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ABSTRACT
Today’s scientific high-performance computing applications and

advanced instruments are producing vast volumes of data across

a wide range of domains, which impose a serious burden on data

transfer and storage. Error-bounded lossy compression has been

developed and widely used in the scientific community because

it not only can significantly reduce the data volumes but also can

strictly control the data distortion based on the user-specified error

bound. Existing lossy compressors, however, cannot offer ultra-

fast compression speed, which is highly demanded by numerous

applications or use cases (such as in-memory compression and

online instrument data compression). In this paper we propose a

novel ultrafast error-bounded lossy compressor that can obtain

fairly high compression performance on both CPUs and GPUs and

with reasonably high compression ratios. The key contributions are

threefold. (1) We propose a generic error-bounded lossy compres-

sion framework—called SZx—that achieves ultrafast performance

through its novel design comprising only lightweight operations

such as bitwise and addition/subtraction operations, while still

keeping a high compression ratio. (2) We implement SZx on both

CPUs and GPUs and optimize the performance according to their

architectures. (3) We perform a comprehensive evaluation with

six real-world production-level scientific datasets on both CPUs

and GPUs. Experiments show that SZx is 2∼16× faster than the

second-fastest existing error-bounded lossy compressor (either SZ

or ZFP) on CPUs and GPUs, with respect to both compression and

decompression.
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1 INTRODUCTION
Background. With the ever-increasing complexity of modern sci-

entific research, today’s high-performance computing applications

and advanced instruments are producing extremely large volumes

of data in their simulations or experiments. The Hardware/Hybrid

Accelerated Cosmology Code (HACC) [15], for example, can pro-

duce 20 TB of simulation data in only one run with hundreds of

simulation iterations and trillions of particles involved.

Limitation of state-of-art approaches. During the past five
years, several excellent error-bounded lossy compressors have been

developed to resolve the big data issue. Nevertheless, the compres-

sion/decompression throughput is still far lower than the target

performance demanded by many use cases, such as instrument data

compression and in-memory compression. The Linear Coherent

Light Source (LCLS-II) [27] could generate instrument data at a rate

of 250 GB/s [8], and these data need to be stored and transferred to

a parallel file system (PFS) in a timely manner for post hoc analy-

sis. By comparison, the single-core CPU performance of existing

lossy compressors is generally only 200∼400 MB/s [21, 29], and the

GPU performance is only 10∼66 GB/s [10, 31], which has also been
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verified in our experiments. Another typical example is exascale par-

allel quantum computing (QC) simulation, which requires a fairly

large memory capacity (e.g., 2
58 ≈256 PB when simulating 50 qubits

each with double precision) for each run in practice [35]. To reduce

memory requirement significantly, QC simulation researchers [35]

have developed a method to store the lossy-compressed data in

memory and decompress the data whenever needed in the course

of the simulation. The method suffers, however, from considerable

overhead in simulation time (up to ∼20× in the worst case), which

is undesired by users.

Research motivation and challenges. In this paper we focus

on how to significantly accelerate both compression and decom-

pression performance for error-bounded lossy compression while

keeping a high compression ratio. This work involves address-

ing two grand challenges. (1) To pursue ultrahigh lossy compres-

sion/decompression performance, we have to restrict the whole

design to use only fairly lightweight operations including addi-

tion/subtraction and bitwise operations. But doing so raises a seri-

ous challenge to maintaining a good compression ratio. Specifically,

the relatively expensive operations such as multiplication and divi-

sion should be suppressed because of their significantly higher

cost. All of the existing efficient error-bounded lossy compres-

sors, however, depend on such expensive operations. For instance,

SZ 2.1 [21] relies on linear regression prediction, which involves

masses of multiplications to compute the coefficients. Moreover,

SZ 2.1 relies on a linear-scale quantization to control the user-spec-

ified error bound, which involves a division operation (quantiza-
tion_bin=[ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛_𝑒𝑟𝑟𝑜𝑟

2·𝑒𝑟𝑟𝑜𝑟_𝑏𝑜𝑢𝑛𝑑 +
1

2
] [13]) on each data point. ZFP [22]

is another state-of-the-art error-bounded lossy compressor, which

is designed based on the data transform; it also involves masses of

matrix-multiplication operations. (2) Parallelizing the whole design

on parallel architectures, especially the massively parallel GPU

devices, is challenging. The dependencies are exposed during the

parallelization, and some of these are extremely difficult to break.

Therefore, a sophisticated design and optimization are desired in

order to enable the parallelization and achieve optimal performance.

Key contributions.Wepropose a novel, ultrafast, error-bounded

lossy compression framework—SZx—for both CPUs and GPUs. The

key contributions are summarized as follows.

• We develop SZx, which composes only lightweight opera-

tions such as bitwise operations, additions, and subtractions.

SZx also supports strict control of the compression errors

within user-specified error bounds, thanks to our careful

design of the error-control mechanism.

• We optimize the SZx algorithm using inexpensive bitwise

right shifting to improve the performance; we also investi-

gate the compression quality improvement by exploring the

best block size.

• We implement SZx on both CPUs and GPUs with sophisti-

cated and novel designs and optimize the performance with

respect to their architectures.

• We comprehensively evaluate SZx by running it with six real-

world scientific datasets on heterogeneous compute nodes

offered by different supercomputers, including Summit at

Oak Ridge National Laboratory (ORNL) and ThetaGPU at

Argonne National Laboratory (ANL). We rigorously compare

SZx with two state-of-the-art lossy compressors, SZ and ZFP,

as well as their GPU versions cuSZ and cuZFP, respectively.

Experimental results and artifact availability. Experiments

show that SZx is 2∼7× faster than the second-best existing error-

bounded lossy compressor on CPUs and 2∼16× faster than the

second-best compressor on GPUs, with respect to both compression

and decompression. At such high performance, SZx can still get

a good compression ratio—3∼12 for the overall compression ratio

of each application and up to 124 for the compression ratio of the

specific fields—with good reconstructed data quality.

Paper structure. The rest of the paper is organized as follows.

In Section 2 we discuss related work. In Section 4 we present a

design overview of our ultrafast error-bounded lossy compression

framework. In Section 5 we propose algorithmic optimizations

for improving both the performance and the compression quality.

In Section 6 we describe the SZx implementations on both CPUs

and GPUs. In Section 7 we present and discuss the performance

evaluation results. In Section 8 we conclude the paper with a vision

of future work.

2 RELATEDWORK
High-speed scientific data compression can be split into two basic

categories—lossless compression and lossy compression. Each of

these will be discussed in the following text, especially with regard

to performance/speed.

High-speed lossless compressors have been developed because of

the strong demand on compression performance in many use cases.

Facebook Zstd [9], for example, was developed for the sake of high

performance, with very similar compression ratios compared with

other state-of-the-art lossless compressors such as Zlib [44] and

Gzip [11]. In general, Zstd can be 5∼6× faster than Zlib, as shown

in [9], and hence it has been widely integrated and used in 80+

production-level software codes, libraries, and platforms. Unfortu-

nately, Zstd supports only lossless compression, which would mean

very low compression ratios (1.2∼2 in most cases) when compress-

ing scientific datasets that are composed mainly of floating-point

values (to be shown later).

