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ABSTRACT
Today’s extreme-scale high-performance computing (HPC) appli-

cations are producing volumes of data too large to save or transfer

because of limited storage space and I/O bandwidth. Error-bounded

lossy compression has been commonly known as one of the best

solutions to the big science data issue, because it can significantly

reduce the data volume with strictly controlled data distortion

based on user requirements. In this work, we develop an adap-

tive parameter optimization algorithm integrated with a series of

optimization strategies for SZ, a state-of-the-art prediction-based

compression model. Our contribution is threefold. (1) We exploit

effective strategies by using 2nd-order regression and 2nd-order

Lorenzo predictors to improve the prediction accuracy significantly

for SZ, thus substantially improving the overall compression quality.

(2) We design an efficient approach selecting the best-fit parameter

setting, by conducting a comprehensive priori compression quality

analysis and exploiting an efficient online controlling mechanism.

(3) We evaluate the compression quality and performance on a

supercomputer with 4,096 cores, as compared with other state-of-

the-art error-bounded lossy compressors. Experiments with mul-

tiple real-world HPC simulations datasets show that our solution

can improve the compression ratio up to 46% compared with the

second-best compressor. Moreover, the parallel I/O performance is

improved by up to 40% thanks to the significant reduction of data

size.
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1 INTRODUCTION
Extremely large amounts of data are being produced by today’s

high-performance computing (HPC) applications. Serious conflicts

between the vast volume of data produced and the limited resources

(such as limited storage space, I/O bandwidth, andmemory capacity)

significantly hinders today’s HPC applications from scaling up in a

parallel environment. According to cosmologists, HACC cosmology

simulations [16] may produce 20+ petebytes of data during one run

when simulating 1 trillion particles for hundreds of timesteps (or

snapshots), while the most powerful supercomputer—the Summit

supercomputer at Oak Ridge National Laboratory (ORNL) [36]—can

provide only hundreds of terabytes of storage for ordinary users or

at most several petabytes for specific users. Quantum computing

simulation [20] may produce up to 32 exabytes of data, which

need to be compressed and decompressed during the simulation

because of inadequate memory space (e.g., Summit has only 2.8 PB

of memory capacity in total).

Compression techniques designed particularly for big science

data have been studied for years. Lossless compressors are not suit-

able for science data in that the science data are composed mainly

of floating-point values that involve disordered ending mantissa

bits in their binary representations, such that few repeated patterns

could be found in the data streams. Error-bounded lossy compres-

sion has been considered a promising solution because not only

can it significantly reduce the data size (by 10× or even 100×) but it
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can also strictly control the data distortion based on user-specified

error bounds. In fact, error-bounded lossy compressors have been

broadly verified as helpful in saving storage space and improving

I/O performance for many production-level applications across dif-

ferent domains, such as cosmology [19, 30], molecular dynamics

[31], climate [18, 44], and quantum computing [20].

Error-bounded lossy compression can be categorized into two

models: prediction-based or transform-based. In general, the former

performs data prediction for each value in the dataset and then

converts the floating-point values to integer quantization codes,

followed by an entropy encoding [17] and dictionary coding [48].

SZ [12, 24, 37], FPZIP [27], and ISABELA [21] are three typical

examples adopting the prediction-based model. The transform-

based compression model performs orthogonal data transforms

to convert the original dataset to another data domain and then

removes insignificant values [33] or adopts embedded coding [25]

to shrink the size. Typical examples are ZFP [25] and wavelet-based

compression [33]. Much prior work [4, 12, 26] has demonstrated

that SZ and ZFP are the two top error-bounded lossy compressors

in most cases; however, none of them can always exhibit the best

compression quality on all datasets.

Our research objective is to significantly improve the compres-

sion quality of the SZ compression model [12, 37] for most of the

datasets across from different domains. Such a research goal is

challenging. On the one hand, SZ has been developed for many

years, so its design and implementation have been tuned to a fairly

optimized level, making further improvement to the compression

quality difficult. On the other, many parameter settings (such as

block size, dimension order, and regression order) are involved in

the prediction-based compression model, making it nontrivial to

select the best-fit combination to get the optimal compression qual-

ity, especially because of fairly diverse data characteristics in the

datasets.

In this paper, we successfully leverage adaptive parameter opti-

mization techniques with a series of optimization strategies on data

prediction, which can significantly improve the compression qual-

ity for SZ with the same level of data distortion. Our contributions

can be summarized as follows.

• We develop optimization strategies utilizing 2nd-order

Lorenzo and 2nd-order regression prediction to improve

the prediction accuracy significantly for SZ, such that the

overall compression quality can be improved prominently

in many cases.

• We design an efficient approach selecting the best-fit pa-

rameter settings during the compression. Specifically, we

perform a comprehensive priori compression quality analy-

sis to filter out the inferior settings based on error bounds

and data characteristics, and we then exploit an efficient on-

line controlling mechanism to determine the best-fit setting

at runtime.

• We evaluate the compression quality and performance by

running our new compression solution on a supercomputer

with 4,096 cores, as compared with other state-of-the-art

error-bounded lossy compressors.

The rest of the paper is organized as follows. In Section 2, we dis-

cuss related work. In Section 3, we formulate the research problem.

In Section 4, we provide an overview of our design and implementa-

tion. Section 5 and Section 6 describe our major solution (2nd-order

prediction and parameter optimization) in detail. In Section 7, we

present the evaluation results from using multiple real-world sim-

ulation datasets on a supercomputer. In Section 8, we present our

conclusions and discuss our future work.

2 RELATEDWORK
To mitigate the storage burden and I/O bottleneck presented by

huge volumes of data, researchers have developed many data com-

pressors. Lossless compressors [2, 5, 9, 11, 17, 47, 48] can guarantee

that reconstructed data suffer from no data distortion; however,

they cannot significantly reduce the scientific data size because

of the random ending mantissa bits in the floating-point values.

Their compression ratios are usually around 2 [26, 32, 34], far from

the desired level for large-scale scientific simulations running on

modern HPC systems [6, 13].

