
Improving Performance of Iterative
Methods by Lossy Checkpointing

Dingwen Tao (University of California, Riverside)
Sheng Di (Argonne National Laboratory)

Xin Liang (University of California, Riverside)

Zizhong Chen (University of California, Riverside)

Franck Cappello (Argonne National Laboratory)

June 2018

Outline
ØIntroduction
• Why we need to checkpoint iterative methods?

2

Outline
ØIntroduction
• Why we need to checkpoint iterative methods?

ØBackground
• Traditional checkpointing for iterative methods
• Performance model of traditional checkpointing

3

Outline
ØIntroduction
• Why we need to checkpoint iterative methods?

ØBackground
• Traditional checkpointing for iterative methods
• Performance model of traditional checkpointing

ØOur Designs
• Lossy checkpointing for iterative methods
• Performance model of our new checkpointing

4

Outline
ØIntroduction
• Why we need to checkpoint iterative methods?

ØBackground
• Traditional checkpointing for iterative methods
• Performance model of traditional checkpointing

ØOur Designs
• Lossy checkpointing for iterative methods
• Performance model of our new checkpointing

ØTheoretical Analysis
• Impact of lossy checkpointing for different methods
• Expected fault tolerance overhead

5

Outline
ØIntroduction
• Why we need to checkpoint iterative methods?

ØBackground
• Traditional checkpointing for iterative methods
• Performance model of traditional checkpointing

ØOur Designs
• Lossy checkpointing for iterative methods
• Performance model of our new checkpointing

ØTheoretical Analysis
• Impact of lossy checkpointing for different methods
• Expected fault tolerance overhead

ØExperimental Evaluation
6

Outline
ØIntroduction
• Why we need to checkpoint iterative methods?

ØBackground
• Traditional checkpointing for iterative methods
• Performance model of traditional checkpointing

ØOur Designs
• Lossy checkpointing for iterative methods
• Performance model of our new checkpointing

ØTheoretical Analysis
• Impact of lossy checkpointing for different methods
• Expected fault tolerance overhead

ØExperimental Evaluation
7

Why Need to Checkpoint Iterative Methods?
ØIterative methods used for solving large, sparse linear system
• ”Gaia” mission by European Space Agency (ESA)
• Producing 5-parameter astrometric catalogue at the microarcsecond for

1 billion stars in Galaxy
• Resulting a very large, sparse linear system of 72 billion equations
• Scientists use LSQR iterative algorithm
• Takes more than 54 hours on 2,048 BlueGene/Q nodes

8

•Largest symmetric indefinite sparse matrix from UFL sparse
matrix collection (KKT240 with 28 million linear equations)

•2,048 cores / 64 nodes on Bebop cluster at Argonne

•GMRES solver implemented in PETSc

•Relative convergence tolerance of 10-6 , execution time > 1 hour

•MTBF of Sunway TaihuLight supercomputer can be hourly or less
than 1 hour

4E+05

5E+05

6E+05

7E+05

0

5000

10000

15000

20000

256 512 1024 2048

Se
co

nd
s

Number of Processes

Execution Time Number of Iterations

Importance of Improving Checkpointing
Performance of Iterative Methods
ØScientific simulations involving PDEs
• Solve linear systems within each timestep
• Sparse linear systems include most of the variables
• E.g., 3D CFD problems from Navier-Stokes equations
• Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm
• 5 out of 9 fluid-flow variables need to be checkpointed in iterative method

ØSignificantly Improve Checkpointing Performance of Iterative methods

Significantly Improve Application Performance

9

Comp Proc 1 Comp Proc k

Process State
P1

Process State
Pk

Stable
Storage

State-of-the-Art: Failure-Stop Failure

Checkpoint/Restart Model
• Periodical checkpoint to file system is expensive
• Difficult to scale up due to bottleneck of I/O bandwidth

10

State-of-the-Art: Failure-Stop Failure

Diskless checkpoint (J. Plank)
• More scalable (pros)
• 2X or more memory overhead (cons) à Reduce usable memory and problem size
• Only able to tolerate with partial failures , not for a whole system failure (cons)
• Requires spare nodes and dedicates processors (cons)