High-speed lossy compression has also gained significant at-

tention by compressor developers and scientific applications re-

searchers. SZ [12, 21, 29] is a fast error-bounded lossy compressor,

which can reach 200∼300 MB/s in compression and decompression

speed [12, 21, 29]. However, it is still not as fast as expected by

quantum computing simulations [35], so a faster lossy compression

method called QCZ was customized with comparable compression

ratios (especially for high-precision compression with a relative

error bound of 1E-4 or 1E-5). ZFP [22] is another fast error-bounded

lossy compressor, which is well known for its relatively high com-

pression ratios and fairly high compression speed on both CPUs

and GPUs. Based on our experiments (to be shown later), ZFP and

QCZ have comparable compression speed, and they are generally

1.5∼2× as fast as SZ. We emphasize that, in fact, SZ already has

higher performance than many other compressors, as demonstrated

in literature: it has a comparable performance with FPZIP [23] and

SZauto [43] and about one to two orders of magnitude higher per-

formance than ISABELA [19], MGARD [6], and TTHRESH [7].



Over the past decade, GPUs have become prevalent because of

their massive parallelism and computational power [25]. Various

applications have been successfully accelerated on GPU-based plat-

forms [36, 37, 39–42]. Because of the high demand for ultrafast

error-bounded lossy compressors, a few specific error-controlled

lossy compression algorithms have been developed for GPU accel-

erators; cuSZ [31] and cuZFP [10] are two leading ones. The cuSZ

algorithm is the only GPU-based lossy compressor supporting ab-

solute error bounds for scientific data compression. It was designed

based on the classic prediction-based compression model SZ and

optimized for GPU performance by leveraging a dual-quantization

strategy [31] to deal with the Lorenzo prediction. The cuZFP com-

pressor, on the other hand, leverages the high-performance CUDA

library to reach a very high throughput; it can do so because ZFP’s

core stage is performing a customized orthogonal data transform

that can be executed in the form of matrix-multiplication. CuZFP,

however, does not support error-bounded compression but only

fixed-rate compression, which suffers from very low compression

ratios, as verified in [33].

In comparison with all these related works, our proposed SZx

is about 2∼7× as fast as the second-fastest lossy compressor ZFP

on CPUs and 2∼16× as fast as the second-fastest (cuSZ) on GPUs,

also with relatively high compression ratios (3∼12 depending on
the user’s error bound).

3 PROBLEM FORMULATION
In this section we formulate the research problem we focus on

in this paper: optimization of the error-bounded lossy compres-

sion/decompression performance with compression ratios as high

as possible. Specifically, given a scientific dataset (denoted by 𝐷)

composed of 𝑁 data values each denoted by 𝑑𝑖 , where 𝑖=1,2,3,· · · ,𝑁 ,

the objective of our work is to develop an error-bounded lossy

compressor with a fairly high performance in both compression

and decompression for both CPUs and GPUs, while also strictly

respecting the user-required error bound, which can be represented

as the following formula:

max(𝐶𝑇 ) 𝑎𝑛𝑑 max(𝐷𝑇 )
𝑠 .𝑡 . |𝑑𝑖 − 𝑑 ′𝑖 | ≤ 𝑒

𝐶𝑅 𝑖𝑠 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑙𝑦 ℎ𝑖𝑔ℎ,

(1)

where CT and DT represent the compression throughput and de-

compression throughput, respectively; 𝑑𝑖 and 𝑑
′
𝑖
denote the original

data value and decompressed data value in the dataset, respectively;

𝑒 is the user-specified absolute error bound; and CR is the compres-

sion ratio, which is defined as the ratio of the original data size to

the lossy compressed data size. In order to obtain as high perfor-

mance as possible, CR would definitely be not optimal. However,

we still hope to get a relatively high CR (expected to be over 5 or 10).

Here, “relatively high" refers to much higher CR than that of loss-

less compressors (typically 1.2∼2 for scientific data), as we prove by
experiment data in Section 7. This objective is meaningful to those

users who can tolerate errors but cannot afford high compression

overhead and high decompression overhead.

The compression throughput and decompression throughput

are defined in Formula (2) and Formula (3), respectively:

𝐶𝑇 = (𝑁 · 𝑏)/𝑇 (2)

(a) Miranda (pressure:slice128) (b) Nyx cosmology (temperature)

(c) QMCPack (slice500) (d) Hurricane (U:slice60)

Figure 1: Demonstrating High Smoothness of Scientific Datasets

𝐷𝑇 = (𝑁 · 𝑏)/𝑇 ′, (3)

where 𝑁 is the number of data points in the dataset 𝐷 ; 𝑏 represents

the number of bytes per value in𝐷 (e.g.,𝑏 = 4 when the original data

precision is single-precision floating point); and𝑇 and𝑇 ′ denote the
time cost when compressing the dataset 𝐷 and the time cost when

decompressing the corresponding compressed data, respectively.

In addition to the maximum compression error (i.e., error bound

as shown in Formula (1)), we evaluate the reconstructed data quality

by popular data distortion metrics such as peak signal to noise ratio

(PSNR) [30] and structural similarity index measure (SSIM) [34],

which have been commonly used by the lossy compression and

visualization community. In general, the higher the PSNR or the

higher the SSIM, the better the reconstructed data quality.

4 ULTRAFAST ERROR-BOUNDED LOSSY
COMPRESSION FRAMEWORK – SZX

In this section we present the design overview of our ultrafast error-

bounded lossy compression framework SZx. Detailed performance

optimization strategies for CPUs and GPUs will be discussed in the

next section.

Our design is based on the fact that most of the scientific datasets

are fairly smooth in space, such that all the values in a small block

(e.g., 16 or 32 consecutive data points) are likely to be close to one

another. Thus the mean of the minimal value and maximal value

in the block can be used to represent the whole block based on a

certain error bound. Figure 1 shows a visualization of four typical

fields from four different real-world simulation datasets—Miranda

large-eddy simulation [3], Nyx cosmology simulation [4], QMC-

Pack quantum chemistry [18], and a hurricane climate simulation

[1])—clearly demonstrating the high smoothness of the data in local
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Figure 2: Cumulative Distribution Function (CDF) of Block’s Value
Range
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Figure 3: Design architecture/workflow of SZx

spatial regions. Furthermore, Figure 2 shows the cumulative distri-

bution function of the block’s relative value range.
1
It verifies that

the four scientific datasets all exhibit fairly high smoothness of the

local data without loss of generality. Specifically, for the Miranda

dataset and QMCPack dataset, 80+% of the blocks have very small

relative value ranges (≤0.01), when the block size is 8.

We design our compressor SZx in terms of the local smoothing

feature, as illustrated in Figure 3. The fundamental idea is organiz-

ing the whole dataset as many small 1D blocks (or segments) and

checking whether the mean of the min and max (denoted by 𝜇) in

each block can be used to represent all values in this block with

deviations respecting the user-specified error bound. If yes, we call

this block a “constant” block, and we just need to store 𝜇 for this

block of data; otherwise, we compress all the data points in this

block by analyzing their IEEE 754 representations in terms of the

user-required error bound.