In contrast, error-bounded lossy compressors have been effective

in significantly reducing the science data volume for extreme-scale

simulations while being able to strictly control the data distortion

based on user requirements on pointwise compression errors. Two

state-of-the-art models exist for error-bounded lossy compression:

prediction-based [7, 12, 14, 21, 23, 24, 27, 37] and transform-based

[10, 25, 33, 39, 43]. SZ [12, 24, 37], ISABELA [21], FPZIP [27], and

NUMARCK [7] are typical prediction-based compressors. Prior

work [24] shows that SZ leads the compression quality among all

the prediction-based compressors. SZ includes four key steps: data

prediction, linear-scaling quantization, customized variable-length

encoding, and dictionary encoding such as gzip [11] or zstd [48].

Vapor [10] and ZFP [25] are typical transform-based compressors.

They use different data transformation methods (wavelet transform

and a customized (non)orthogonal transform, respectively) and

different encoding algorithms. Recent research [25, 37] indicates

that ZFP is one of the best error-controlled lossy compressors for

scientific simulation datasets. ZFP compresses the dataset block by

block (blocksize: 4×4 for 2D data and 4×4×4 for 3D data). Each block

involves four steps: exponent alignment, fixed-point alignment,

(non)orthogonal block transform to decorrelate the values, and

embedded encoding of the ordered coefficients one “bit plane” at a

time.

No existing error-bounded lossy compressor can always exhibit

the best compression quality (or rate distortion) over all other com-

pressors in most cases. Prior experiments [38], for example, show

that neither SZ nor ZFP consistently provides the best compression

results on the 13 fields of the Hurricane ISABEL dataset or on the

100+ fields of the CESM-ATM climate simulation dataset.

To address this issue, some researchers studied how to improve

the compression quality by combining the two compression mod-

els intuitively. Lu et al. [28] concluded that SZ and ZFP were the

two best error-bounded lossy compressors. The authors also pro-

posed a solution to estimate the compression ratios for SZ and ZFP,

respectively. In [38], they explored an online approach that can

select the better strategy between SZ and ZFP in terms of peak

signal-to-noise ratio (PSNR). This solution, however, [24] is subject

to the existing compression quality and performance of SZ and ZFP.

Moreover, the two related works both used the outdated version of



SZ (SZ1.4), which exhibits much worse compression quality than

does the latest SZ version (SZ2.0) [24]. Liang et al. [22] proposed a

compression method that treats ZFP’s data transform as one pre-

dictor (called a transform-based predictor) in the SZ compression

model and selects the better one between SZ’s built-in predictor

and the transform-based predictor, which can prominently improve

the compression quality beyond SZ and ZFP. Compared with all

these works, we develop an efficient approach that can further

improve the compression quality of SZ. Specifically, experiments

with multiple real-world HPC simulation datasets show that our

approach can improve the compression quality by 10%∼46% over

the second-best approach in most cases.

3 PROBLEM FORMULATION
Our objective in this work is to significantly improve the compres-

sion quality for error-bounded lossy compression. Similar to related

work [22, 24, 37], we focus on structured datasets (i.e., 1D, 2D, or

3D structured mesh), because unstructured datasets (unable to be

represented by a regular mesh grid) either need particular com-

pression strategies [1] or are treated as 1D datasets for simplicity

[8].

The error-bounded lossy compression problem can be formulated

as follows: Given a structured mesh dataset (denoted by D = {d1,
d2, · · · , dN }) with N floating-point data values, how can the data

be compressed to obtain a high compression quality, while the

reconstructed data (denoted D ′) still strictly respect user-specified

pointwise error bounds?

In the error-bounded lossy compression community, three ways

have been formulated to assess compression quality in general.

(1) Checking the compression ratio (defined as the ratio of the

original raw data size to the compressed data size) based on

the same error bound for different compressors.

(2) Using rate distortion, a common indicator in the visualization

community. Rate distortion involves two metrics: bit rate

and data distortion. Bit-rate distortion is the average number

of bits used to represent one data point after compression.

The smaller the bit rate, the higher the compression ratio.

Distortion is usually evaluated by using the peak signal-to-

noise ratio, which is defined in Formula (1). In general, the

higher the PSNR, the better the compression result.

PSNR = 20·log
10
(max(di ) −min(di ))−10 log10 (MSE(D,D ′)) (1)

where MSE stands for mean-squared error between D and

D ′. Rate distortion is arguably the most important indica-

tor because some domain scientists care about the overall

statistical errors, especially for visualization purposes.

(3) Checking the visual quality of the reconstructed data com-

pared with the original raw data, by aligning the compres-

sion ratios to the same level for different compressors. This

method is also widely used by existing error-bounded lossy

compression developers [10, 12, 21, 25, 27, 33, 37] and HPC

application users [16, 20, 30, 44].

We use all three assessment metrics for comparing our solution

with other state-of-the-art lossy compressors such as SZ [12, 37]

and ZFP [25]. We will also evaluate the I/O performance of these

compressors on a supercomputer.

4 DESIGN OVERVIEW
We adopt the SZ compression model because it exhibits the best

compression quality (rate distortion) from among the different com-

pressors in literature and as confirmed by our experiments. SZ

adopts four stages in the compression: data prediction, linear-scale

quantization, Huffman encoding, and dictionary encoding (such

as Zstd [48]). Here we focus mainly on how to improve the data

prediction accuracy with as little overhead as possible and how to

determine the best parameter settings for the overall compression.

Our work involves only the prediction and quantization steps be-

cause the other steps involve lossless compression that already has

optimized settings.

Block-wise Prediction Engine
Sampling engine

Offline 

Opt.

Online 

Opt.D P 2nd-order
Lorenzo

1st-order
Lorenzo

1st-order
Regression

2nd-order
Regression

Compression 

quality 

Optimizer

Parameter
Optimization

Linear-scale 

Quantization

Huffman 

encoding

Dictionary 

encoding
D

On

Off

On

Off

On

Off

On

Off

0.12, 

0.13, 

0.22, 

…

0100

1011

1110

…

D P Data flow
Parameter

Raw data
Optimized

Compre. quality optimization engine (main contributions) Quantization+coding

Raw data
Compressed data

parametersParameter Optimization flow

Figure 1: Design Overview

We present the design overview of our method in Figure 1, in

which we highlight the main contributions by purple rectangles.