Comp Proc 1 Comp Proc k Ckpt Proc

Process State
P1

Local
Checkpoint

C1

Process State
Pk

Local
Checkpoint

Ck

Checkpoint
Encoding

C

XOR

Stable
Storage

C1 + . . . + Cn = C

11

2 steps:
1. Checkpointing state of each

application processor in memory
2. Encoding these in-memory

checkpoints and storing the encodings
in checkpointing processors

Failures and Checkpointing

12

Optimized Techniques to Improve Scalability of
Checkpoint
• Diskless checkpoint
• Multi-level checkpoint
• Asynchronized checkpoint
• Lossless-compressed checkpoint
• ……

Question: Can we use lossy compression to (1) reduce
checkpointing size and overhead and (2) improve the
performance and scalability?

Failures and Checkpointing

13

Question: Can we use lossy compression to (1) reduce
checkpointing size and overhead and (2) improve the
performance and scalability?

Lossy checkpointing

Two important questions:
(1) What is the impact of the lossy checkpointing data on
the execution performance?
(2) Can lossy checkpointing actually improve the overall
performance (including C/R and lossy compression) in the
context of restarting with alternated data?

Outline
ØIntroduction
• Why we need to checkpoint iterative methods?

ØBackground
• Traditional checkpointing for iterative methods
• Performance model of traditional checkpointing

ØOur Designs
• Lossy checkpointing for iterative methods
• Performance model of our new checkpointing

ØTheoretical Analysis
• Impact of lossy checkpointing for different methods
• Expected fault tolerance overhead

ØExperimental Evaluation
14

Traditional Checkpointing for Iterative Methods
ØCheckpoint

1. Checkpoint static variables (e.g., A, M) at the beginning
2. Checkpoint dynamic variables (e.g., i, ⍴, p, x) every several iterations

15

Traditional Checkpointing for Iterative Methods
ØCheckpoint

1. Checkpoint static variables (e.g., A, M) at the beginning
2. Checkpoint dynamic variables (e.g., i, ⍴, p, x) every several iterations

ØRecovery
1. Recover a correct computational environment
2. Recover static variables
3. Recover dynamic variables
4. Recover recomputed variables (e.g., r)

16

Traditional Checkpointing for Iterative Methods
ØCheckpoint

1. Checkpoint static variables (e.g., A, M) at the beginning
2. Checkpoint dynamic variables (e.g., i, ⍴, p, x) every several iterations

ØRecovery
1. Recover a correct computational environment
2. Recover static variables
3. Recover dynamic variables
4. Recover recomputed variables (e.g., r)

ØC/R cost dominated by dynamic variables
• Static variables not checkpointed along iterations (at most once)
• Static variables: linear system matrix A and preconditioner M
• A usually has 1x ~ 10x nnz than dynamic variables’ size (i.e., vector size)
• M is much sparse than A, e.g., block Jacobi, ILU

• Checkpoint frequency is usually much higher than failure rate
• MTTI = 4 hrs., Timeckpt = 18 s è Checkpoint interval (Young’ formula) = 12 mins
• Checkpoint frequency is 30x higher than recovery frequency

17

Traditional Checkpointing for Iterative Methods
ØCheckpoint

1. Checkpoint static variables (e.g., A, M) at the beginning
2. Checkpoint dynamic variables (e.g., i, ⍴, p, x) every several iterations

ØRecovery
1. Recover a correct computational environment
2. Recover static variables
3. Recover dynamic variables
4. Recover recomputed variables (e.g., r)

ØC/R cost dominated by dynamic variables
• Static variables not checkpointed along iterations (at most once)
• Static variables: linear system matrix A and preconditioner M
• A usually has 1x ~ 10x nnz than dynamic variables’ size (i.e., vector size)
• M is much sparse than A, e.g., block Jacobi, ILU

• Checkpoint frequency is usually much higher than failure rate
• MTTI = 4 hrs., Timeckpt = 18 s è Checkpoint interval (Young’ formula) = 12 mins
• Checkpoint frequency is 30x higher than recovery frequency

18

Focus on reducing C/R overhead
of dynamic variables in iterative
methods by lossy compressors.