We present the pseudocode of the skeleton design in Algorithm

1 to further describe details. Table 1 summarizes the key notation

to assist in understanding the algorithm.

1
A block’s relative value range is defined as the ratio of the block’s value range to the

dataset’s global value range. The reason we check the block’s relative value range is

that the error-bounded lossy compression is often performed via a value-range based

relative error bound [30], where the absolute error bound is calculated based on the

dataset’s global value range.

Table 1: Key Notations Involved in The SZx Algorithm

Notation Description
𝐷 dataset given for compression

𝑒 user-specified error bound

𝑑𝑖 data points in the original raw dataset 𝐷

𝐵𝑘 𝑘th block in the dataset

𝜇𝑘 mean of min and max in Block 𝑘

𝑟𝑘 variation radius of Block 𝑘

𝑅𝑘 required bits calculated via 𝑒 and 𝜇𝑘 for 𝐵𝑘
𝑣𝑖 normalized values based on 𝜇𝑘 in each block 𝐵𝑘
𝐿𝑖 identical leading bits of 𝑣𝑖 compared with 𝑣𝑖−1

We describe Algorithm 1 as follows. As mentioned previously,

the whole dataset is split into many small fixed-size 1D blocks, and

the compression will be executed block by block (line 2). Because of

the high smoothness of data in locality, quite a few data blocks may

have values that already respect the error bound based on the mean

of the min and max (denoted by 𝜇) (lines 4∼6); these “constant”

blocks will be compressed by simply storing the corresponding

𝜇 value. The types of blocks need to be kept in a separate array

called type_array, which will be used to decide block type during

the decompression stage.

Algorithm 1 Skeleton Design of SZx

Input: dataset 𝐷 , user-specified error bound 𝑒 , block size (denoted 𝑏)

Output: compressed data stream in form of bytes

1: 𝑖 ← 0, 𝑘 ← 0;/*Set 0 to all counters*/

2: for each block 𝐵𝑘 with block size 𝑏 do
3: Compute 𝜇𝑘 for 𝐵𝑘 ; /*Compute mean of min and max*/

4: if (∀𝑑𝑖 ∈𝐵𝑘 : |𝑑𝑖 − 𝜇𝑘 | ≤ 𝑒) then
5: type_array←0;/*0 indicates ‘constant block’*/

6: 𝜇_array← 𝜇𝑘 ; /*Collect 𝜇 for ‘constant’ blocks*/

7: else
8: type_array←1;/*1 indicates ‘nonconstant block’*/

9: Compute required number of bits (denoted as 𝑅𝑘 );

10: for each normalized value 𝑣𝑖 in 𝐵𝑘 do
11: Compute identical_leading_bytes for 𝑣𝑖 and 𝑣𝑖−1 ;
12: Encode identical_leading_bytes into xor_leadingzero_array;
13: mb_array← 𝑅𝑘 − 𝐿𝑖 ; /*Commit required bits excluding 𝐿*/

14: end for
15: end if
16: Aggregate output: 𝜇_array, xor_leadingzero_array, mb_array;
17: end for

For each of the nonconstant blocks, we first normalize the data

by subtracting the mean of min and max in the block (i.e., 𝜇) and

then compress each such normalized value by IEEE 754 binary

representation analysis according to the following three steps.

• Line 9: We compute the required number of significant bits

(denoted as 𝑅𝑘 ) based on user-specified error bound, by the

following formula:

𝑅𝑘=


0, 𝑝 (𝑟𝑘 ) − 𝑝 (𝑒) ≤ 0

𝑓 𝑢𝑙𝑙𝑏𝑖𝑡𝑠 (𝑡𝑦𝑝𝑒), 𝑝 (𝑟𝑘 ) − 𝑝 (𝑒) > 𝑓 𝑢𝑙𝑙𝑏𝑖𝑡𝑠 (𝑡𝑦𝑝𝑒)
𝑝 (𝑟𝑘 ) − 𝑝 (𝑒), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(4)

where 𝑝 (𝑥) denotes getting the exponent of the number 𝑥

, 𝑟𝑘 denotes the variation radius of data in the block 𝑘 , and

fullbits(type) refers to the data type’s size (e.g., 32 bits for

single-precision floating-point type). The idea is to normalize

the data values by subtracting the mean of the min and max
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such that the maximum exponent of each normalized value

is foreseeable and thus the required bits are estimable by

combining the exponent of the error bound 𝑒 .

• Line 11: We compute identical leading bytes by an XOR

operation between the normalized data value 𝑣𝑖 and its pre-

ceding data value 𝑣𝑖−1. The number of leading zeros after

the XOR operation indicates the number of identical leading

bytes between the two data points.

• Line 12: We encode the number of identical leading bytes for

each data point by a 2-bit code: 00, 01, 10, and 11 correspond

to 0, 1, 2, and 3 identical leading bytes, respectively. We use a

2-bit-per-value array (called xor_leadingzero_array) to carry

these 2-bit codes, as illustrated in Figure 4.

• Line 13: We commit the necessary significant bits, that is,

the required bits (denoted as 𝑅𝑘 ) excluding identical leading

bytes (denoted by 𝐿𝑖 ), to a particular mid-bits array (denoted

as mb_array), as shown in Figure 4.

5 ALGORITHMIC OPTIMIZATIONS
In this section we describe our specific optimization strategies at

the algorithm level. These optimizations aim to improve both the

performance and the compression ratio.

5.1 Performance Optimization by Bitwise Right
Shifting

Here we describe how to accelerate SZx by an efficient bitwise right-

shifting operation, which mainly involves lines 9∼14 in Algorithm

1. This is a fundamental optimization strategy that can also be

applied in other devices/accelerators such as GPUs. In what follows,

we first describe a potential performance issue in the SZx design,

followed by our optimization solution.

As illustrated in Figure 5, the mantissa bits that need to be stored

for the normalized value 𝑣𝑖 should exclude the identical bytes 𝐿𝑖 and

the insignificant bits that are calculated based on the user-specified

error bound and variation radius of the corresponding block. The

number of such necessary mantissa bits is generally not a multiple

of 8 (to be verified later), so that committing/storing these bits in

the compressed data requires specific bitwise operation strategies.

Storing a short bit-array with an arbitrary number of bits is a

common operation in lossy compression. The most straightforward

solution (Solution A as shown in Figure 5) is treating the given bit-

array as a particular integer and populating the target bit-stream

pool (i.e., mb-array in the figure) by applying a couple of bitwise
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Figure 5: Three ways to store necessary mantissa bits (Solution C is
our performance optimization strategy)

operations (such as bit shift, bit and, and bit or) on the integer

number. Many lossy compressors, such as Pastri [14], store the

arbitrary bits in this way. An alternative solution (Solution B as

shown in Figure 5) is splitting the necessary bits into two parts—a

number of necessary bytes (𝛼 bytes) plus a few residual bits (𝛽

bits); this approach was adopted by SZ [12, 13]. In this solution the

residual bits with varied number of bits still need to be gathered in

a target array by a set of bitwise operations.

By comparison, we develop an ultrafast method (Solution C

as shown in Figure 5) to deal with the necessary bits efficiently.