Specifically, we develop a compression quality optimizer that in-

cludes three key engines working systematically: sampling engine,

parameter optimization engine, and blockwise prediction engine.

• Sampling Engine. The sampling engine is designed for sig-

nificantly reducing the overall overhead of our compression

quality optimization solution. At the compression runtime,

our approach selects a small portion of the whole dataset

by a uniform sampling method, and the subsequent steps

(i.e., parameter optimization and blockwise selection) are

performed on top of the sampled dataset.

• Parameter Optimization Engine. The parameter optimization

engine addresses two critical issues: (1) how to estimate the

overall compression ratio as accurately as possible based

on the sampled dataset and (2) how to select the best-fit

parameters as efficiently as possible. As for the first issue,

simply assembling a new dataset with the uniformly sam-

pled data blocks and performing lossy compression on top

of it would cause a large deviation of the estimation (demon-

strated later). Accordingly, we develop an effective method

that can estimate the compression ratios accurately for vari-

ous parameter settings. As for the second issue, we design

a two-stage (offline and online) optimization strategy that

can find the best-fit parameter setting with a fairly low time

complexity at runtime. Details are given in Section 6.

• Blockwise Prediction Engine. Blockwise prediction is the most

important step in our design. In addition to the traditional

prediction method [12, 24, 37] (either 1st-order Lorenzo or



1st-order regression), we introduce two new predictionmeth-

ods, 2nd-order Lorenzo and 2nd-order regression, which can

improve the overall compression quality significantly. Based

on the optimized parameter settings selected by the param-

eter optimization engine, the blockwise prediction engine

checks the compression quality for each data block and se-

lects the best choice from among the four predictionmethods

for each block. The 2nd-order prediction methods is detailed

in Section 5, and how to select the best-fit prediction method

is described in Section 6.

5 SECOND-ORDER DATA PREDICTION
In addition to the original 1st-order prediction methods, we pro-

pose to use 2nd-order Lorenzo and 2nd-order regression prediction,

which can significantly improve the compression quality.

5.1 Second-Order Lorenzo Prediction
Second-order Lorenzo predictionwas proposed by other researchers

conceptually in the literature. For instance, it was called two-layer
prediction in [37]. However, no compressors are using this idea in

practice because of its limitations (detailed later). For instance, the

authors in [37] reported that they did not achieve higher prediction

accuracy in their experiments with 2nd-order Lorenzo prediction.

In our work, we combine 2nd-order Lorenzo prediction with other

prediction methods to make it work effectively. In what follows, we

review the 1st-order and 2nd-order Lorenzo predictor and then dis-

cuss the pros and cons of the two predictors and in what situations

2nd-order Lorenzo is better than 1st-order Lorenzo prediction.

We illustrate the 1st-order Lorenzo and 2nd-order Lorenzo pre-

diction in Figure 2 (using a 2D dataset as an example). As shown in

the figure, the 1st-order prediction involves 3 data points per data

prediction while the 2nd-order prediction requires 7 nearby data

points for predicting each value along the scanning order.

ii-1 i+1 i+2i-2

j-2

j

j-1

j+2
j+1

ii-1 i+1 i+2i-2

j-2

j

j-1

j+2
j+1

(a) 1st-order Lorenzo (b) 2nd-order Lorenzo

Current data point (i,j) The points used in prediction

Figure 2: 1st-order Lorenzo vs. 2nd-order Lorenzo

In general, the more data points used, the higher the prediction

accuracy will be. For example, the average prediction accuracy on

the QMCPack dataset [20] is about 0.00197 and 0.00062 when using

1st-order and 2nd-order Lorenzo predictor, respectively. On the

other hand, we note that SZ needs to use the decompressed data

with biased values to do the prediction instead of the original data,

in order to fully respect the preset error bound during the decom-

pression. In this sense, the more data points involved, the more

the compression errors impact the prediction accuracy, causing a

lower prediction accuracy. Tao et al. [37] demonstrated that 2nd-

order Lorenzo prediction does not work as well as the 1st-order

Lorenzo, so they adopted only the 1st-order Lorenzo in the released

SZ compressor.

We note, however, that 2nd-order Lorenzo prediction may sig-

nificantly improve the compression ratio, especially when the error

bound is required to be relatively low. Figure 3 demonstrates the

frequency distribution of quantization bins generated by the 1st-

order and 2nd-order Lorenzo predictors with the same compression

error bound for four example datasets. In principle, the sharper the

distribution is, the higher the compression ratio will be. We observe

that when the relative error bound
1
is set to the order of 1E-6∼1E-8,

the 2nd-order Lorenzo predictor turns out to be better than the

1st-order Lorenzo. The key reason is discussed as follows. SZ has

to perform the data prediction using decompressed data each with

certain errors, which may impact the prediction accuracy in turn. If

the error bound is small enough, the impact of decompressed data

to the prediction accuracy will be very small. This result is also

verified by our evaluation of the percentage breakdown of different

predictors used in compression (discussed in Section 7).

(a) Hurricane (Wf48), reb=1E-6 (b) Hurricane (QICEf48), reb=1E-6

(c) QMCPack dataset 1, reb=1E-7 (d) Scale-LETKF (Pres), reb=1E-8

Figure 3: Frequency Distribution of Quantization Bins be-
tween 1st- and 2nd-order Lorenzo Prediction

5.2 Second-Order Regression-Based Prediction
In this subsection, we describe how we design the 2nd-order regres-

sion predictor in terms of the 2nd-order polynomial multivariate

regression. The basic idea is constructing a 2nd-order regression

hyperplane based on the coordinates and the values of all data in

a specific data block and minimizing the mean squared error by

derivation. In what follows, we first discuss the generic formula

and then extend it to fit the blockwise design in compression.

