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Background: Adaptive Mesh Refinement

> Adaptive Mesh Refinement

* Increase resolution in regions of most interest

* Reduce computational and storage overhead

* Resultin hierarchical AMR data with different resolutions

* One of the most widely used frameworks for HPC applications
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> Example of AMR

* The mesh will be refined when the value meets the refinement
criteria (i.e., greater than the threshold)

e The grid structure changes with the universe’s evolution

* The red boxes indicate different resolutions within one AMR level

https://www.cttc.upc.edu/?q=node/165

Vis of three key timesteps of an AMR-based cosmology simulation
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Different type of AMR
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http.'//CUCiS.ece.northwestern.edU/prOjeCtS/DAMSEL AMReX: BUIIdIng a Block-Structured AMR Application

> Tree-based AMR

* Tree-based AMR organizes the grids as leaves on the tree and has no redundant data across different level
* Tree-based AMR can be more complex and time consuming to perform visualization and analysis

> Patch-based AMR

e Patch-based AMR saves the data that will be refined at the fine level in the coarse level redundantly
* The redundant coarse data will not be used in post analysis and vis
* We focus on patch-based AMR and discard the redundant coarse data while doing the compression
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Motivation: Why Compression

> Even with AMR, the size of data generated by apps could still be prodigious

* One Nyx AMR dataset (% * 20483 mesh points in the coarse level; % * 40963 in the fine level) > 1.8 TB
* Running the simulation 5 times with 200 snapshots dumped per simulation > 1.8 PB

> Trend of Supercomputing Systems

 The compute capability is developed much faster than storage and bandwidth: a widening gap
(1) between compute unit and storage bandwidth (PF-SB), or
(2) between main memory size and storage bandwidth (MS—SB)

Cray Jaguar 2008 1 PFLOPS 1.75 PFLOPS 360 TB 240 GB/S 1.5k 7.3k
Cray Blue Waters 2012 10 PFLOPS 13.3 PFLOPS 1.5PB 1.1 TB/S 1.3k 13k
Cray CORI 2017 10 PFLOPS 30 PFLOPS 1.4 PB 1.7 TB/S* 0.8k 17k
IBM Summit 2018 100 PFLOPS 200 PFLOPS  >10PB** 2.5TB/S >4k 80k
PF: peak FLOPS * when using burst buffer ~ ** counting only DDR4 Source: F. Cappello (ANL)



WASHINGTON STATE - Los Alamos

UNIVERSITY NATIONAL LABORATORY
EST.1943

£

Background: Lossy Compression

Current data point

(L)
111

> Lossy compression on scientific data

e Offers much higher compression ratios than lossless
compression by trading a little bit of accuracy

* Traditional lossy compressors (e.g., JPEG) are designed for
images (integer) = bad performance on scientific data
(floating-point data)

* New generation of lossy compressors:
1. SZ (Prediction based), nice compression ratio
2. ZFP (Transform based), high throughput
3. TThresh (HOSVD based ), works nice in 3d but slow

Prediction (S2)

Compressed data of ZFP
16x (left); 64x (right)

Error-Controlled Lossy Compression Optimized for High Compression Ratios of Scientific Datasets L
Fixed-Rate Compressed Floating-Point Arrays

. . . . I = HOSVD (TThresh)
TTHRESH: Tensor Compression for Multidimensional Visual Data

COMET: A Novel Memory-Efficient Deep Learning Training Framework by Using Error-Bounded Lossy Compression
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Basic AMR Compression

> Challenges

* Compared to non-AMR data, the structure of AMR data is more comprehensive
* The data of each level are stored separately in 1D, could be reshaped & convert to uniform resolution & combined

for vis/post-analysis.