Outline
ØIntroduction
• Why we need to checkpoint iterative methods?

ØBackground
• Traditional checkpointing for iterative methods
• Performance model of traditional checkpointing

ØOur Designs
• Lossy checkpointing for iterative methods
• Performance model of our new checkpointing

ØTheoretical Analysis
• Impact of lossy checkpointing for different methods
• Expected fault tolerance overhead

ØExperimental Evaluation
19

Theoretical Analysis of Checkpointing
Overhead for Iterative Methods

• Overall execution time

Iteration time Checkpoint time Recover/rollback time

20

Theoretical Analysis of Checkpointing
Overhead for Iterative Methods

• Overall execution time

Iteration time Checkpoint time Recover/rollback time

21

!"# = %!&'/2
• Based on Young’s formula Expected mean time of a rollback and

• Overall time can be simplified to

Theoretical Analysis of Checkpointing
Overhead for Iterative Methods

• Overall execution time

Iteration time Checkpoint time Recover/rollback time

22

!"# = %!&'/2
• Based on Young’s formula Expected mean time of a rollback and

• Overall time can be simplified to

• Fault tolerance overhead

• Fault tolerance overhead (%) (assume)!*+,~!"*

Theoretical Analysis of Checkpointing
Overhead for Iterative Methods

• Overall execution time

Iteration time Checkpoint time Recover/rollback time

23

!"# = %!&'/2
• Based on Young’s formula Expected mean time of a rollback and

• Overall time can be simplified to

• Fault tolerance overhead

• Fault tolerance overhead (%)

Theoretical Analysis of Checkpointing
Overhead for Iterative Methods

• Overall execution time

Iteration time Checkpoint time Recover/rollback time

24

!"# = %!&'/2
• Based on Young’s formula Expected mean time of a rollback and

• Overall time can be simplified to

• Fault tolerance overhead (%)

• For example, MTTI is 1 hour (λ = 2.7x10-4)

• Tckpt = 120 s, expected FT overhead ~ 40%

• Checkpoint x (GMRES) on 64 nodes (2,048 cores) on Bebop at ANL

Theoretical Analysis of Checkpointing
Overhead for Iterative Methods

• Overall execution time

Iteration time Checkpoint time Recover/rollback time

25

!"# = %!&'/2
• Based on Young’s formula Expected mean time of a rollback and

• Overall time can be simplified to

• Fault tolerance overhead (%)

• For example, MTTI is 1 hour (λ = 2.7x10-4)

• Tckpt = 120 s, expected FT overhead ~ 40%

• Checkpoint x (GMRES) on 64 nodes (2,048 cores) on Bebop at ANL

• Tckpt = 25 s, expected FT overhead ~ 14% (significantly reduced!)

Outline
ØIntroduction
• Why we need to checkpoint iterative methods?

ØBackground
• Traditional checkpointing for iterative methods
• Performance model of traditional checkpointing

ØOur Designs
• Lossy checkpointing for iterative methods
• Performance model of our new checkpointing

ØTheoretical Analysis
• Impact of lossy checkpointing for different methods
• Expected fault tolerance overhead

ØExperimental Evaluation
26

Lossy Checkpointing Scheme for Iterative Methods
ØLossy checkpointing scheme for iterative methods has two steps
• Compress dynamic variables with lossy compressor before each

checkpointing
• Decompress compressed dynamic variables after each recovering

27

Lossy Checkpointing Scheme for Iterative Methods
ØLossy checkpointing scheme for iterative methods has two steps
• Compress dynamic variables with lossy compressor before each

checkpointing
• Decompress compressed dynamic variables after each recovering

ØOrthogonality dependent iterative methods
• For example, CG maintains a series of orthogonality relations
• p(k) and Aq(j), r(k) and p(j), r(k) and r(j) for any j < k

• CG’s superlinear convergence relies on these orthogonality
• CG after lossy checkpointing may lose superlinear convergence

28

Lossy Checkpointing Scheme for Iterative Methods
ØLossy checkpointing scheme for iterative methods has two steps
• Compress dynamic variables with lossy compressor before each

checkpointing
• Decompress compressed dynamic variables after each recovering

ØOrthogonality dependent iterative methods
• For example, CG maintains a series of orthogonality relations
• p(k) and Aq(j), r(k) and p(j), r(k) and r(j) for any j < k