The generic formula can be derived based on am-dimensional

dataset (n1×n2×· · · ×nm ). The independent variable vector of the

m-dimensional dataset is denoted as x = (x1, x2, .., xm ). Its corre-
sponding dependent variable vector is fx . We use f 2r (x) to denote

the prediction value of x by 2nd-order regression:

1
Relative error bound here refers to value-range-based error bound, which is

defined as the ratio of absolute error bound to the data value range.



f 2r (x) = t(x)T β,
where t(x) = (1, x1, x2, · · · , xm,

x2
1
, x1x2, x1x3, · · · , x1xm,

x2
2
, x2x3, · · · , x2xm,

· · · , xmxm ),

(2)

where β = (β0, β1, β2, ..βm2
) represents the coefficient vector in

which β0 is the intercept coefficient. We denote the total number

of coefficients bym2 =m × (m + 1)/2 +m + 1.
The 2nd-order regression uses f 2r (x) to estimate the dependent

variable fx . The objective is to minimize the mean squared error

between f 2r (x) and fx , as shown in Equation (3).

fob j = arg min

β

∑
∀x

(t(xT )β − f (x))2 (3)

This objective function is hard to solve with a closed-form solu-

tion because of the unknown dimensionm. Thus, we resolve it for

each specific dimension separately. For simplicity, we describe our

solution using a 3D dataset case, which can be extended to other

dimensions easily without loss of generality.

For a 3D dataset, (x1, x2, x3) in Formula (2) can be replaced by

coordinates (i, j,k), where 0 ≤ i < n1, 0 ≤ j < n2, 0 ≤ k < n3.
Then, the objective function can be simplified to

fob j = argmin

β

∑n1−1
i=0

∑n2−1
j=0

∑n3−1

k=0 (β0+β1i+β2j+β3k

+β4i
2+β5ij+β6ik+β7j

2+β8jk+β9k
2− fi jk )

2.
(4)

It can be solved by setting all partial derivatives to 0.∑n1−1
i=0

∑n2−1
j=0

∑n3−1

k=0 AβT = VT
(5)

A=



1 i j k i2 i j ik j2 jk k2

i i2 i j ik i3 i2 j i2k i j2 i jk ik2

j i j j2 jk i2 j i j2 i jk j3 j2k jk2

k ik jk k2 i2k i jk ik2 j2k jk2 k3

i2 i3 i2 j i2k i4 i3 j i3k i2 j2 i2 jk i2k2

i j i2 j i j2 i jk i3 j i2 j2 i2 jk i j3 i j2k i jk2

ik i2k i jk ik2 i3k i2 jk i2k2 i j2k i jk2 ik3

j2 i j2 j3 j2k i2 j2 i j3 i j2k j4 j3k j2k2

jk i jk j2k jk2 i2 jk i j2k i jk2 j3k j2k2 jk3

k2 ik2 jk2 k3 i2k2 i jk2 ik3 j2k2 jk3 k4


V = (V1,V2, ..,V9),Vt =

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0

дi jk (t ) ∗ fi jk , 0 ≤ t ≤ 9

дi , j ,k (t ) returns t th element from list [1, i , j , k , i2, i j , ik , j2, jk , k2]

Denote f An1,n2,n3

=
∑n1−1
i=0

∑n2−1
j=0

∑n3−1

k=0 A. The solution β equals

(f Ai , j ,k )
−1
VT

. Since f An1,n2,n3

is fixed under given (n1,n2,n3), its in-

verse matrix can be calculated beforehand. During the process of

2nd-order regression, we just need to compute V followed by a

matrix-vector multiplication to get the solution β with the opti-

mized coefficients. Based on the optimized coefficients, the predic-

tion value for each data point (i, j,k) can be written as f 2r (i, j,k) =
β0 + β1i + β2j + β3k + β4i

2 + β5ij + β6ik + β7j
2 + β8jk + β9k

2
.

Figure 4 demonstrates the frequency distribution of quantiza-

tion bins generated after the 1st-order regression predictor versus

the 2nd-order regression predictor with the same compression er-

ror bound for four example datasets. The 2nd-order regression

exhibits sharper distribution than does the 1st-order regression,

which means that the 2nd-order regression will likely obtain higher

compression ratios in these cases.

(a) Hurricane(TCf48), reb=1E-3 (b) Nyx(velocityz), reb=1E-3

(c) QMCPack dataset 1, reb=1E-4 (d) Scale-LETKF(W), reb=1E-3

Figure 4: Frequency Distribution of Quantization Bins be-
tween 1st- and 2nd-Order regression Prediction

Next we compress the 10 coefficients (β0∼β10) used to construct

the hyperplane. Specifically, we compress them using the SZ com-

pressor, because this can lead to outstanding compression ratios that

other compressors such as FPZIP [27], ZFP [25], or bit-truncation

methods [15] cannot achieve.

6 PARAMETER OPTIMIZATION
In this section, we describe another important contribution, which

can further improve the compression ratios prominently.

The key idea is to optimize the parameter settings involved

in the whole compression. This is motivated by our observation

that different parameter settings (such as block size, number of

quantization bins) may affect the compression quality.

Based on our new compression design supporting 2nd-order

prediction, we summarize a total of 12 critical parameters for the

whole compression. Five of them are from SZ (version 2.0), as shown

in Table 1, and the other 7 parameters are based on the 2nd-order

prediction we designed, as shown in Table 2.

From among the 7 parameters related to the 2nd-order predic-

tion, four of them are of Boolean values used to control the four

prediction methods (1st-order/2nd-order + Lorenzo/regression). For

example, if use_lorenzo is set to false, the Lorenzo predictor will

be excluded in the whole process of blockwise prediction. The

other three parameters are used to control the compression of the

coefficients for the 2nd-order regression.

Table 1: SZ Parameters
Type Name Explanation
Input data Original data

Input dim The dimension of original data

Input reb Value range based relativity error bound

Param block_size Block size used by predictors

Param pred_dim

The dimension used by Lorenzo and

regression predictors, pred_dim ≤ dim

Param quan_bins Number of bins used in quantization algorithm

Param reg_coef_intercept

Error bound for compressing the intercept

coefficient of regression predictor

Param reg_coef_linear

Error bound for compressing the linear

coefficients of regression predictor



Table 2: Extended Parameters in Our Solution
Name Explanation

enable_lorenzo Enable Lorenzo predictor or not

enable_2ndlorenzo Enable 2nd-order Lorenzo predictor or not

enable_regression Enable regression predictor or not

enable_2ndregression Enable 2nd-order regression predictor or not

2ndreg_coef_intercept

Error bound for compressing the intercept

coefficient of 2nd-order regression predictor

2ndreg_coef_linear

Error bound for compressing the linear

coefficients of 2nd-order regression predictor

2ndreg_coef_poly

Error bound for compressing the polynomial

coefficients of 2nd-order regression predictor

The 12 parameters are determined by our in-depth analysis of

their impact on the compression ratios based on experiments us-

ing 5 real-world simulation datasets each with multiple time steps,

involving about 100 fields and thousands of data files in total. Dif-

ferent settings of these parameters may lead to largely different

compression ratios. We demonstrate three examples in Figure 5,

Figure 6, and Figure 7. For instance, based on Figure 5(a), SZ’s

compression ratio is 180:1 and 100:1 on Hurricane(TCf48) with the

error bound 5E-3, when its block size is set to 5 and 11, respectively.