The basic idea is bitwise right shifting the normalized value by 𝑠

bits, where 𝑠 is given in Formula (5), such that the number of the

necessary bits to be stored is always a multiple of 8. The necessary

mantissa bits then can be represented by an integer number of

bytes, with eliminated residual bits. In this situation we just need

to use a memory copy operation to commit the necessary bits to

one byte array, which would be fairly fast:

𝑠 =

{
0, 𝑅𝑘%8 = 0

8 − 𝑅𝑘%8, 𝑅𝑘%8 ≠ 0

(5)

5.2 Investigation of Space Overhead for Bitwise
Right Shifting

The bitwise right-shifting operation may increase the total number

of required bits to store, thus reducing the compression ratios in

turn. In the following text, we will show that the increased number

of bits per value because of the bitwise right-shifting operation

is very limited compared with the compressed data size, thanks

to the design of identical leading bytes. Such a space overhead is

negligible in most cases. In fact, although the bitwise right-shifting

operation may increase the required number of bits, this operation

may also potentially increase the number of identical leading bytes,

such that some necessary bits could be “recorded” by the identical

leading array instead. In other words, after the bitwise right-shifting

operation, the necessary bits tend to increase on the right end but

tend to decrease on its left end, thus forming a counteraction to a

certain extent.

We use Figure 6 (based on two real-world simulation datasets

with different value-range-based error bounds [30]) to show the

specific space overhead of our solution designed with the bitwise

right-shifting operation, as compared with the compressed data

size. The space overhead is defined as the ratio of the increased

storage space introduced by the bitwise right-shifting method to



-2%

0%

2%

4%

6%

8%

10%

12%

14%

  8  16  32  64  128

S
p

a
c
e

 O
v
e

rh
e

a
d

Block Size

(a) Hurricane-ISABEL (𝑒=1E-3)

-2%

-1%

0%

1%

2%

3%

4%

5%

6%

7%

  8  16  32  64  128

S
p

a
c
e

 O
v
e

rh
e

a
d

Block Size

(b) Miranda (𝑒=1E-3)

-4%

-2%

0%

2%

4%

6%

8%

10%

  8  16  32  64  128

S
p

a
c
e

 O
v
e

rh
e

a
d

Block Size

max overhead

Second max overhead

mean

Second 

minimal 

overhead
Minimal overhead

(c) Hurricane-ISABEL (𝑒=1E-4)

0%

1%

2%

3%

4%

5%

6%

7%

8%

  8  16  32  64  128

S
p

a
c
e

 O
v
e

rh
e

a
d

Block Size

(d) Miranda (𝑒=1E-4)

-4%

-2%

0%

2%

4%

6%

8%

  8  16  32  64  128

S
p

a
c
e

 O
v
e

rh
e

a
d

Block Size

(e) Hurricane-ISABEL (𝑒=1E-5)

0%

1%

2%

3%

4%

5%

6%

  8  16  32  64  128

S
p

a
c
e

 O
v
e

rh
e

a
d

Block Size

(f) Miranda (𝑒=1E-5)

Figure 6: Space overhead of bitwise right shifting used in SZx. The
figure shows the min, 2nd-min, avg, 2nd-max, and max overhead for
two application datasets each with multiple fields.

the compressed data size, as presented in Formula (6):

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =

∑
𝑣𝑖 ∈𝐷
(𝑅𝑘 + 𝑠 − 𝐿′𝑖 ) −

∑
𝑣𝑖 ∈𝐷
(𝑅𝑘 − 𝐿𝑖 )

𝐷𝑠𝑖𝑧𝑒/𝐶𝑅
, (6)

where CR is the compression ratio, 𝐷𝑠𝑖𝑧𝑒 refers to the original data

size (thus𝐷𝑠𝑖𝑧𝑒 /CR means compressed data size),

∑
𝑣𝑖 ∈𝐷
(𝑅𝑘 + 𝑠 − 𝐿′𝑖 )

refers to the total amount of necessary bytes to store under the

Solution C (our solution), and

∑
𝑣𝑖 ∈𝐷
(𝑅𝑘 − 𝐿𝑖 ) refers to the total

amount of necessary bytes to store by Solution A or B.

In Figure 6, which involves a total of about 100 different fields

across these two applications, one can clearly observe that the space

overhead is always lower than 12% for all the fields and that the

average overhead for each case (with a specific block size) is always

around or lower than 5% compared with the compressed data size.

We give an example to further explain how small the overhead

is. Specifically, for the field “density” in the Miranda simulation

dataset, the original data size is 256×384×384×bytes = 144 MB, and

the compression ratio of SZx is 9.923, so the compressed data size

is about 15.2 MB. Our characterization shows that Solution B and

Solution C lead to 81,340,334 necessary bits (i.e., 10,167,542 bytes)

and 83,054,120 necessary bits (i.e., 10,381,765 bytes), respectively,

which means the overhead is only
10,381,765−10,167,542

15.2𝑀𝐵
=1.4% for this

field.
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Figure 7: Constant block’s pros and cons when block size is small

5.3 Optimization of Compression Quality by
Exploring Best Block Size

Different block sizes may affect the compressed data sizes (i.e., com-

pression ratios) significantly. Thus we must investigate the most

appropriate setting of the block size for SZx. As described previ-

ously, the design comprises two types of blocks, called “constant”

blocks (lines 4∼5 in Algorithm 1) and “nonconstant” blocks (lines

6∼12 in Algorithm 1), respectively. Before exploring the optimal

block size, we need to understand how the two types of blocks

contribute to the compressed data size (or compression ratios). To

this end, we analyze three impact factors.
• Analysis of constant blocks Constant blocks refer to blocks

each of which can be approximated by using one data value

𝜇𝑘 (i.e., mean of min and max): the smaller the block size,

the more data points to be included in the constant blocks,

because of the finer-grained blockwise processing, as illus-

trated in Figure 7 (a). As shown in the figure, the first set

of 8 data points can form a constant block because of the

relatively small block size. In this sense, the compression

ratio tends to increase with decreasing block size because all

the values within the constant block can be approximated by

one value (i.e., 𝜇𝑘 ), which is called impact factor A in the

following text. However, since each constant block needs to

store a constant value 𝜇𝑘 in the compressed data, the smaller

the block size, the larger number of 𝜇𝑘 need to be stored,

which may also decrease the compression ratio in turn, as

illustrated in Figure 7 (b). We call this phenomenon impact
factor B . Specifically, for the relatively smooth regions in

the dataset, the algorithm still needs to store multiple 𝜇𝑘s

even though a large number of adjacent data points could be

approximated by only one uniform value instead. This may

introduce significant overhead because of extra unnecessary

𝜇𝑘 to store, thus leading to lower compression ratios.

• Analysis of nonconstant blocks On the one hand, the impact

factor B also applies on nonconstant blocks since they also

need to store 𝜇 for data denormalization during the decom-

pression. On the other hand, a smaller block size may tend

to get a higher compression ratio because of the following

reason: the smaller the block size, the smaller the variation
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Figure 8: Compression quality of Miranda data with various block
sizes

in the block (i.e., smaller 𝜇𝑘 ), and thus the fewer necessary

bits to store. We call this impact factor C . Specifically,

as shown in Figure 7 (a), the first 8-point block has much

smaller data variation than does the other one, so that the

corresponding required exponent would be smaller, leading

to fewer required mantissa bits (according to Formula (4)).

