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Why Need to Checkpoint Iterative Methods?
ØIterative methods used for solving large, sparse linear system
• ”Gaia” mission by European Space Agency (ESA)
• Producing 5-parameter astrometric catalogue at the microarcsecond for   

1 billion stars in Galaxy
• Resulting a very large, sparse linear system of 72 billion equations
• Scientists use LSQR iterative algorithm
• Takes more than 54 hours on 2,048 BlueGene/Q nodes
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•Largest symmetric indefinite sparse matrix from UFL sparse 
matrix collection (KKT240 with 28 million linear equations)

•2,048 cores / 64 nodes on Bebop cluster at Argonne

•GMRES solver implemented in PETSc

•Relative convergence tolerance of 10-6 , execution time > 1 hour

•MTBF of Sunway TaihuLight supercomputer can be hourly or less 
than 1 hour
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Importance of Improving Checkpointing 
Performance of Iterative Methods
ØScientific simulations involving PDEs
• Solve linear systems within each timestep
• Sparse linear systems include most of the variables
• E.g., 3D CFD problems from Navier-Stokes equations
• Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm
• 5 out of 9 fluid-flow variables need to be checkpointed in iterative method

ØSignificantly Improve Checkpointing Performance of Iterative methods

Significantly Improve Application Performance 
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Checkpoint/Restart Model
• Periodical checkpoint to file system is expensive
• Difficult to scale up due to bottleneck of I/O bandwidth
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State-of-the-Art: Failure-Stop Failure

Diskless checkpoint (J. Plank)
• More scalable (pros)
• 2X or more memory overhead (cons) à Reduce usable memory and problem size
• Only able to tolerate with partial failures , not for a whole system failure (cons)
• Requires spare nodes and dedicates processors (cons)
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2 steps:
1. Checkpointing state of each 

application processor in memory
2. Encoding these in-memory 

checkpoints and storing the encodings 
in checkpointing processors



Failures and Checkpointing
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Optimized Techniques to Improve Scalability of 
Checkpoint
• Diskless checkpoint
• Multi-level checkpoint
• Asynchronized checkpoint
• Lossless-compressed checkpoint
• ……

Question: Can we use lossy compression to (1) reduce 
checkpointing size and overhead and (2) improve the 
performance and scalability?



Failures and Checkpointing
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Question: Can we use lossy compression to (1) reduce 
checkpointing size and overhead and (2) improve the 
performance and scalability?

Lossy checkpointing

Two important questions:
(1) What is the impact of the lossy checkpointing data on 
the execution performance?
(2) Can lossy checkpointing actually improve the overall 
performance (including C/R and lossy compression) in the 
context of restarting with alternated data? 
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Traditional Checkpointing for Iterative Methods
ØCheckpoint 

1. Checkpoint static variables (e.g., A, M) at the beginning
2. Checkpoint dynamic variables (e.g., i, ⍴, p, x) every several iterations
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Traditional Checkpointing for Iterative Methods
ØCheckpoint 
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ØRecovery 
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• Static variables not checkpointed along iterations (at most once)
• Static variables: linear system matrix A and preconditioner M
• A usually has 1x ~ 10x nnz than dynamic variables’ size (i.e., vector size)
• M is much sparse than A, e.g., block Jacobi, ILU

• Checkpoint frequency is usually much higher than failure rate
• MTTI = 4 hrs., Timeckpt = 18 s è Checkpoint interval (Young’ formula) = 12 mins
• Checkpoint frequency is 30x higher than recovery frequency
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Focus on reducing C/R overhead 
of dynamic variables in iterative 
methods by lossy compressors. 
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Theoretical Analysis of Checkpointing 
Overhead for Iterative Methods

• Overall execution time 

Iteration time Checkpoint time Recover/rollback time

20



Theoretical Analysis of Checkpointing 
Overhead for Iterative Methods

• Overall execution time 

Iteration time Checkpoint time Recover/rollback time

21

!"# = %!&'/2
• Based on Young’s formula Expected mean time of a rollback and 

• Overall time can be simplified to 



Theoretical Analysis of Checkpointing 
Overhead for Iterative Methods

• Overall execution time 

Iteration time Checkpoint time Recover/rollback time

22

!"# = %!&'/2
• Based on Young’s formula Expected mean time of a rollback and 

• Overall time can be simplified to 

• Fault tolerance overhead

• Fault tolerance overhead (%) (assume )!*+,~!"*
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!"# = %!&'/2
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• Overall time can be simplified to 

