[[3¢ = 7 mins

o

M Traditional Checkpointing ™ Lossless Checkpointing ™ Lossy Checkpointing

GMRES (Failure-Free)
3000
}‘\\ M GMRES (Lossy)
2000 AN X
uCe (Failure-Free)
1000 II II I I\C\G (Lossy)
X
256 512

1024 2048 CG has a delay of

60% |
° Number of Processes convergence by
£ 50% 24.8% on average
$ 40%
(&)
§ 30%
© 20%
2
e 1 Min Hin
3 0%

Experimental Expected Experimental Expected Experimental Expected

Jacobi GMRES CG

Arg onne° UCR

AAAAAAAAAAAAAAAAA

. o o . GMRES has an acceleraflon
Experimental Evaluation with Failures .
> Failure In J ection Number of convergence iterations wit\h‘lossy checkpointing
for Jacobi, GMRES, and“CG

* MTTI =1 hour
* Failure intervals follow an exponential distribution

6000

5000 : e
Jacobi has no delay - M Jacobi (Failure-Free)
4000 oo em oom T M Jacobi (Lossy)

3000
2000
|I I| ||

1024 2048 CG has a delay of

M GMRES (Lossy)

- Based on checkpointing time and Young’s formula \.CG (Failure-Free)

z

9

1 +
»Checkpoint Interval :

J J ime” - GMRES (Failure-F
« Timelof ~ 120 s, Times253'¢° ~ 70 s, T Lmecﬁgiy ~20s % (Failure-Free)

3

£

2

Trad _ Trad _ Trad _

« Intvl i,y = 16 mins, Intvl e = 12 mins, Intvl gy, = 7 mins -tg (Lossy)

o

M Traditional Checkpointing ™ Lossless Checkpointing ™ Lossy Checkpointing

T 60% Number of Processes convergence by
% 50% 24.8% on average
2 :z: e Jacobi: FT overhead reduced by 59% compared with

§ 20% traditional ckpt and 24% compared with lossless ckpt

é 10% II III II II I I « GMRES: FT overhead reduced by 70% and 58%

3 0% * CG: FT overhead reduced by 23% and 20%

Experimental Expected Experimental Expected Experimental Expected

Jacobi GMRES CG » Experimental results are very close to theoretical analysis!

ArgonneQ R

AAAAAAAAAAAAAAAA

Conclusion

> Propose an efficient lossy checkpointing scheme to improve C/R performance for iterative methods

> Formulate a lossy checkpointing performance model

> Quantify the tradeoff between reduced overhead and extra # of iterations

> Analyze the impact of lossy checkpointing on multiple iterative methods (stationary, GMRES, CG)
> Evaluate lossy checkpointing on a HPC environment with 2,048 cores

> Experiments show our lossy checkpointing can significantly reduce the fault tolerance overhead in
the presence of failures

- Reduced by 23%~70% compared with traditional checkpoint and by 20%~58% with lossless checkpoint

> Future work
> Explore lossy checkpointing in other scientific computational components (such as AMG, AMR, FFT)
> Evaluate lossy checkpointing in real HPC simulations
> Evaluate lossy checkpointing in other I/O intensive and error resilient applications

Acknowledge

This research was supported by the Exascale Computing
Project (17-SC-20-5SC), a joint project of the U.S.
Department of Energy’s Office of Science and National
Nuclear Security Administration, responsible for
delivering a capable exascale ecosystem, including
software, applications, and hardware technology, to
support the nation’s exascale computing imperative. The
material was also supported by and supported by the
National Science Foundation under Grant No. 1305624,
No. 1513201, and No. 1619253,

National Science Foundation
Directorate for Computer & Information Science & Engineering (CISE)

f"‘g{_ W, DERARTMENT OF
() ENERGY |

Office of
Sclence

NS4

Nl Brvenwy Ademes,

ACM HPDC 2018

The 27th International Symposium on High-Performance Parallel and Distributed Computing

Tempe, Arizona, USA - June 11-15, 2018

Thank you!

Any questions are welcome!

Contact:
Dingwen Tao (dingwen.tao@ieee.org)

mailto:dingwen.tao@ieee.org