Based on this analysis, different block sizes may have distinct

pros and cons with regard to compression quality of the two types of

blocks. It is not obviouswhat block size can get the best compression

quality. In what follows, we explore the best block size setting by

characterizing the compression ratios and PSNRwith different block

sizes, as presented in Figure 8. PSNR is a critical lossy compression

data quality assessmentmetric and has beenwidely used in the lossy

compression and visualization community [12, 22, 29, 30, 38, 43].

PSNR is defined in Formula (7):

𝑝𝑠𝑛𝑟 = 20 log
10

(𝑑max − 𝑑min)√
𝑀𝑆𝐸

, (7)

where𝑑𝑚𝑖𝑛 and𝑑𝑚𝑎𝑥 are themin value andmax value in the dataset

𝐷 and MSE refers to the mean squared error between the original

dataset 𝐷 and reconstructed dataset 𝐷 ′. The higher the PSNR, the
higher the precision of the reconstructed data.

In the exploration we checked many different error bounds from

1E-3 through 1E-6. Because of space limits, we present in Figure 8

only the results about the value-range-based error bound of 1E-3

and 1E-4, which compress seven fields of the Miranda simulation

dataset by SZx. Other error bounds and datasets exhibit similar

results.

From Figure 8 we can observe that the compression ratio in-

creases with block size in most cases, while the PSNR always stays

at a similar level across different block size settings. We empirically

find that the best block size is 128. Figures 8 (a) and (b) show that

the CR will converge after the block size becomes larger than 128,

while block size 128 and 224 exhibit more or less the same PSNR
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in Figures 8 (c) and (d). With the same accuracy, smaller block size

can lead to better GPU performance. This characterization also

indicates that impact factor B dominates the overall compres-

sion ratios, because this is the only factor that may enhance the

compression ratio with increasing block size.

6 IMPLEMENTATIONS ON CPUS AND GPUS
In this section we elaborate on the parallel design details of the SZx

compressor and decompressor on both CPUs and GPUs. For the

GPU implementation we describe the data dependencies and our

efficient designs that can overcome them.

6.1 CPU-Based Design and Parallelization
Compressor: Figure 9 shows the workflow of SZx’s parallel com-

pression. In this figure the flows consist of white boxes and black

arrows, describing the baseline sequential implementation. The

yellow box indicates CPU parallelization (discussed later in this

subsection), while the green boxes indicate the designs for GPU

parallelization (detailed in next subsection). The original data is

divided into equal-sized data blocks as the input for the compressor.

With the baseline implementation, the data blocks are processed

iteratively (Loop 1). For each block, the compressor first computes

the 𝜇 (i.e., mean of min and max) and radius. if the radius is smaller

than the error bound, then the constant block path is taken, and

𝜇 will be recorded. Otherwise, the data block will go through the

non-constant block path. In this path, all data points of the block

are compressed in sequence (Loop 2). The compression of a data

point consists of four steps. (1) Right shift the current data point

as described in Section 5.1. (2) Compare the current and previous

data point in bytewise fashion. (3) Store the current data point as

the previous data point for the next iteration. (4) Count the leading

identical bytes as the leading number, and record the remainders

as mid-bytes.

Decompressor: Figure 10 depicts the SZx’s parallel decompres-

sion workflow. Similar to Figure 9, the white boxes indicate the

baseline implementation. The input data is decompressed block

by block (Loop 1). The constant blocks are retrieved by using the
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corresponding 𝜇 value, while the nonconstant blocks would be re-

constructed point by point (Loop 2). The reconstruction of each data
point in a nonconstant block has five steps. (1) Read the leading

number 𝑛 of the current data point. (2) Retrieve the leading bytes by

copying the first 𝑛 bytes of the previous data point. (3) Retrieve the

remaining bytes by reading the corresponding mid-bytes. (4) Com-

bine the retrieved bytes to form the current data point, and use it

to overwrite the previous data point for the next iteration. (5) Left

shift the current data point to get the decompressed value.

Parallelization: We use OpenMP to parallelize SZx on a multi-

core CPU. Our blockwise design simplifies the parallelization since

each data block is compressed and decompressed independently.

Accordingly, we break the Loop 1s in Figures 9 and 10 and assign

the processing of different data blocks to different CPU threads, as

indicated by the yellow boxes. The only issue is that, during the

decompression, the offsets of the data blocks in the compressed

bytes are unknown to the CPU threads, because the data blocks

have distinct compressed data lengths. This dependency makes

the CPU threads unable to read the compressed blocks from the

correct addresses. To solve this problem, we use a 16-bit integer

array (called zsize_array) to record the compressed data size for

each block. Specifically, each element (with unsigned char data type)
in the array is used to record the number of bytes after compression

per data block. This zsize_array needs to be stored together with

the compressed data because it is needed to determine the starting

location in the compressed data stream for different threads during

the decompression. To implement this design, the decompressor

uses a prefix-sum step to compute the starting location of each

block for all threads and then performs the decompression of all

the blocks in parallel.

6.2 Design and Optimization for GPUs
In this subsection we describe our design and implementation for

cuSZx—the CUDA GPU version of SZx. The green boxes in Fig-

ures 9 and 10 illustrate the modifications we made on the CPU

implementation workflow to accommodate GPU architecture.

6.2.1 Design Overview and General Optimization. Our cuSZx de-
sign assigns different data blocks to different CUDA thread-blocks

(i.e., unrolling Loop 1) and uses different CUDA threads to process

different data points in a data block (i.e., unrolling Loop 2). Thanks
to the independence between data blocks, this design completely

avoids expensive grid-level synchronization and communication. In

order to optimize the performance, the data block size is chosen as a

multiple of the GPU warp size, and the threads in each thread-block

are organized in two dimensions with the x-dimension length equal

to the warp size.

During the compression, each thread block performs parallel𝑚𝑖𝑛

and𝑚𝑎𝑥 with the help of CUDA warp-level operations to compute

the 𝜇 and radius of the assigned data block. If the assigned data block

is identified as a constant block, the thread block will record the 𝜇

and immediately go forward to process the next data block. Since

the number of data blocks is considerably larger than the number

of thread blocks, this scheduling fashion can significantly mitigate

the workload imbalance. The nonconstant block will be further

processed in the thread block with the approach that one CUDA

thread compresses one data point following the four steps depicted

in Figure 9. This design, however, exposes some data dependencies

and hence requires algorithmic adjustments to make the thread-

level parallelization smooth. They will be discussed in Section 6.2.2.

In the decompression, since the states of data blocks are known

and the constant block retrievals just need to get 𝜇, we decompress

only the nonconstant blocks in the GPU. Similar to the compres-

sion parallelization, each thread block processes one data block

at a time, and each of its CUDA threads decompresses one data

point following Steps 1–5 in Figure 10. The thread-level parallel

decompression also exposes dependencies, and we will discuss the

solutions in Section 6.2.2 as well.

