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Neural Networks 

Ø Typical DNNs consist of
• Convolutional layers. (i.e., Conv layers)
• Fully connected layers. (i.e., FC layers)
• Other layers. (Pooling layers etc.)

Ø FC layers dominate the sizes of most DNNs
FC layers

Conv layers
Architectures of example neural networks
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Why Compress Deep Neural Networks?

Ø Deep neural networks (DNNs) have rapidly evolved to be the state-of-the-art 
technique for many artificial intelligence tasks in various science and technology areas. 

Ø Using deeper and larger DNNs can be an effective way to improve data analysis, but 
this leads to models that take up more space. 
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Why Compress Deep Neural Networks?

Ø Resource-limited platforms
• Train DNNs in the cloud using high-performance accelerators. 
• Distribute the trained DNN models to end devices for inferences.
• Limited storage, transfer bandwidth and energy lost on fetching from external DRAM. 

End Devices

Sensors

Systems
Cloud
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Why Compress Deep Neural Networks?

Ø Resource-limited platforms
• Train DNNs in the cloud using high-performance accelerators. 
• Distribute the trained DNN models to end devices for inferences.
• Limited storage, transfer bandwidth and energy lost on fetching from external DRAM. 

Ø Compressing neural networks 

• Inferences accuracy after compressing and decompressing.
• Compression ratio.
• Encoding time.
• Decoding time.

End Devices

Sensors

Systems
Cloud

Ø Challenges
• Achieve high compression ratio while 

remaining the accuracy.
• Ensure fast to encode and decode.
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State-of-the-Art Methods

Ø Deep Compression
• Compression framework with three main steps: Pruning, Quantization and Huffman Encoding.
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State-of-the-Art Methods

Ø Weightless

• Compression framework: 
Pruning, Encode with a 
Bloomier filter

• Decode with four Hash 
function
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Lossy Compression for Floating-Point Data

Ø How SZ works
• Each data point’s value is predicted based on its neighboring data 

points by an adaptive, best-fit prediction method.
• Each floating-point weight value is converted to an integer number 

by a linear-scaling quantization based on the difference between 
the real value and predicted value and a specific error bound. 

• Lossless compression is applied to reduce the data size thereafter.
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Lossy Compression for Floating-Point Data

Ø How SZ works
• Each data point’s value is predicted based on its neighboring data 

points by an adaptive, best-fit prediction method.
• Each floating-point weight value is converted to an integer number 

by a linear-scaling quantization based on the difference between 
the real value and predicted value and a specific error bound. 

• Lossless compression is applied to reduce the data size thereafter.

Ø Advantages
• Higher compression ratio on 1D data than other state-of-the-art 

methods (such as ZFP).
• Error-bounded compression.
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Ø DeepSZ
• A lossy compression framework for DNNs. 
• Perform error-bounded lossy compression (SZ) on the pruned weights.

How We Solve The Problem
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Ø DeepSZ
• A lossy compression framework for DNNs. 
• Perform error-bounded lossy compression (SZ) on the pruned weights.

How We Solve The Problem

Ø Challenges

• How can we determine an appropriate error bound for each layer in the neural network? 
• How can we maximize the overall compression ratio regarding different layers in the DNN under 

user-specified loss of inference accuracy? 
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Overview of DeepSZ Framework 

• Prune: remove unnecessary connections (i.e., weights) from DNNs and retrain the network to recover 
the inference accuracy.

• Error bound assessment: implement different error bounds on different FC layers in DNN and test their 
impacts on accuracy degradation. 

• Optimization: use the result from last step to optimize error bound strategy for each FC layer. 
• Encode: generate the compressed DNN models without retraining (in comparison: other approaches 

require another retrain process, which is highly time-consuming).
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Network Pruning 

• Turning weight matrix from dense to sparse by 
cutting close-zero weights to zero, based on 
user defined thresholds.

• Put masks on pruned weights and retrain the 
Neural Network by tuning the rest weights.

• Represent the product by a sparse matrix 
format. In this case, one data array (32 bits 
per value) and one index array (8 bits per 
value).

Reduce the size of fc-layers by about 8× to 20× if 
the pruning ratio is set to be around 90% to 96%.
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Error Bound Assessment 

• Test the inference accuracy with only one compressed layer in every test, dramatically 
reducing the test times.

• Dynamically decide the testing range of error bound to further reduce test times.
• Collect the data from testing.

Comparation of SZ and ZFP Inference accuracy of different error bounds on the fc-layers in AlexNet. 
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Optimization of Error Bound Configuration 

• Compression error introduced in each fc-layer 
has independent impact on final network’s 
output.

• The relationship between final output and 
accuracy loss is approximately linear.

Determine the best-fit error bound for each layer 
by a dynamic planning algorithm. Based on 
expected accuracy loss or expected compression 
ratio.
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Generation of Compressed Model 

• Use SZ lossy compression on the data arrays with the error bounds (obtained in Step-3) 
and the best-fit lossless compression on the index arrays. 

Compression ratios of different layers’ 
index arrays with different lossless 
compressors on AlexNet and VGG-16. 
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Generation of Compressed Model 

• Use SZ lossy compression on the data arrays with the error bounds (obtained in Step-3) 
and the best-fit lossless compression on the index arrays. 