In Figure 6, none of pred_dim = 2 or pred_dim = 3 can always

exhibit the best compression ratio when the error bound is between

1E-3 and 1E-4. In Figure 7, 8192 is the best setting for quan_bin to

compress the Hurricane dataset with a 1E-5 error bound. However,

in order to compress the same dataset with 1E-7 error bound, the

best setting for quan_bin is 1024.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 3  4  5  6  7  8  9  10
 11

 12

C
o
m

p
re

s
s
io

n
 R

a
ti
o

Block Size

5E-3
1E-3
1E-4
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Figure 5: Change of Compression Ratios with Block Sizes

In the following text, we describe the detailed optimization strate-

gies, including optimization of estimating compression quality by

sampled datasets, offline parameter optimization, and online pa-

rameter optimization.

6.1 Optimizing Compression Quality
Estimation over Sampled Dataset

Accurately estimating the compression quality based on the sam-

pled dataset is critical to selecting the best-fit parameter settings
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Figure 6: Change of Compression Ratios with Various Pre-
diction Dimensions
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and predictors at runtime. To this end, we design an approach that

takes into account how the data will be predicted and quantized

for each block, in that the existing compression quality estimation

methods are not suitable for our case. Lu et al. [28], for exampe,

proposed a sampling-based estimation method based on the distri-

bution of quantization bins, which can estimate the compression

ratios of SZ to a certain extent. Since this method can support only

Huffman encoding but not dictionary encoding (zstd), it cannot be

applied to our estimation. Moreover, since it is designed based on

SZ 1.4, which has no regression predictor, it cannot estimate the

compression ratios accurately for SZ 2.0.

Another straight-forward idea is adopting a black-box compres-

sion quality estimation method by ignoring the detailed compres-

sion principles. In order to control the overhead, it needs to estimate

the real compression ratio for the overall dataset based on the sam-

pled datasets. That is, one can estimate the compression ratios by

simply assembling a new dataset using the sampled data blocks and

compressing the assembled dataset by a particular compressor such

as SZ 2.0. Such a black-box estimation method, however, may easily



cause biased estimation of compression ratios because it totally

ignores the compression principle.

Unlike the simple black-box estimation method, we take into

account how the data will be used in the compression steps. Specif-

ically, we ensure that the sampled block size is consistent with

the block size to be used in the compression steps. Our estimation

method also leverages the data points from other adjacent blocks

to estimate the prediction accuracy in each compression block.

Figure 8 presents the significant improvement of our compression-

principle-based estimation method over the black-box estimation

method. We can clearly see that even under a small sampling rate

8%, the compression ratios can be estimated accurately, with only

about 5% estimation errors in most cases. Accordingly, we set the

sampling rate to 8% in our experiments.
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(c) Miranda(velocityy), reb=1E-4
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Figure 8: Comparison of Estimation Accuracy (sampling
rate refers to the fraction of sampled data to the full data;
sampling rate = 100% refers to the full dataset)

6.2 Offline Parameter Optimization
Table 3: Range of Parameters

Name Value Range Values to be Tested Outstanding
Candidates

enable_lorenzo [True,False] True, False True

enable_2ndlorenzo [True,False] True, False True, False

enable_regression [True,False] True, False True

enable_2ndregression [True,False] True, False True, False

pred_dim [1,2,3] 1,2,3 2,3

block_size N 3,4,5,6,7,8,9,10,11,12,15,20,25,30 4,5,6,7,8

quan_bins N s
1
, 4096, 8192, 16384, 32768, 65536, 131072 s

1
, 16384

reg_coef_intercept R+ 0.01, 0.1, 0.5, 1, 2, 5, 10, 20, 50, 100 1

reg_coef_linear R+ 0.01, 0.1, 0.5, 1, 2, 5, b2, 10, 20, 50, 100 b
2

2ndreg_coef_intercept R+ 0.01, 0.1, 0.5, 1, 2, 5, 10, 20, 50, 100 0.1

2ndreg_coef_linear R+ 0.01, 0.1, 0.5, 1, 2, 5, 10, 20, 50, 100 0.5

2ndreg_coef_poly R+ 0.01, 0.1, 0.5, 1, 2, 5, 10, 20, 50, 100 2

1
s means use the estimation value provided by SZ

2
b means use block_size as reg_coef_linear

Bold values in column 3 are used in the first step of manual parameter search.

Finding the best parameter combination for a given dataset is

a multivariable optimization problem. The objective is to find the

maximum compression ratio using the same compression func-

tion and original data. Gradient-based algorithms such as gradient

descent are difficult to apply for this problem since it is unclear

whether the compression function itself is a differentiable func-

tion; also, the derivative is hard to obtain even if this function is

differentiable. Derivative-free methods such as coordinate descent

and (meta)heuristic methods such as simulated annealing, genetic

algorithm, and ant colony optimization could be used to find the

approximate global optimization in a large search space if the deriv-

ative is unknown or nonexistent. However, those (meta)heuristic

algorithms are all time-consuming (generally requiring 20+ itera-

tions to converge a near-global optimum solution [42]). By contrast,

we need to control the number of iterations to under 20 such that

the analysis overhead can be limited within 100% when the sam-

pling rate is set to 8%. To this end, we propose an offline + online

parameter optimization method.