We design several general optimizations to benefit the overall

performance of both the compression and decompression. (1) In-

stead of letting each thread read one char data from a char array
(e.g., mid-byte array), we use one warp to read the array as char4
data type and then share the read data with other warps through

shared memory. With this design we can maximize the bandwidth

usage and reduce the global memory accesses. (2) We store the cur-

rent data block into shared memory after the first time it is read by

its thread block, to accelerate its reuse. This design also enables the

optimal bytewise manipulation of floating-point values on the GPU

since the GPU registers do not support the union data structure.

6.2.2 Challenges and Solutions. The thread-level parallelization of

point-by-point compression and decompression for nonconstant

blocks exposes two types of dependencies: address dependency and

data value dependency. The two raise separate challenges and need

different strategies in order to be overcome.

Challenge 1: In Figure 9 the number of mid-bytes of every data

point is unknown before Step 2. Therefore, an iterator is required

in the sequential implementation to indicate the offset in mb_array
serving as the starting address for writing the current data point’s

mid-bytes. In GPUs, however, since all data points in the data block

are processed simultaneously, the starting address for every data

point (except the first one) will remain undetermined at Step 4 until

the threads communicate their number of mid-bytes. The same

dependency exists at Step 3 in Figure 10, when the threads in the

decompressor want to read the mid-bytes.

Solution 1: We add a prefix-scan step before Step 4 in Figure 9

and Step 3 in Figure 10. The prefix-scan can be parallelized on GPUs



1
1
1

1
1
1

1
1
1

1
1

2
1
1

5

1

6
6 1

1

7
1
1

8

1st 2nd 3rd 4th 5th 6th 8th7th

1
1
1

2
1
1

1
1
1

1
1

2
1
1

5

1

6
6 6

1

7
1
1

8

1
1
1

2
1
1

2
1
1

1
1

2
1
1

5

1

6
6 6

1

7
6
1

8

B3
B2
B1

Stride
=1

Stride
=2

B32

B33

B34

B4

Figure 11: Schematic graph showing the index propagation for par-
allel leading-byte retrievals

by using two-level in-warp shuffles [24]. With this step, all threads

can sync and communicate to efficiently find their own starting

address.

Challenge 2: Step 2 in both Figures 9 and 10 depend on the value
of the previous data point. The two data dependencies have different

depths. In compression, the previous data point’s value is known

to the current thread since it can be directly read from the input

original data. Hence the depth is 1. In decompression, however, the

previous data point’s value remains unknown to the current thread

since it is simultaneously being retrieved by the neighbor thread.

A direct read of the previous data value by the current thread will

cause the read-after-write (RAW) hazard. Accordingly, the data

dependencies in the decompression yield dependence chains. A

chain starts at the mid-byte right before a leading byte and keeps

extending until reaching the next mid-byte.

We provide a leading byte retrieval example as shown in the first

row of Figure 11 to further explain the RAW hazard and dependence

chain. In this example, the data block contains eight floating-point

data points. The mid-bytes of each data point are highlighted in

blue. Since the fourth byte (B4) of every data point is mid-byte,

it will not affect the data dependency. We consider the retrievals

of the third byte of the second (B32), third (B33), and fourth (B34)

data points. In sequential implementation, B33 can be retrieved by

reading the mid-byte B32, and B34 then can be retrieved by reading

B33. Consequently, we get the correct values B34=B33=B32.In the

parallel context, however, retrieving B34 by reading B33 will get

an undefined value since B33 is also a leading byte and will cause

the RAW hazard. B32, B33, and B34 form a dependence chain, since

B34 also needs to get the correct value from B32. The same issue

will occur when simultaneously retrieving B27 and B28.

Solution 2: Simply letting each CUDA thread read both the

current data point and the adjacent preceding data point from

the input original data can break the data dependency during the

compression, since the dependency depth is only 1.

The essential factor in breaking the data dependency in the

decompression is to identify the dependence chains. Then each

leading byte knows where to read for retrieving the value. For

example, B34 and B33 know they should retrieve their value from

B32 after the B32-B33-B34 chain is identified. To efficiently identify

the chains in parallel fashion, we propose an index-propagation
approach. It assigns each byte an initial index as shown in Figure

11 (note that they are not byte values). All leading bytes will get

an initial index 1, while the mid-bytes will get their actual index

(e.g., 2 for B32). We ignore the B4s since they are all mid-bytes.

Then a parallel propagation is performed in recursive doubling

style to propagate the indices. In the running example, during

the first round, each thread propagates its bytes’ indices to its

adjacent thread (stride=1) using warp-level shuffles. For each byte

in a thread, its own index will be overwritten if the corresponding

received index is greater. For instance, B33’s initial index is 1, and

it will be overwritten by B32’s index, which is 2 after the first

round propagation. In the second round, the indices are propagated

with stride=2 and follow the same overwriting rule. After the third

round with stride=4, the index propagation of the running example

finishes. Notice that we do not display the last round in Figure 11

because it does not change the final indices.

In the final indices result, the bytes of consecutive data points

that have the same indices indicate a dependence chain. For exam-

ple, in the last row of Figure 11, B32, B33, and B34 are the bytes

of three consecutive data points, and they all have an index 2, so

they form a dependence chain. We can observe that our index-
propagation successfully identifies all dependence chains in the

running example. Then each leading byte can retrieve its value

according to its final value (e.g., 2 in B34 indicates its value should

be read from B32).

The index-propagation approach is inexpensive. It requires only

the lightweight shuffle operations. Furthermore, with the recursive

doubling, the parallel propagation complexity is reduced from O(𝑛)

to O(log𝑛) (e.g., three propagations can propagate eight data points

in the running example).

7 PERFORMANCE EVALUATION
In this section we analyze the evaluation results, which are per-

formed by using six real-world scientific datasets on heterogeneous

devices on two different supercomputers.

7.1 Experimental Setup
Table 2 describes all the application datasets used in our experi-

ments. The datasets are downloaded from the well-known Scientific

Data Reduction Benchmark website [5].

We perform our GPU experiments on both an A100 GPU (offered

by ANL ThetaGPU [20]) and V100 GPU (offered by ORNL Summit

[28]). NVIDIA’s Ampere microarchitecture is the successor of the

Volta microarchitecture. V100 has 80 streaming multiprocessors

(SMs) with 64 CUDA cores per SM (total of 5,120 cores device-

wide), while A100 has 108 SMs and 6912 CUDA cores in total. We

compare our developed ultrafast compressor SZx with two lossy

compressors—SZ [12, 29] and ZFP [22]; these are arguably the

fastest existing error-bounded compressors based on prior studies

[12, 43], and they both have GPU versions that can be compared

with our solution SZx in the experiments.