• CG’s superlinear convergence relies on these orthogonality
• CG after lossy checkpointing may lose superlinear convergence

ØRestarted scheme
• Periodically treat current approximate solution as new initial guess
• Advantages
• Less time and space complexity, such as GMRES ~ O(N2), where N is time step
• Restarted scheme may not delay but even accelerate the convergence (jump

out of local search)

29

Lossy Checkpointing Scheme for Iterative Methods
ØLossy checkpointing scheme for iterative methods has two steps
• Compress dynamic variables with lossy compressor before each

checkpointing
• Decompress compressed dynamic variables after each recovering

ØRestarted scheme
• Periodically treat current approximate solution as new initial guess
• Advantages
• Less time and space complexity, such as GMRES ~ O(N2), where N is time step
• Restarted scheme may not delay but even accelerate the convergence (jump out of

local search)

ØLossy checkpointing with restarted scheme
• Checkpoint only approximate solution xi
• Lossy decompressed xi as new initial guess
• Reconstruct orthogonal relations and superlinear convergence

30

Outline
ØIntroduction
• Why we need to checkpoint iterative methods?

ØBackground
• Traditional checkpointing for iterative methods
• Performance model of traditional checkpointing

ØOur Designs
• Lossy checkpointing for iterative methods
• Performance model of our new checkpointing

ØTheoretical Analysis
• Impact of lossy checkpointing for different methods
• Expected fault tolerance overhead

ØExperimental Evaluation
31

Performance Model of Lossy Checkpointing

• Overall execution time

Iteration time Lossy checkpoint time Recover/rollback time

Mean extra iterations to convergence
caused by one lossy recovery

32

Performance Model of Lossy Checkpointing

• Overall execution time

Iteration time Lossy checkpoint time Restart/rollback time

• Similarly, overall time can be simplified to

Mean extra iterations to convergence
caused by one lossy recovery

• Fault tolerance overhead of lossy checkpointing

33

Theoretical Analysis of N’ for
Performance Gain

34

To have the lossy checkpointing overhead lower than that
of traditional checkpointing: !"#$%&$'()"**+,- < !"#$%&$'(,-

How to use Theorem 1?
• For example, MTTI is 1 hour (λ = 2.7x10-4)
• Lossy compression reduces Tckp from 120 seconds

to 25 seconds
• Tit = 1.2 s for GMRES (7160 s with 5875 itrs)
• Based on Theorem 1, lossy checkpointing is

worthwhile if N’ <= 500
• If one lossy recovery causes 500 (~ 9% of total

itrs) or fewer extra itrs to converge, lossy
checkpointing can improve overall performance

Outline
ØIntroduction
• Why we need to checkpoint iterative methods?

ØBackground
• Traditional checkpointing for iterative methods
• Performance model of traditional checkpointing

ØOur Designs
• Lossy checkpointing for iterative methods
• Performance model of our new checkpointing

ØTheoretical Analysis
• Impact of lossy checkpointing for different methods
• Expected fault tolerance overhead

ØExperimental Evaluation
35

36

Impact Analysis of Lossy Checkpointing on
Iterative Methods

• Stationary Iterative Methods

• Conjugate Gradient (CG) Method

• Generalized Minimum Residual (GMRES) Method

37

• Stationary Iterative Methods
• Most classic

• Conjugate Gradient (CG) Method
• Most popular for SPD systems

• Generalized Minimum Residual (GMRES) Method
• Most general (asymmetric, indefinite, …), robust

Impact Analysis of Lossy Checkpointing on
Iterative Methods

Impact Analysis of Lossy Checkpointing on
Iterative Methods — Stationary Iteration

38

• Stationary iterative methods: !(#) = &!(#'() + *
• ||!(#) − !∗|| ≈ /# 0 ||! 1 − !∗||

• R is the spectral radius of matrix G (the largest eigenvalue of G, R < 1)
• !∗ is the exact solution, ! 1 is the initial guess

Impact Analysis of Lossy Checkpointing on
Iterative Methods — Stationary Iteration