The offline algorithm manually searches for the best parameters

by testing asmany parameter combinations as possible and analyzes

the data generated by this process to get the best candidates. We

manually tested more than 30K combinations of parameters for

each field of each dataset and analyzed all the results to get the

best candidate parameters. For parameters with discrete numbers

(such as pred_dim), we evaluate all the possible values. For the

parameters with continuous numbers (such as block_size or the

error bounds of compressing regression coefficients), we evaluate

10+ values for each parameter; those values are actually outstanding

settings based on our numerous experiments with many datasets.

That is, the values outside this range are unlikely to achieve a good

compression quality, based on our experience.

The pseudocode of the manual parameter search algorithm is

demonstrated in Algorithm 1. In the first step (lines 2–6), the goal

is to optimize the parameters with priority on the 1st-/2nd-order

Lorenzo predictor. Two value sets are used for regression-related pa-

rameters, decided by our prior experience. In the second step (lines

7–9), the goal is to optimize the parameters of the 1st-order regres-

sion predictor: reд_coe f _intercept , and reд_coe f _linear . The third
step (lines 10–12) is to optimize the parameters of the 2nd-order

regression predictor: 2ndreд_coe f _intercept , 2ndreд_coe f _linear ,
2ndreд_coe f _poly. The final step (lines 13–15) is to optimize the

quan_bin since it is independent of predictors.

We analyze the data generated by a manual parameter search to

get the outstanding candidates. The manual search was conducted

offline; that is, it does not involve runtime overhead for compres-

sion. The manual search results are maintained separately based on

data fields. For each field, we first identify the best compression ra-

tio (denoted as best_ratio) and then collect good parameter settings

whose compression ratios are larger than 95%×best_ratio. Having
gleaned relatively good parameter combinations for each field, we

can choose any one parameter combination selected and use it to do

compression, which can achieve at least a 95% top compression ra-

tio. Then we collect the outstanding candidates for each individual

parameter statistically based on a prior probability. Specifically, if

some parameter value appears frequently (larger than 85%), we put

it in the outstanding-candidate set. For instance, if the parameter

block_size=5 appears in the good candidate parameter combina-

tions for 86 fields from among 100 fields, we choose it as one of the



Algorithm 1Manual Parameter Search

Input: raw data D, relative error bound reb
Output: list of parameter settings and its compression ratio

1: compressMode← no_sampling

2: for (enable_lorenzo, enable_2ndlorenzo, enable_2ndregression, pred_dim,

block_size) in (values from Table 3) do
3: for (reg_coef_intercept, reg_coef_linear, 2ndreg_coef_intercept,

2ndreg_coef_linear, 2ndreg_coef_poly) in (bold values from Table 3)

do
4: Do compression, Record parameter settings and compression ratio

5: end for
6: end for
7: for (enable_regression, block_size, reg_coef_intercept, reg_coef_linear) in (values

from Table 3) do
8: Do compression, Record parameter settings and compression ratio

9: end for
10: for (enable_2ndlorenzo, block_size, 2ndreg_coef_intercept, 2ndreg_coef_linear,

2ndreg_coef_poly) in (values from Table 3) do
11: Do compression, Record parameter settings and compression ratio

12: end for
13: for quan_bin in (Values from Table 3) do
14: Do compression, Record parameter settings and compression ratio

15: end for

outstanding candidates. The final results are shown in the last col-

umn of Table 3. By this selection method, we considerably reduce

the number of parameter values to be focused on during online

parameter optimization.

6.3 Online Parameter Optimization
Our solution searches the best parameters based on the outstanding

candidates generated by the offline optimization. This auto param-

eter search process is an online process, which means it will be

executed every time when we run the compressor. The subsets

generated by sampling are used to find the best parameters. After

that, the original datasets will be compressed by our compressor

using the best parameters. The overhead of the online parameter

optimization process is around 100% based on the runtime of SZ

and the overhead of second-order predictors is 20%∼50% based

on SZ. Thus, the total runtime overhead of our solution is around

120%∼150% based on SZ.

Parameters with multiple outstanding candidates in Table 3 will

be evaluated to find the best setting. There are 5 parameters that

need to be evaluated and we clarify them to 3 groups: pred_dim and

enable_2ndlorenzo as group 1,block_size and enable_2ndreдression
as group 2,quan_bins as group 3. The evaluation is performed group

by group since parameters between groups have little correlation in

terms of the compression process. To find the best settings, Group

1, 2, and 3 require 4, 10, and 2 iterations respectively, according to

the number of outstanding candidates of each parameter in Table 3.

Thus, there are 16 iterations in total in our auto parameter search

to choose the best setting regarding the first 5 parameters. The

remaining 7 parameters have only one outstanding candidate each;

thus, they do not need to be optimized during this step. Using a

heuristic algorithm such as simulated annealing or a derivative-free

algorithm such as coordinate descent is unnecessary for the auto

parameter search because there are only 16 iterations in total which

is already efficient.

Although the online auto parameter search performs on top

of the outstanding candidates generated by an offline parameter

optimization, this solution is also efficient on new datasets, as we

verify in Section 7.4.

7 PERFORMANCE EVALUATION
In this section, we present the evaluation results based on the

datasets produced by five real-world scientific simulations from

different domains.

7.1 Experimental Settings
Table 4 describes the five applications, which all require compres-

sion techniques to store big science data [16, 20, 30, 44]. In particu-

lar, QMCPack here involves three datasets that are stored in three

scales—288×115×69×69 (1 field), 816×115×69×69 (2 fields), and

6192×115×69×69 (1 field)—corresponding to 0.6 GB, 3.4 GB, and

13 GB, respectively. We call them QMCPack dataset 1, QMCPack

dataset 2, and QMCPack dataset 3, respectively. Since our experi-

ments involve parallel processes each with several gigabytes, the

de facto total data size is up to 10+ terabytes for one application in

our experiments, when the execution scale is 4,096 cores.