Ø Decoding
• Decompress the data arrays using the SZ lossy compression and the index arrays using 

the best-fit lossless compression.
• The sparse matrix can be reconstructed based on the decompressed data array and 

index array for each fc-layer.
• Decode the whole neural networks.

Compression ratios of different layers’ 
index arrays with different lossless 
compressors on AlexNet and VGG-16. 
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Experimental Configuration 

• Four Nvidia Tesla V100 GPUs
§ Pantarhei cluster node at the University of Alabama.
§ Each V100 has 6 GB of memory.
§ GPUs and CPUs are connected via NVLinks.

• Intel Core i7-8750H Processors (with 32 GB of memory) for decoding analysis.
• Caffe deep learning framework.
• SZ lossy compression library (v2.0).

Ø Hardware and Software
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Experimental Configuration 

• Four Nvidia Tesla V100 GPUs
§ Pantarhei cluster node at the University of Alabama.
§ Each V100 has 6 GB of memory.
§ GPUs and CPUs are connected via NVLinks.

• Intel Core i7-8750H Processors (with 32 GB of memory) for decoding analysis.
• Caffe deep learning framework.
• SZ lossy compression library (v2.0).

Ø Hardware and Software

Ø DNNs and Datasets

• LeNet-300-100, LeNet-5, AlexNet, 
and VGG-16.

• LeNet300-100 and LeNet-5 on the 
MNIST dataset. 

• AlexNet and VGG-16 on the ImageNet 
dataset.

AlexNet

VGG-16
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Performance Analysis of DeepSZ

• The computational cost is focused mostly on 
performing the tests with different error bounds to 
check the corresponding accuracies.

• Performing the tests is still much faster than 
retraining.

Ø Encoding
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Performance Analysis of DeepSZ

• The computational cost is focused mostly on 
performing the tests with different error bounds to 
check the corresponding accuracies.

• Performing the tests is still much faster than 
retraining.

Ø Encoding

Ø Decoding

• The overall time complexity of DeepSZ’s decoding 
is Θ (n). 

• Still comparatively low even on end devices.
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Comparison with Other Methods 

Ø Weightless

• Weightless has higher time overhead for encoding than DeepSZ does because 
of retraining.

• Weightless has higher time overhead for decoding than DeepSZ does because 
of Bloomier filter structure.

• Only one layer is compressible (usually the largest layer). 
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Comparison with Other Methods 

Ø Weightless

• Weightless has higher time overhead for encoding than DeepSZ does because 
of retraining.

• Weightless has higher time overhead for decoding than DeepSZ does because 
of Bloomier filter structure.

• Only one layer is compressible (usually the largest layer). 

Ø Deep Compression 

• Adopts a simple quantization technique on the pruned weights.
• Higher time overhead than DeepSZ does for encoding, because of retraining.
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Compression Ratio Evaluation 
FC-layers’ compression statistics for 4 Neural Networks

• DeepSZ shows the size of overall compression of the framework.
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Experimental Evaluation 

• Top-1 Accuracy means the top class (the one having the highest probability) is the 
same as the target label.

• Top-5 Accuracy means the target label is one of the top 5 predictions with the 
highest prediction probability.

• Compression ratio of 45x to 116x with top-1 accuracy loss lower than 0.25%.
• Note for LeNet, as the network is much simpler, features decent compression ratio 

with almost no accuracy loss.
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Experimental Evaluation 

• Higher compression ratio compared to 
other compression methods.

• Much lower accuracy loss before 
retraining.

• More flexibility on tradeoff between 
accuracy and compression ratio.

Comparison of compression ratios of different techniques on LeNet-
300-100, LeNet-5, AlexNet, and VGG-16. 

Inference accuracy degradation of different techniques based on 
comparable compression ratio. 
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Performance Evaluation

Time breakdown of encoding and decoding 
with different lossy compression techniques. 

• DeepSZ has lower encoding and decoding 
time overheads than Deep Compression and 
Weightless

• Capable to store on end device and 
decompress DNNs when necessary.

For example, DeepSZ spends 26 ms in lossless decompression, 
108 ms in SZ lossy decompression, and 162 ms in reconstructing 
the sparse matrix on AlexNet. As a comparison, the time for one 
forward pass with 50 images per batch takes 1,100 ms on 
AlexNet
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Conclusion and Future Work

• A novel lossy compression framework, called DeepSZ, for effectively 
compressing sparse weights in deep neural networks. 

• Avoid the costly retraining process after compression, leading to a significant 
performance improvement in encoding DNNs. 

• Controllable tradeoff between accuracy and compression ratio.

Ø DeepSZ
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Conclusion and Future Work

• Evaluate our proposed DeepSZ on more neural network architectures. 
• DeepSZ evaluation on convolutional layers.
• Use DeepSZ for improving GPU memory utilization. 

• A novel lossy compression framework, called DeepSZ, for effectively 
compressing sparse weights in deep neural networks. 

• Avoid the costly retraining process after compression, leading to a significant 
performance improvement in encoding DNNs. 

• Controllable tradeoff between accuracy and compression ratio.

Ø DeepSZ

Ø Future Work
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Thank you!
Any questions are welcome!

Contact Dingwen Tao: tao@cs.ua.edu
Sian Jin: sjin6@crimson.ua.edu