• Fault tolerance overhead (%)

• For example, MTTI is 1 hour (λ = 2.7x10-4)

• Tckpt = 120 s, expected FT overhead ~ 40%

• Checkpoint x (GMRES) on 64 nodes (2,048 cores) on Bebop at ANL
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!"# = %!&'/2
• Based on Young’s formula Expected mean time of a rollback and 

• Overall time can be simplified to 

• Fault tolerance overhead (%)

• For example, MTTI is 1 hour (λ = 2.7x10-4)

• Tckpt = 120 s, expected FT overhead ~ 40%

• Checkpoint x (GMRES) on 64 nodes (2,048 cores) on Bebop at ANL

• Tckpt = 25 s, expected FT overhead ~ 14% (significantly reduced!)
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Lossy Checkpointing Scheme for Iterative Methods
ØLossy checkpointing scheme for iterative methods has two steps
• Compress dynamic variables with lossy compressor before each 

checkpointing
• Decompress compressed dynamic variables after each recovering 
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ØOrthogonality dependent iterative methods
• For example, CG maintains a series of orthogonality relations
• p(k) and Aq(j), r(k) and p(j), r(k) and r(j) for any j < k

• CG’s superlinear convergence relies on these orthogonality
• CG after lossy checkpointing may lose superlinear convergence
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• Less time and space complexity, such as GMRES ~ O(N2), where N is time step
• Restarted scheme may not delay but even accelerate the convergence (jump 

out of local search)
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Lossy Checkpointing Scheme for Iterative Methods
ØLossy checkpointing scheme for iterative methods has two steps
• Compress dynamic variables with lossy compressor before each 

checkpointing
• Decompress compressed dynamic variables after each recovering 

ØRestarted scheme
• Periodically treat current approximate solution as new initial guess
• Advantages
• Less time and space complexity, such as GMRES ~ O(N2), where N is time step
• Restarted scheme may not delay but even accelerate the convergence (jump out of 

local search)

ØLossy checkpointing with restarted scheme
• Checkpoint only approximate solution xi
• Lossy decompressed xi as new initial guess
• Reconstruct orthogonal relations and superlinear convergence
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Performance Model of Lossy Checkpointing

• Overall execution time 

Iteration time Lossy checkpoint time Recover/rollback time

Mean extra iterations to convergence 
caused by one lossy recovery
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Performance Model of Lossy Checkpointing

• Overall execution time 

Iteration time Lossy checkpoint time Restart/rollback time

• Similarly, overall time can be simplified to 

Mean extra iterations to convergence 
caused by one lossy recovery

• Fault tolerance overhead of lossy checkpointing
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Theoretical Analysis of N’ for 
Performance Gain

34

To have the lossy checkpointing overhead lower than that 
of traditional checkpointing: !"#$%&$'()"**+,- < !"#$%&$'(,-

How to use Theorem 1?
• For example, MTTI is 1 hour (λ = 2.7x10-4)
• Lossy compression reduces Tckp from 120 seconds

to 25 seconds
• Tit = 1.2 s for GMRES (7160 s with 5875 itrs)
• Based on Theorem 1, lossy checkpointing is 

worthwhile if N’ <= 500
• If one lossy recovery causes 500 (~ 9% of total 

itrs) or fewer extra itrs to converge, lossy 
checkpointing can improve overall performance
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Impact Analysis of Lossy Checkpointing on 
Iterative Methods

• Stationary Iterative Methods

• Conjugate Gradient (CG) Method

• Generalized Minimum Residual (GMRES) Method
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• Stationary Iterative Methods
• Most classic

• Conjugate Gradient (CG) Method
• Most popular for SPD systems 

• Generalized Minimum Residual (GMRES) Method
• Most general (asymmetric, indefinite, …), robust

Impact Analysis of Lossy Checkpointing on 
Iterative Methods



Impact Analysis of Lossy Checkpointing on 
Iterative Methods — Stationary Iteration
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• Stationary iterative methods: !(#) = &!(#'() + *
• ||!(#) − !∗|| ≈ /# 0 ||! 1 − !∗||

• R is the spectral radius of matrix G (the largest eigenvalue of G, R < 1)
• !∗ is the exact solution, ! 1 is the initial guess



Impact Analysis of Lossy Checkpointing on 
Iterative Methods — Stationary Iteration

39

• Stationary iterative methods: !(#) = &!(#'() + *
• ||!(#) − !∗|| ≈ /# 0 ||! 1 − !∗||