Table 4: Applications Used in Our Experiments
Name Domain # Fields Size Per Snapshot

Hurricane [18] Weather 13 1.3 GB (= 13× 96MB)

Miranda [29] Hydrodynamics 7 1 GB (= 7 × 144MB))

QMCPack [20] Atom/Molecules 4 ∼17 GB (=0.6 + 3.4 +13) GB

Scale-LETKF [44] Weather 12 6.4 GB (=12×539MB)

NYX [30] Cosmology 6 3.1 GB (=6×512MB)

We conducted our experiments on the Bebop supercomputer [35]

at Argonne National Laboratory using up to 4,096 cores. Specif-

ically, the experiments involve 64∼128 nodes, and each node is

equipped with 128 GB memory and two Intel Xeon E5-2695 v4

processors (each with 16 cores). Its storage system adopts a General

Parallel File System (GPFS) equipped with 2 I/O nodes, and the I/O

system is a typical high-end supercomputer facility. We perform

data writing/reading by a file-per-process method with POSIX I/O

[45] in parallel.
1

We compare our solution with three state-of-the-art lossy com-

pression methods: SZ2.1.8 [24], ZFP0.5.5 [25], and a hybrid model

[22], which have been confirmed as the best in class [8, 22, 28].

The hybrid model merges the SZ2.0 and ZFP0.3.1 to get the best

compression quality, while suffering from 200% time overhead [22].

In what follows, we first present the compression quality results

based on second-order prediction and parameter optimization and

then present the overall compression quality in terms of the in-

dicators defined in our problem formulation (Section 3). We also

evaluate the I/O performance gain by running a series of paral-

lel experiments on a supercomputer with up to 4,096 cores, and

compare the results with those of other existing state-of-the-art

compressors.

7.2 Assessment of Second-Order Prediction
In Figure 9, we present the rate distortion improvement obtained

with the second-order prediction (shown as blue curves in the fig-

ure) over the original design in SZ 2.0 (called Base(SZ) and shown

as black curves in the figure) that uses the 1st-order prediction.

As mentioned in Section 3, the higher the PSNR, the better the

1
Another researcher [41] verified that POSIX I/O has comparable performance

with parallel I/O, such as MPI-IO [40] when reading/writing thousands of files simulta-

neously on GPFS. We also further verified that the read/write performance difference

of POSIX IO and MPI-IO is within ±10% on this supercomputer, when the execution

scales between 2k cores and 8k cores.



compression quality; and the lower the bit rate, the higher the com-

pression ratio. We can clearly see that using 2nd-order prediction

(see Section 5) can significantly improve the compression quality

over the original SZ with 1st-order prediction in many cases, es-

pecially with relatively high bit rates or relatively high precision.

For instance, the compression ratios can be improved by about

50% when the PSNR is greater than 120 dB for the Miranda and

QMCPack simulation. The main reason is the high-order nature

of the datasets. However, we can also see that at some bit rates,

the original SZ with 1st-order prediction outperforms the one with

2nd-order prediction. As shown in Figure 9, for instance, 1st-order

prediction is much better than 2nd-order prediction when the bit

rate is in the range of [1.5,5] for the Scale-LETKF(Pres) field. This

result provides motivation for adopting both 1st- and 2nd-order

predictions in the compression.

 50

 100

 150

 200

 0  2  4  6  8  10  12  14

P
S

N
R

(d
B

)

Bit Rate

Base (SZ)
2nd order Pred

1&2 order Pred + Par-Opt

(a) Hurricane

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0  2  4  6  8  10
 12

 14
 16

 18

P
S

N
R

(d
B

)

Bit Rate

Base (SZ)
2nd order Pred

1&2 order Pred + Par-Opt

(b) Hurricane(Pf48)

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0  1  2  3  4  5  6  7  8  9  10

P
S

N
R

(d
B

)

Bit Rate

Base (SZ)
2nd order Pred

1&2 order Pred + Par-Opt

(c) Miranda

 40

 60

 80

 100

 120

 140

 160

 0  1  2  3  4  5  6

P
S

N
R

(d
B

)

Bit Rate

Base (SZ)
2nd order Pred

1&2 order Pred + Par-Opt

(d) Miranda(density)

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0  2  4  6  8  10
 12

 14
 16

P
S

N
R

(d
B

)

Bit Rate

Base (SZ)
2nd order Pred

1&2 order Pred + Par-Opt

(e) QMCPack - dataset 1
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(f) QMCPack - dataset 2
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Figure 9: Breakdown Compression Quality Analysis

7.3 Assessment of Parameter Optimization
In Figure 9, we also demonstrate the further compression quality

improvement (see the red curves versus the blue curves) when using

parameter optimization strategies on top of 2nd-order prediction.

In absolute terms, the rate distortion can be improved by 4%∼50%

in most cases, depending on the bit rates. Such a significant im-

provement is attributed to our design of integrating both 1st-order

prediction and 2nd-order prediction (four predictors in total) and an

efficient online parameter optimization strategy selecting the best-

fit parameter setting at runtime in fine granularity (as per block)

(for details, see Section 6.1 and Section 6). The variation in the rate

distortion improvement shows that the default parameter settings

of the original SZ is nearly optimal for some datasets while it is far

from the optimal level for some other datasets. This confirms the

significance of our parameter optimization in order to achieve the

optimal results for all datasets.

To demonstrate the effect of our parameter optimization engine,

in Figure 10 we illustrate the percentage breakdown of the four

different prediction methods used in the compression of different

applications or fields. We clearly observe an interesting distribution

pattern of the four prediction methods in terms of different error

bounds. Specifically, when the error bound is relatively large (such

as 1E-2), the regression-based predictor would take a major role,

since the Lorenzo predictor may suffer from huge prediction errors

in this situation because of the impact of decompressed data (keep

in mind that Lorenzo prediction has to be performed by using

decompressed data during the compression stage). When the error

bound is relatively small, the Lorenzo prediction would outperform

the regression-based prediction. In particular, when the error bound

is extremely small, our optimization engine selects the 2nd-order

Lorenzo predictor in most blocks. This action is consistent with our

analysis in Section 5.1: many of the application datasets actually

exhibit high-order smoothness, such that the 2nd-order Lorenzo

predictor is more accurate for data prediction, especially with small

compression error bounds.