39

• Stationary iterative methods: !(#) = &!(#'() + *
• ||!(#) − !∗|| ≈ /# 0 ||! 1 − !∗||

• R is the spectral radius of matrix G (the largest eigenvalue of G, R < 1)
• If stationary methods encounter a failure and restarts at tth iteration
• Lossy compression introduces an error vector e with a relative error bound 23

• !# 4 − !5#
4 ≤ 23 0 |!# 4 | for 1 ≤ 8 ≤ 9

• Computation restarts from alternated vector !′(4) = !(#) + 2

Impact Analysis of Lossy Checkpointing on
Iterative Methods — Stationary Iteration

40

• Stationary iterative methods: !(#) = &!(#'() + *
• ||!(#) − !∗|| ≈ /# 0 ||! 1 − !∗||

• R is the spectral radius of matrix G (the largest eigenvalue of G, R < 1)
• If stationary methods encounter a failure and restarts at tth iteration
• Lossy compression introduces an error vector e with a relative error bound 23

• !# 4 − !5#
4 ≤ 23 0 |!# 4 | for 1 ≤ 8 ≤ 9

• Computation restarts from alternated vector !′(4) = !(#) + 2
• After a series of derivations, upper bound of N’ is ; − <=>? /4 + 23 ≔ A3(;)

Impact Analysis of Lossy Checkpointing on
Iterative Methods — Stationary Iteration

41

• Stationary iterative methods: !(#) = &!(#'() + *
• ||!(#) − !∗|| ≈ /# 0 ||! 1 − !∗||

• R is the spectral radius of matrix G (the largest eigenvalue of G, R < 1)
• If stationary methods encounter a failure and restarts at tth iteration
• Lossy compression introduces an error vector e with a relative error bound 23

• !#
4 − !5#

4 ≤ 23 0 |!#
4 | for 1 ≤ 8 ≤ 9

• Computation restarts from alternated vector !′(4) = !(#) + 2
• After a series of derivations, upper bound of N’ is ; − <=>? /4 + 23 ≔ A3(;)

• Expected upper bound of N’ falls into [CD(
E
− <=>? /

FGH
I + 23 , K − <=>? /C + 23]

• Due to A3(;) is monotonic function, E A3(;) ≤ A3(N)
• Due to A3(;) is convex function, E A3(;) ≥ A3(P ;) (based on Jensen inequality)

Impact Analysis of Lossy Checkpointing on
Iterative Methods — Stationary Iteration

42

• Stationary iterative methods: !(#) = &!(#'() + *
• ||!(#) − !∗|| ≈ /# 0 ||! 1 − !∗||

• R is the spectral radius of matrix G (the largest eigenvalue of G, R < 1)
• If stationary methods encounter a failure and restarts at tth iteration
• Lossy compression introduces an error vector e with a relative error bound 23

• !#
4 − !5#

4 ≤ 23 0 |!#
4 | for 1 ≤ 8 ≤ 9

• Computation restarts from alternated vector !′(4) = !(#) + 2
• After a series of derivations, upper bound of N’ is ; − <=>? /4 + 23 ≔ A3(;)

• Expected upper bound of N’ falls into [CD(
E
− <=>? /

FGH
I + 23 , K − <=>? /C + 23]

• Due to A3(;) is monotonic function, E A3(;) ≤ A3(N)
• Due to A3(;) is convex function, E A3(;) ≥ A3(P ;) (based on Jensen inequality)

Impact Analysis of Lossy Checkpointing on
Iterative Methods — GMRES

43

• Not easy to analyze N’ for nonstationary methods
(unlike stationary methods)

Impact Analysis of Lossy Checkpointing on
Iterative Methods — GMRES

44

• Not easy to analyze N’ for nonstationary methods
(unlike stationary methods)

• GMRES can converge to the same accuracy with no
delay or even exhibit an acceleration sometimes if
restarted residual is close to previous residual

J. Langou, Z. Chen, G. Bosilca, and J. Dongarra. Recovery patterns
for iterative methods in a parallel unstable environment. SIAM
Journal on Scientific Computing, 30(1):102–116, 2007.