• R is the spectral radius of matrix G (the largest eigenvalue of G, R < 1)
• If stationary methods encounter a failure and restarts at tth iteration
• Lossy compression introduces an error vector e with a relative error bound 23

• !# 4 − !5#
4 ≤ 23 0 |!# 4 | for 1 ≤ 8 ≤ 9

• Computation restarts from alternated vector !′(4) = !(#) + 2
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• Not easy to analyze N’ for nonstationary methods 
(unlike stationary methods)

• GMRES can converge to the same accuracy with no 
delay or even exhibit an acceleration sometimes if 
restarted residual is close to previous residual

J. Langou, Z. Chen, G. Bosilca, and J. Dongarra. Recovery patterns 
for iterative methods in a parallel unstable environment. SIAM 
Journal on Scientific Computing, 30(1):102–116, 2007. 
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• Not easy to analyze N’ for nonstationary methods 
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• GMRES can converge to the same accuracy with no 

delay or even exhibit an acceleration sometimes if 

restarted residual is close to previous residual

J. Langou, Z. Chen, G. Bosilca, and J. Dongarra. Recovery patterns 
for iterative methods in a parallel unstable environment. SIAM 

Journal on Scientific Computing, 30(1):102–116, 2007. 

1. GMRES is easy to stagnate in practice

2. Lossy recovered data can form a new approximate solution 

with different spectral properties

3. A failure happened during stagnation may help GMRES jump 

out of stagnation
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• An adaptive error bound scheme for GMRES

• Based on Theorem 3: if eb is set to ||"($)||/‖ ‖( , new 

residual norm is close to the previous residual

• Error-bound lossy compressors (such as SZ and ZFP) 

can control the distortion of data within )( * ||+($)||
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1. GMRES is easy to stagnate in practice

2. Lossy recovered data can form a new approximate solution 

with different spectral properties

3. A failure happened during stagnation may help GMRES jump 

out of stagnation

• An adaptive error bound scheme for GMRES

• Based on Theorem 3: if eb is set to ||"($)||/‖ ‖( , new 

residual norm is close to the previous residual

• Error-bound lossy compressors (such as SZ and ZFP) 

can control the distortion of data within )( * ||+($)||

N’ = 0 for 
GMRES



Impact Analysis of Lossy Checkpointing on 
Iterative Methods — CG
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• Extra convergence steps N’ for CG exhibit randomness (even if ensure close restarted residual)
• We adopt empirical evaluation for N’

• Randomly select an iteration to compress and decompress x in each execution
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• Extra convergence steps N’ for CG exhibit randomness (even if ensure close restarted residual)
• We adopt empirical evaluation for N’

• Randomly select an iteration to compress and decompress x in each execution
• Average N’ varies from 10% to 25% with different eb
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• Extra convergence steps N’ for CG exhibit randomness (even if ensure close restarted residual)
• We adopt empirical evaluation for N’

• Randomly select an iteration to compress and decompress x in each execution
• Average N’ varies from 10% to 25% with different eb
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N’ = 25%·N for 
CG if eb = 10-4



Performance Evaluation
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ØExperimental platform

• 2048 cores from 64 nodes (each node with 2 Intel Xeon E5-2695 v4 processors + 128 GB memory) in 

Bebop cluster at Argonne

• I/O and storage are typical high-end supercomputer facilities 

ØImplementation

• FTI checkpointing library (v0.9.5)

• MPI-IO mode to write checkpoint data to PFS

• SZ lossy compression library (v1.4.12)

• SZ has better compression performance on 1D data

• Iterative methods implemented in PETSc (v3.8)

ØExperimental Setup

• Jacobi for stationary methods, CG, and GMRES(30)

• Default preconditioner (block Jacobi with ILU/IC)

• eb = 10-4 for Jacobi and CG, adaptive eb for GMRES

• Relative convergence tolerance of 10-4, 10-6, 10-7 for Jacobi, GMRES, CG



Linear System Configuration
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• Linear system (arising from 3D Poisson)

• 3D Poisson matrix can increase the problem size 
as the scale increases

• Weak-scaling study
• Choose largest problem size that can be held in memory 

by using 64 nodes for GMRES(30) 

One vector (double precision) of size 21603 (~1010) ~ 80 GB 



Lossy Checkpointing Performance

• Experiment for one checkpoint/recovery performance
• Fixed C/R frequency
• Average time and size over the entire execution