7.4 Overall Compression Quality
In Figure 11 we present the overall compression quality (rate distor-

tion) based on five real-world scientific simulation datasets, and we

demonstrate the result of one example field for Hufficane ISABEL,

Miranda, and Scale-LETKF, respectively. The blue curve (called op-

timum) refers to the ideal level obtained by our offline parameter

searching (MS) for optimal parameters. As highlighted in the fig-

ures, our compression solution can improve the compression ratios

over SZ (see red curve versus black curve) by 20+% for Hurricane, by

∼40+% for Miranda, and by ∼30+% for QMCPack, respectively, with

the same PSNR. Our solution also exhibits the best compression

quality from among all existing compressors on the three appli-

cations. Specifically, with the same PSNR, its overall compression

ratio is higher than that of the second best compressor generally

by 20∼25% and by 5∼10% and 20∼30% for the three applications,

respectively. For some specific fields, the improvement can be up to

46%, as shown in Figure 11(b). As for the simulation Scale-LETKF

and NYX, our solution still leads to the best compression quality

from among all the compressors, although it has no prominent

improvement over the second-best compressor, probably because



(a) Hurricane(Wf48) (b) Miranda(velocity)

(c) QMCPack dataset 1 (d) Scale-LETKF(W)

Figure 10: Percentage Breakdown of Four Predictors Used in
the Blockwise Compression

the default parameter setting of the original SZ is also (or nearly)

the best choice in those cases.

Figure 12 presents the compression quality of the QMCPack

dataset 2 and dataset 3 compared with the QMCPack dataset 1

shown in Figure 11(g). Note that our offline parameter optimization

was performed not based on these two QMCPack datasets, which

are largely different from the QMCPack dataset 1 in scale. Based

on the figure, we clearly see that for both datasets our solution can

still get much better compression quality than the others can. This

means that our optimization method can also be applied effectively

on new simulation datasets that were not included in our offline

optimization analysis.

We also evaluate the autocorrelation metric of the compression

errors (as shown in Table 5), in order to check the randomness of the

compression errors. The users generally expect to see close-to-zero

autocorrelation results, because this introduces less bias to their

post-analysis. Table 5 shows that our solution achieves comparable

autocorrelation values of compression errors compared with SZ,

indicating the same randomness of compression errors.

Table 5: Lag One Autocorrelation of Compression Error

Dataset Error Bound (reb)

Autocorrelation (lag=1)

SZ ZFP Our Solution

Hurricane (Uf48)

1E-3 0.040711 0.151458 0.053633

1E-5 0.001358 0.115680 0.001687

Miranda (velocityz)

1E-3 0.211425 0.343711 0.216588

1E-5 0.071940 0.266735 0.059465

QMCPack (dataset 1)

1E-3 0.211425 0.374731 0.241557

1E-5 0.022431 0.217974 0.028725

7.5 I/O Performance Evaluation
In this subsection, we present the parallel I/O evaluation results

based on two scientific simulations (Hurricane and Miranda) on the

Bebop supercomputer [35]. The value-range-based relative error
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(b) Hurricane (Wf48)
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(c) Miranda (overall)
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(d) Miranda (velocityx)
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(e) Scale-LETKF (overall)
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(f) Scale-LETKF (Pres)
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(g) QMCPack dataset 1 (overall)
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Figure 11: Overall Evaluation
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(a) QMCPack - dataset 2
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Figure 12: Evaluation on Multiple QMCPack Dataset

bounds are set to 1E-6 and 1E-5 respectively. We first show that

the lossy compression with these two error bounds leads to fairly

high precision of the reconstructed data compared with the original



raw data. We then show the parallel I/O performance when using

different compressors.

The reconstructed data under lossy compression with these error

bounds are of fairly high precision. On the one hand, some domain

scientists [3] recommend keeping the structural similarity index

measure (SSIM) [46] no less than 0.99995, based on their postanal-

ysis using existing lossy compressors. The reconstructed data in

our experiments here can get an overall SSIM up to 0.99999+, so

the data are supposed to be acceptable to users w.r.t. SSIM. On the

other hand, to confirm that the error bounds in our evaluation lead

to high precision of the reconstructed data, we demonstrate the

visual quality of the reconstructed data for the two applications in

Figure 13 and Figure 14. We zoom in on a small region to 625× for

each image.

(a) original data (b) dec_data(reb=1e-6)

Figure 13: Visualization of Hurricane(Uf48)

(a) original data (b) dec_data(reb=1e-5)

Figure 14: Visualization of Miranda (velocityz)

We present the parallel I/O performance evaluation results in

Figure 15 and Figure 16. Without any compression techniques, it

took 6,141 s and 4,881 s to store the original data and 7,274 s and

5,891 s to read the original data (using 4,096 processes) because of

limited I/O bandwidth. The figures clearly show that the parallel I/O

performance with compression techniques is always less than 1,800

seconds. In particular, our solution has the least overall elapsed

times, which are 20%∼40% less than the times when using the

second-best lossy compressor (SZ). This is due to the significantly

reduced data sizes achieved by our compressor. Such a performance

gain can benefit the applications significantly. On the one hand,

for the applications suffering a bottleneck in I/O cost, the overall

runtime can be reduced significantly. On the other hand, the storage

requirementwould be decreased for each application, enablingmore

applications to run on supercomputers.

(a) Data dumping performance (b) Data loading performance

Figure 15: Parallel Performance on Hurricane

(a) Data dumping performance (b) Data loading performance

Figure 16: Parallel Performance on Miranda

8 CONCLUSIONS AND FUTUREWORK
In this paper, we present an efficient solution to significantly im-

prove the compression quality for the datasets produced by parallel

scientific simulations. In our solution, we develop more efficient

methods (2nd-order prediction) based on both Lorenzo prediction

and regression prediction. We develop an efficient algorithm that

can select the best-fit predictors and optimized parameter settings

at runtime. We thoroughly evaluate the compression quality and

performance on a supercomputer with 5 real-world scientific simu-

lations. The key findings are summarized below.

• The 2nd-order prediction can improve the compression ratio

by 50+% when the PSNS is around 120 dB for the Miranda

and QMCPack simulations.

• Our parameter optimization can further improve the com-

pression by 4%∼50% in most cases.

• When using lossy compression techniques, the overall I/O

times are reduced to several hundreds of seconds from the

original several hours on the supercomputer.

• Our solution has the least overall elapsed I/O times, which

are 20%∼40% less than the times when using the second-best

lossy compressor.

As future work, we plan to explore more effective prediction models

and coding algorithms.
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