Impact Analysis of Lossy Checkpointing on
Iterative Methods — GMRES

45

• Not easy to analyze N’ for nonstationary methods

(unlike stationary methods)

• GMRES can converge to the same accuracy with no

delay or even exhibit an acceleration sometimes if

restarted residual is close to previous residual

J. Langou, Z. Chen, G. Bosilca, and J. Dongarra. Recovery patterns
for iterative methods in a parallel unstable environment. SIAM

Journal on Scientific Computing, 30(1):102–116, 2007.

1. GMRES is easy to stagnate in practice

2. Lossy recovered data can form a new approximate solution

with different spectral properties

3. A failure happened during stagnation may help GMRES jump

out of stagnation

Impact Analysis of Lossy Checkpointing on
Iterative Methods — GMRES

46

• Not easy to analyze N’ for nonstationary methods

(unlike stationary methods)

• GMRES can converge to the same accuracy with no

delay or even exhibit an acceleration sometimes if

restarted residual is close to previous residual

J. Langou, Z. Chen, G. Bosilca, and J. Dongarra. Recovery patterns
for iterative methods in a parallel unstable environment. SIAM

Journal on Scientific Computing, 30(1):102–116, 2007.

1. GMRES is easy to stagnate in practice

2. Lossy recovered data can form a new approximate solution

with different spectral properties

3. A failure happened during stagnation may help GMRES jump

out of stagnation

• An adaptive error bound scheme for GMRES

• Based on Theorem 3: if eb is set to ||"($)||/‖ ‖(, new

residual norm is close to the previous residual

• Error-bound lossy compressors (such as SZ and ZFP)

can control the distortion of data within)(* ||+($)||

Impact Analysis of Lossy Checkpointing on
Iterative Methods — GMRES

47

• Not easy to analyze N’ for nonstationary methods

(unlike stationary methods)

• GMRES can converge to the same accuracy with no

delay or even exhibit an acceleration sometimes if

restarted residual is close to previous residual

J. Langou, Z. Chen, G. Bosilca, and J. Dongarra. Recovery patterns
for iterative methods in a parallel unstable environment. SIAM

Journal on Scientific Computing, 30(1):102–116, 2007.

1. GMRES is easy to stagnate in practice

2. Lossy recovered data can form a new approximate solution

with different spectral properties

3. A failure happened during stagnation may help GMRES jump

out of stagnation

• An adaptive error bound scheme for GMRES

• Based on Theorem 3: if eb is set to ||"($)||/‖ ‖(, new

residual norm is close to the previous residual

• Error-bound lossy compressors (such as SZ and ZFP)

can control the distortion of data within)(* ||+($)||

N’ = 0 for
GMRES

Impact Analysis of Lossy Checkpointing on
Iterative Methods — CG

48

• Extra convergence steps N’ for CG exhibit randomness (even if ensure close restarted residual)
• We adopt empirical evaluation for N’

• Randomly select an iteration to compress and decompress x in each execution

Impact Analysis of Lossy Checkpointing on
Iterative Methods — CG

49

• Extra convergence steps N’ for CG exhibit randomness (even if ensure close restarted residual)
• We adopt empirical evaluation for N’

• Randomly select an iteration to compress and decompress x in each execution
• Average N’ varies from 10% to 25% with different eb

0%
5%

10%
15%
20%
25%
30%

1.0E-03 1.0E-04 1.0E-05 1.0E-06Av
er

ag
e

Ex
tra

 It
ea

ra
tio

ns

(%
)

Relative Error Bounds

Impact Analysis of Lossy Checkpointing on
Iterative Methods — CG

50

• Extra convergence steps N’ for CG exhibit randomness (even if ensure close restarted residual)
• We adopt empirical evaluation for N’

• Randomly select an iteration to compress and decompress x in each execution
• Average N’ varies from 10% to 25% with different eb

0%
5%

10%
15%
20%
25%
30%

1.0E-03 1.0E-04 1.0E-05 1.0E-06Av
er

ag
e

Ex
tra

 It
ea

ra
tio

ns

(%
)

Relative Error Bounds

N’ = 25%·N for
CG if eb = 10-4

Performance Evaluation

51

ØExperimental platform

• 2048 cores from 64 nodes (each node with 2 Intel Xeon E5-2695 v4 processors + 128 GB memory) in