7.2 Evaluation Results
First, we check the data reconstruction quality under our SZx for all

the simulation datasets involved in our experiments. We conclude

that the overall visual quality looks great when the value-range-

based error bound (denoted by 𝑅𝐸𝐿) is set to 1E-2∼1E-4 for SZx.
Because of space limits, we demonstrate the visual quality, PSNR,



Table 2: Applications (all datasets here are originally stored in single-precision floating point)

Application # of fields Size per field Description
CESM-ATM (CE.) [17] 77 1800×3600 Atmosphere simulation of Community Earth System Model

Hurricane (Hu.) [1] 13 100×500×500 simulation of Hurricane ISABEL

Miranda (Mi.) [3] 7 256×384×384 large-eddy simulation of multi-component flows with turbulent mixing

Nyx (Ny.) [4] 6 512×512×512 adaptive mesh, massively parallel cosmological simulation

QMCPack (QM.) [18] 2 288/816×115×69×69 simulation for electronic structure of atoms, molecules and solids

SCALE-LetKF (SL.) [2] 12 98×1200×1200 SCALE-RM weather simulation based on LETKF filter

(a) original data (b) 𝑒=1E-3,PSNR=74.4,SSIM=0.93

(c) 𝑒=4E-3,PSNR=62,SSIM=0.89 (d) 𝑒=1E-2,PSNR=54.6,SSIM=0.865

Figure 12: Visual quality of SZx on Hurricane-ISABEL simulation
(the compression ratios are 14.6, 18, 20.64, respectively)

and SSIM using only the Hurricane-ISABEL simulation dataset

(CLOUDf48), as shown in Figure 12 (compression ratios are 14.6,

18, and 20.64, respectively). We can observe that the reconstructed

data’s visual quality is high, even zooming in the top-left corner by

50×, although a few artifacts can be seen in the dark blue area of

Figure 12 (d). How to further mitigate or remove artifacts will be

our future work.

Figure 13 presents the distribution of compression errors for

different application datasets with the absolute error bounds of

1E-4 and 1E-6. Because of space limits, we present only a couple of

fields for each application. All other fields of the same application

exhibit similar results, based on our observation. We validate that

SZx can always respect user-specified error bounds for all the data

fields across different applications in our experiments, even with a

very small error bound (e.g., 1E-6), as shown in Figure 13 (b).

We present compression ratios of our SZx as well as those of

SZ and ZFP in Table 3, by showing the minimum, overall (i.e.,

harmonic mean), and maximum CR, respectively, for all the fields

in each application. The table shows that SZx can get very high

compression ratios (e.g., 124 for CESM) when REL=1E-2. Its overall

compression ratio is 3∼12 in all cases, which is 0.5∼3× lower than

that of ZFP and 3∼30× lower than that of SZ. These results are

reasonable because SZ and ZFP adopt advanced multidimensional

data analysis and sophisticated encoding methods, which can get
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Figure 13: Distribution of compression errors under SZx

fairly high compression ratios; however, the compressors may suffer

lower execution performance on both CPUs and GPUs in turn (to

be shown later). As a comparison, the overall compression ratio of

the lossless compressor Zstd is only 1.12∼1.49, which is lower than

that of SZx by about 200∼400%. Therefore, SZx could be the favorite
of end users who desire higher CR than the lossless compression

provides but are sensitive to the compression time.

To demonstrate the algorithmic efficiency of SZx, we first present

the single-core CPU-based compression and decompression through-

puts of the three compressors in Table 4 and Table 5, respectively.

The numbers shown in the tables are the overall performance con-

sidering all the fields for each application. Through the tables, we

can observe that our SZx significantly outperforms the other two

error-bounded lossy compressors in terms of both compression

and decompression speeds. Specifically, for compression, SZx is

∼2.5∼5× faster than ZFP and ∼5∼7× faster than SZ, while for de-

compression, SZx is about 2∼4× as fast as both ZFP and SZ. As we

elaborated in the algorithm design and optimization sections, SZx

achieves such a high performance thanks to the lightweight skele-

ton design described in Algorithm 1 and the bitwise right-shifting

strategy proposed in Section 5.1.

We next compare the performance of the OpenMP-based mul-

ticore CPU implementation for SZx, ZFP, and SZ. Tables 6 and 7

display the compression and decompression throughput, respec-

tively. We set the number of threads to 64 since we empirically

find it is the optimal setting for all three compressors. Some data

are not available because (1) the OpenMP version of SZ (omp-SZ)

does not support 2D data (i.e., CESM) and (2) the OpenMP version

of ZFP (omp-ZFP) has no decompressor implementation. We ob-

serve from the tables that, although the speedup varies according

to dataset, our OpenMP version of SZx (omp-SZx) always shows

the best performance. Specifically, our omp-SZx compressor can

achieve 3.4∼6.8× and 2.4∼4.8× speedup compared with that of the

omp-ZFP and omp-SZ counterparts, and our omp-SZx decompres-

sor achieves 2.3∼4.6× speedup compared with that of the omp-SZ

decompressor.



Table 3: Compression Ratios (Original Data Size / Compressed Data Size)

CESM Hurricane Miranda Nyx QMCPack Scale-LetKF
REL min avg max min avg max min avg max min avg max min avg max min avg max

1E-2 4 9.1 124 4 6.6 21.1 8.2 11.8 16.2 4.8 11.34 124 9.2 9.4 9.7 7.6 10.6 25.2

SZx 1E-3 2.84 4.61 19.3 2.9 4 17.6 4.5 7.2 12.5 3.2 5.9 119 4.3 4.4 4.4 3.65 4.7 7.8

1E-4 2.14 3.3 17 2.1 3 16.2 2.7 4.5 9.5 2.4 3.7 75 2.9 2.9 2.9 2.7 3.14 5.6

1E-2 8 13.6 46 6.4 11.3 25.8 30.5 46.6 74.6 22.5 38.8 1.1k 39.1 39.2 39.4 9.4 14.5 23.8

ZFP 1E-3 4.3 7.9 30 4.3 6.7 13.2 20.6 25.6 38.5 8.2 13.1 150 21 21.1 21.2 6.4 7.8 13.4

1E-4 3 5.1 18.8 2.9 4.32 10.4 11 14.5 22.9 4.1 6.2 74 10.3 10.3 10.4 3.9 4.6 7.7

1E-2 34.4 151 3k 20.4 49.8 339 92.8 126 234 263 507 21k 201 213 227 26.3 84 746

SZ 1E-3 15.6 151 840 9.24 17.5 58.8 49.6 59.5 75.2 36.7 79 3.6k 52 54.3 56.8 18.9 26.5 140

1E-4 6.4 38.3 104 5.6 9.8 31 25.1 29.6 35 10.3 18.2 621 18.9 19.2 19.6 10 13.9 23.1

zstd - 1.03 1.44 17.1 1.08 1.49 19.56 1.6 1.21 4.86 1.08 1.12 1.14 1.18 1.19 1.2 1.08 1.37 2.95

Table 4: Compression Throughput on Single-Core CPU (MB/s)

REL CE. Hu. Mi. Ny. QM. SL.
1E-2 1034 796 959 1087 969 1032

SZx 1E-3 822 750 833 877 902 703

1E-4 752 662 807 722 813 663

1E-2 392 256 249 418 323 258

ZFP 1E-3 288 213 211 284 275 208

1E-4 234 181 280 226 208 174

1E-2 236 193 186 258 205 217

SZ 1E-3 170 153 161 229 216 156

1E-4 143 130 139 164 147 124

Table 5: Decompression Throughput on Single-Core CPU (MB/s)