• Average checkpointing size
• Lossless compression reduces checkpoint size up to 1/6
• Lossy compression reduces checkpoint size to 1/20 ~ 1/60

53



Lossy Checkpointing Performance
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Jacobi GMRES CG



Lossy Checkpointing Performance
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Jacobi GMRES CG

Lossy checkpointing 
can significantly 
reduce C/R time!
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Theoretical Performance Analysis
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We can analyze expected fault tolerance overhead based on our lossy 
checkpointing performance model
• For Jacobi, based on Theorem 2, 5.2 ≤ %& ≤ 5.5à N’ = 6
• For GMRES, N’ = 0
• For CG, N’ = 594 (25% of total iterations) based on empirical evaluation
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Lossy checkpointing Lossy checkpointing

We can analyze expected fault tolerance overhead based on our lossy 
checkpointing performance model
• For Jacobi, based on Theorem 2, 5.2 ≤ %& ≤ 5.5à N’ = 6
• For GMRES, N’ = 0
• For CG, N’ = 594 (25% of total iterations) based on empirical evaluation



Theoretical Performance Analysis
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Lossy checkpointing Lossy checkpointing

Observations
• GMRES and Jacobi: lossy checkpoint is always better than lossless and traditional checkpoint

• CG: lossy checkpoint is better than lossless and traditional checkpoint when # processes > 1536 / 768

• Curves of lossy checkpoint increase much slowly than curves of other two solutions à Our proposed lossy 
checkpoint is expected to achieve more performance gain as scale increases 
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Experimental Evaluation with Failures
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ØFailure Injection
• MTTI = 1 hour
• Failure intervals follow an exponential distribution
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• MTTI = 1 hour
• Failure intervals follow an exponential distribution

ØCheckpoint Interval
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Number of convergence iterations with lossy checkpointing 
for Jacobi, GMRES, and CG
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Number of convergence iterations with lossy checkpointing 
for Jacobi, GMRES, and CG

CG has a delay of 
convergence by 

24.8% on average 

Jacobi has no delay

GMRES has an acceleration

ØFailure Injection
• MTTI = 1 hour
• Failure intervals follow an exponential distribution

ØCheckpoint Interval
• !"#$%&'()*+, ~ 120 1, !"#$%&'(34556755 ~ 70 1, !"#$%&'(34559 ~ 201
• Based on checkpointing time and Young’s formula
• :;<=>%&'()*+, = 16 #";1, :;<=>%&'()*+, = 12 #";1, :;<=>%&'()*+, = 7 #";1
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Number of convergence iterations with lossy checkpointing 
for Jacobi, GMRES, and CG

CG has a delay of 
convergence by 

24.8% on average 

Jacobi has no delay

GMRES has an acceleration

• Jacobi: FT overhead reduced by 59% compared with 
traditional ckpt and 24% compared with lossless ckpt

• GMRES: FT overhead reduced by 70% and 58%
• CG: FT overhead reduced by 23% and 20%

Experimental results are very close to theoretical analysis!

ØFailure Injection
• MTTI = 1 hour

• Failure intervals follow an exponential distribution

ØCheckpoint Interval
• !"#$%&'()*+, ~ 120 1, !"#$%&'(34556755 ~ 70 1, !"#$%&'(34559 ~ 201
• Based on checkpointing time and Young’s formula

• :;<=>%&'()*+, = 16 #";1, :;<=>%&'()*+, = 12 #";1, :;<=>%&'()*+, = 7 #";1



Conclusion
Ø Propose an efficient lossy checkpointing scheme to improve C/R performance for iterative methods

Ø Formulate a lossy checkpointing performance model

Ø Quantify the tradeoff between reduced overhead and extra # of iterations

Ø Analyze the impact of lossy checkpointing on multiple iterative methods (stationary, GMRES, CG)

Ø Evaluate lossy checkpointing on a HPC environment with 2,048 cores

Ø Experiments show our lossy checkpointing can significantly reduce the fault tolerance overhead in 
the presence of failures
• Reduced by 23%~70% compared with traditional checkpoint and by 20%~58% with lossless checkpoint

Ø Future work
ØExplore lossy checkpointing in other scientific computational components (such as AMG, AMR, FFT)
ØEvaluate lossy checkpointing in real HPC simulations
ØEvaluate lossy checkpointing in other I/O intensive and error resilient applications
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Thank you!

Any questions are welcome!
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Dingwen Tao (dingwen.tao@ieee.org)
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