Bebop cluster at Argonne

• I/O and storage are typical high-end supercomputer facilities

ØImplementation

• FTI checkpointing library (v0.9.5)

• MPI-IO mode to write checkpoint data to PFS

• SZ lossy compression library (v1.4.12)

• SZ has better compression performance on 1D data

• Iterative methods implemented in PETSc (v3.8)

ØExperimental Setup

• Jacobi for stationary methods, CG, and GMRES(30)

• Default preconditioner (block Jacobi with ILU/IC)

• eb = 10-4 for Jacobi and CG, adaptive eb for GMRES

• Relative convergence tolerance of 10-4, 10-6, 10-7 for Jacobi, GMRES, CG

Linear System Configuration

52

• Linear system (arising from 3D Poisson)

• 3D Poisson matrix can increase the problem size
as the scale increases

• Weak-scaling study
• Choose largest problem size that can be held in memory

by using 64 nodes for GMRES(30)

One vector (double precision) of size 21603 (~1010) ~ 80 GB

Lossy Checkpointing Performance

• Experiment for one checkpoint/recovery performance
• Fixed C/R frequency
• Average time and size over the entire execution

• Average checkpointing size
• Lossless compression reduces checkpoint size up to 1/6
• Lossy compression reduces checkpoint size to 1/20 ~ 1/60

53

Lossy Checkpointing Performance

54

Jacobi GMRES CG

Lossy Checkpointing Performance

55

Jacobi GMRES CG

Lossy checkpointing
can significantly
reduce C/R time!

Outline
ØIntroduction
• Why we need to checkpoint iterative methods?

ØBackground
• Traditional checkpointing for iterative methods
• Performance model of traditional checkpointing

ØOur Designs
• Lossy checkpointing for iterative methods
• Performance model of our new checkpointing

ØTheoretical Analysis
• Impact of lossy checkpointing for different methods
• Expected fault tolerance overhead

ØExperimental Evaluation
56

Theoretical Performance Analysis

57

We can analyze expected fault tolerance overhead based on our lossy
checkpointing performance model
• For Jacobi, based on Theorem 2, 5.2 ≤ %& ≤ 5.5à N’ = 6
• For GMRES, N’ = 0
• For CG, N’ = 594 (25% of total iterations) based on empirical evaluation

Theoretical Performance Analysis

58

We can analyze expected fault tolerance overhead based on our lossy
checkpointing performance model
• For Jacobi, based on Theorem 2, 5.2 ≤ %& ≤ 5.5à N’ = 6
• For GMRES, N’ = 0
• For CG, N’ = 594 (25% of total iterations) based on empirical evaluation

Theoretical Performance Analysis

59

Lossy checkpointing Lossy checkpointing

We can analyze expected fault tolerance overhead based on our lossy
checkpointing performance model
• For Jacobi, based on Theorem 2, 5.2 ≤ %& ≤ 5.5à N’ = 6
• For GMRES, N’ = 0
• For CG, N’ = 594 (25% of total iterations) based on empirical evaluation

Theoretical Performance Analysis

60

Lossy checkpointing Lossy checkpointing

Observations
• GMRES and Jacobi: lossy checkpoint is always better than lossless and traditional checkpoint

• CG: lossy checkpoint is better than lossless and traditional checkpoint when # processes > 1536 / 768

• Curves of lossy checkpoint increase much slowly than curves of other two solutions à Our proposed lossy
checkpoint is expected to achieve more performance gain as scale increases

Outline
ØIntroduction
• Why we need to checkpoint iterative methods?