REL CE. Hu. Mi. Ny. QM. SL.
1E-2 1221 1085 1950 1450 1292 1408

SZx 1E-3 1022 1006 1546 1218 1083 975

1E-4 925 864 1319 956 928 886

1E-2 485 476 498 732 685 360

ZFP 1E-3 327 371 401 455 524 395

1E-4 246 297 327 333 376 299

1E-2 559 451 549 635 588 519

SZ 1E-3 381 291 444 534 462 334

1E-4 269 229 392 359 282 236

Table 6: Compression Throughput on a Multicore CPU (GB/s)

REL CE. Hu. Mi. Ny. QM. SL.
1E-2 4.38 6.89 9.13 7.25 9.69 8.57

SZx 1E-3 3.77 6.32 8.53 6.55 8.11 7.51

1E-4 3.74 6.06 8.54 6.68 7.77 7.34

1E-2 0.74 1.52 2.70 1.49 2.23 1.83

ZFP 1E-3 0.61 1.31 2.42 1.36 1.87 1.58

1E-4 0.55 1.09 1.87 1.23 1.46 1.32

1E-2 n/a 1.80 1.99 2.12 3.60 2.90

SZ 1E-3 n/a 1.49 1.82 2.12 3.49 2.85

1E-4 n/a 1.67 1.78 1.95 3.23 2.54

Subsequently, we evaluated the GPU performances of cuSZx,

cuZFP, and cuSZ on two cutting-edge supercomputers—ANLThetaGPU

(A100) and ORNL Summit (V100), respectively. We note that both

cuZFP and cuSZ have also been deeply optimized with respect to

the GPU architecture by their developers [10, 31, 32]. The com-

pression and decompression performance results regarding all the

Table 7: Decompression Throughput on a Multicore CPU (GB/s)
(ZFP’s results are all n/a because it does not support multithread
decompression)

REL CE. Hu. Mi. Ny. QM. SL.
1E-2 1.93 3.89 5.32 11.34 16.01 11.36

SZx 1E-3 1.51 3.98 5.91 11.84 15.08 10.78

1E-4 1.31 3.91 5.41 11.52 14.53 11.39

1E-2 n/a n/a n/a n/a n/a n/a

ZFP 1E-3 n/a n/a n/a n/a n/a n/a

1E-4 n/a n/a n/a n/a n/a n/a

1E-2 n/a 1.73 2.11 2.84 4.90 3.01

SZ 1E-3 n/a 1.67 2.09 2.87 4.32 2.92

1E-4 n/a 1.48 1.98 3.08 3.92 2.48

fields of each application are presented in Figure 14 and Figure 15,

respectively.

According to Figure 14, the peak compression performance of

SZx can reach up to 264 GB/s (see Hurricane ISABEL’s result in Fig-

ure 14 (a)). The overall compression performance of SZx is 150∼216
GB/s on ThetaGPU and 140∼188 GB/s on Summit. As a compari-

son, both cuSZ and cuZFP suffer from very low GPU performance

(9.8∼86GB/s on ThetaGPU and 12∼52GB/s on Summit). Moreover,

based on Figure 15, we can observe that the peak decompression

performance of SZx can reach up to 446 GB/s (see Miranda’s result

in Figure 15 (a)). The overall decompression performance of SZx

is 150∼291 GB/s on ThetaGPU and 120∼243 GB/s on Summit. As a

comparison, both cuSZ and cuZFP suffer from much lower decom-

pression performance (9.7∼67GB/s on ThetaGPU and 13.7∼48 GB/s
on Summit).

We can observe that our cuSZx achieves higher speedups than

does the single-core CPU SZx (16× vs. 7×), compared with their

respective counterparts. The reason is that some complex steps in

SZ and ZFP, for example, Huffman decoding [26], are extremely

irregular and unfriendly to the GPU execution model. On the other

hand, the simplified design of our SZx significantly reduces the

parallelization complexity and is friendlier to GPUs. Consequently,

with the optimizations described in Section 6.2, our cuSZx signifi-

cantly outperforms the highly optimized cuSZ and cuZFP. We also

emphasize that our cuSZx preserves the same compression ratio as

SZx does, since it makes no change to Algorithm 1.

We now evaluate the overall data dumping/loading performance

on ANL ThetaGPU nodes with different execution scales. Specif-

ically, for the data dumping experiment, we use an MPI code to
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Figure 14: Overall compression throughput per GPU (GB/s)
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Figure 15: Overall decompression throughput per GPU (GB/s)

launch 64∼1024 ranks/cores, each performing lossy compression

using the Nyx dataset and writing compressed data onto the parallel

file system. For the data-loading experiment, each MPI rank reads

the compressed data from PFS and then performs decompression.

We present the performance breakdown in Figure 16 in terms of

different value-range-based error bounds.

In the figure, we can clearly observe that SZx obtains the highest

overall performance in both data dumping and data loading on

ThetaGPU. In particular, the solution with SZx takes only
1

3
∼ 1

2

time to dump or load data compared with other solutions in most

cases. That is, the I/O performance is improved by 100%∼200% under

SZx. The key reason is that ThetaGPU has a relatively high I/O

bandwidth, so that the overhead at the compression/decompression

stage turns out to be the key bottleneck at the execution scales of

our experiments.

8 CONCLUSION AND FUTUREWORK
In this paper we propose an ultrafast error-bounded lossy com-

pression framework SZx. It is designed for scenarios where the

long compression time of current lossy compressors is not accept-

able and a higher compression ratio than provided by the lossless

compressors is still demanded. We rigorously confine the design

of SZx to use only super-lightweight calculations such as addition,

subtraction, and bitwise operations. We perform comprehensive

evaluations of both the CPU- and GPU-based implementations us-

ing six real-world datasets and two cutting-edge supercomputers.

The key insights are summarized as follows.

• With the same error bound, SZx has reasonably lower com-

pression ratios than ZFP and SZ do (0.3∼3× lower than ZFP

and 3∼30× lower than SZ) because it has no sophisticated

data prediction/transform step and no expensive encoding

algorithms such as Huffman encoding.
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(b) loading performance (1E-2)
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(c) dumping performance (1E-3)
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(d) loading performance (1E-3)
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Figure 16: Data dumping/loading performance on ThetaGPU (Nyx
dataset)

• On a single-core CPU with the same error bound, SZx is

2.5∼5× faster than ZFP and 5∼7× faster than SZ in compres-

sion; SZx is 2∼4× as fast as both SZ and ZFP in decompres-

sion.

• On a multicore CPU with the same error bound, SZx is

3.4∼6.8× and 2.4∼4.8× faster than ZFP and SZ in compres-

sion, while it can achieve 2.3∼4.6× speedup compared with

SZ in decompression.

• On a GPU with the same error bound, SZx’s peak perfor-

mance in compression and decompression on single GPU

can reach up to 264 GB/s and 446 GB/s, respectively. These

results are 2∼16× as fast as SZ and ZFP on GPUs.

• When compressing&writing compressed data to PFS or read-

ing&decompressing compressed data fromPFS onANLThetaGPU

with 64∼1024 cores, the overall data dumping/loading per-

formance under SZx is higher than that with SZ or ZFP by

100%∼200%, because of SZx’s fairly high performance.

In future work, we plan to explore how to further improve compres-

sion ratios of SZx. We also plan to quantitatively characterize the

trade-off between the compression ratio and the performance [16]

of our SZx.
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