ØBackground
• Traditional checkpointing for iterative methods
• Performance model of traditional checkpointing

ØOur Designs
• Lossy checkpointing for iterative methods
• Performance model of our new checkpointing

ØTheoretical Analysis
• Impact of lossy checkpointing for different methods
• Expected fault tolerance overhead

ØExperimental Evaluation
61

Experimental Evaluation with Failures

62

ØFailure Injection
• MTTI = 1 hour
• Failure intervals follow an exponential distribution

Experimental Evaluation with Failures

63

ØFailure Injection
• MTTI = 1 hour
• Failure intervals follow an exponential distribution

ØCheckpoint Interval
• !"#$%&'()*+, ~ 120 1, !"#$%&'(34556755 ~ 70 1, !"#$%&'(34559 ~ 201
• Based on checkpointing time and Young’s formula
• :;<=>%&'()*+, = 16 #";1, :;<=>%&'()*+, = 12 #";1, :;<=>%&'()*+, = 7 #";1

Experimental Evaluation with Failures

64

Number of convergence iterations with lossy checkpointing
for Jacobi, GMRES, and CG

ØFailure Injection
• MTTI = 1 hour
• Failure intervals follow an exponential distribution

ØCheckpoint Interval
• !"#$%&'()*+, ~ 120 1, !"#$%&'(34556755 ~ 70 1, !"#$%&'(34559 ~ 201
• Based on checkpointing time and Young’s formula
• :;<=>%&'()*+, = 16 #";1, :;<=>%&'()*+, = 12 #";1, :;<=>%&'()*+, = 7 #";1

Experimental Evaluation with Failures

65

Number of convergence iterations with lossy checkpointing
for Jacobi, GMRES, and CG

CG has a delay of
convergence by

24.8% on average

Jacobi has no delay

GMRES has an acceleration

ØFailure Injection
• MTTI = 1 hour
• Failure intervals follow an exponential distribution

ØCheckpoint Interval
• !"#$%&'()*+, ~ 120 1, !"#$%&'(34556755 ~ 70 1, !"#$%&'(34559 ~ 201
• Based on checkpointing time and Young’s formula
• :;<=>%&'()*+, = 16 #";1, :;<=>%&'()*+, = 12 #";1, :;<=>%&'()*+, = 7 #";1

Experimental Evaluation with Failures

66

Number of convergence iterations with lossy checkpointing
for Jacobi, GMRES, and CG

CG has a delay of
convergence by

24.8% on average

Jacobi has no delay

GMRES has an acceleration

• Jacobi: FT overhead reduced by 59% compared with
traditional ckpt and 24% compared with lossless ckpt

• GMRES: FT overhead reduced by 70% and 58%
• CG: FT overhead reduced by 23% and 20%

Experimental results are very close to theoretical analysis!

ØFailure Injection
• MTTI = 1 hour

• Failure intervals follow an exponential distribution

ØCheckpoint Interval
• !"#$%&'()*+, ~ 120 1, !"#$%&'(34556755 ~ 70 1, !"#$%&'(34559 ~ 201
• Based on checkpointing time and Young’s formula

• :;<=>%&'()*+, = 16 #";1, :;<=>%&'()*+, = 12 #";1, :;<=>%&'()*+, = 7 #";1

Conclusion
Ø Propose an efficient lossy checkpointing scheme to improve C/R performance for iterative methods

Ø Formulate a lossy checkpointing performance model

Ø Quantify the tradeoff between reduced overhead and extra # of iterations

Ø Analyze the impact of lossy checkpointing on multiple iterative methods (stationary, GMRES, CG)

Ø Evaluate lossy checkpointing on a HPC environment with 2,048 cores

Ø Experiments show our lossy checkpointing can significantly reduce the fault tolerance overhead in
the presence of failures
• Reduced by 23%~70% compared with traditional checkpoint and by 20%~58% with lossless checkpoint

Ø Future work
ØExplore lossy checkpointing in other scientific computational components (such as AMG, AMR, FFT)
ØEvaluate lossy checkpointing in real HPC simulations
ØEvaluate lossy checkpointing in other I/O intensive and error resilient applications

67

Acknowledge

68

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a joint project of the U.S.
Department of Energy’s Office of Science and National
Nuclear Security Administration, responsible for
delivering a capable exascale ecosystem, including
software, applications, and hardware technology, to
support the nation’s exascale computing imperative. The
material was also supported by and supported by the
National Science Foundation under Grant No. 1305624,
No. 1513201, and No. 1619253.

Thank you!

Any questions are welcome!

69

Contact:
Dingwen Tao (dingwen.tao@ieee.org)

mailto:dingwen.tao@ieee.org