Ivl_0.bin (0A, OB, 0C, OD) + _
Iv_1.bin (1A, 1B, 1C) 0A | 0B 0A | 0B

0C | OD 0C | OD

= |
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Basic AMR Compression

> 1D Baseline Compression
* Compress the 1d directly = lose almost all the spatial information

> 2/3D Baseline Compression
* Compressin 2/3d with an up-sampled coarse level 2 redundant data

Ivl_0.bin (0A, 0B, 0C, 0D)

lvl_1.bin (1A, 1B, 1C) + —
OA ( OB

0A | OB

1d baseline

0C | 0D 0C | OD

2/3d baseline

No matter which method is used, we are faced with
the problem of either low locality or redundant data
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SOTA AMR Compression: zMesh
> An alternative solution of the 1d baseline
 Smooth (preprocess) the 1D data by reordering to help compression
* Puts the points neighbored in the 2D layout closer in the 1D array
0A 0B 0C 0D 1A 1B IC 1D G
| 0C 0D .
IE 1F 1G 1H 2A 2B 2C 2D £ IF | bowes{1][1]
original 1d data 1C 1D ~boxes[1][0]
1A f—=0A - 0B
| SR T hoxes[0][0]
0A 1A 2A 2B/2C 2D 1B 1C  la=
boxes[2][0] (a)

1F 1G 1H 2d AMR data layout

1D 0B 0C OD|1E

. e . reordered 1d data
> Limitation
* Cannot apply different error bound for different Ivls, different AMR lvls will have different “importance”

based on the need for post-analysis.
 Compress the data in 1D, can not fully utilize spatial information of high dimension data
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Overview of TAC
> Compress Each Level Separately in high dimension
* Each level contain empty regions that decrease the data smoothness
and increase the data size ¥ 0A | 0B
> Our Hybrid Pre-process Strategies 0C | 0D

Our approach

* Three pre-processing strategies that can adapt based on the density of each AMR level
1. Optimized Sparse Tensor Representation (OpST) for low-density level
2. Adaptive k-D Tree (AKDTree) for medium-density level
3. Ghost-Shell Padding (GSP) for high-density level

! ‘Densift I \‘;‘“Processed\ ! .\ /
—> ) Y :\-* AKDTreef-- AMR Data SZ

Level 2

Level 1

AMR data

Visualization of data distributions of an
example AMR dataset (finest level)
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OpST for Low-density Data

> Naive Sparse Tensor Representation (NaST)

* Partition = Linearize blocks 2 Remove empty blocks = Pass to SZ - Reconstruct

* Needs a small unit-block size to effectively remove the empty regions (e.g., 163 vs 5123) = high proportion of
boundary data = low compression performance

3

-
o

Decompress - - .
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OpST for Low-density Data

> OpST: larger sub-block

e Partition = Use Dynamic Programming to initiate an array BS to save the size of the maximum square whose
bottom-right corner is that unit block = Extract the big sub-block = Update BS = Pass to SZ after done extraction

_________________________________________

A 2D example of OpST. The subblocks are extracted according to BS.
E.g., a 2-by-2 sub-block B, is extracted according to BS, [2] [1].
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OpST vs NaST

> OpST can significantly reduce the overall compression error

Visual (one slice) of compression errors of
two approaches using SZ based on Nyx
“baryon density” field

ONpST (CR = 233.8, PSNR = 78.9 dB)

12
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AKDTree for Medium-density Data

> Address high overhead issue of OpST for denser data

* Time complexity of OpST: O(N2d), N is the unit block number
and d is the density

* Time complexity of AKDTree: O(% NlogN)

> Remove empty regions and extract sub-blocks

1. Partition

2. Use atree to represent the data, each node is associated
with a sub-block

3. Adaptively split each sub-block from the middle among
one of the dimension

4. Keep splitting a node until it is full or empty

5. Collect all the leaf nodes and send them to the
compressor

o

2D Example of AKDTree

Select the dimension which can maximize the difference of
the numbers of non-empty unit blocks of the two children
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AKDTree for Medium-density Data

> Adaptive splitting

1. Categorize nodes into three different types: “cube” (1:1:1), “flat” (2:2:1), and “slim” (1:2:2)

2. Divide cube node d into eight oct-blocks, s4,..., Ss =2 get the counts of non-empty unit blocks cy,...,cg of s, ...,Sg
- decide along which dimension to split

For the flat node d;, we can reuse c;,...,c4 to decide how to spilt

Simply split the slim node d;; along x-axis

5. This process (i.e., cube nodes = flat nodes = slim nodes) will be looped until the node is empty or full

>

d; (54-S4) dyy (5178;) . “dyyy (3y)
Only count every three step (i.e., only for the “cube” nodes) 2> 0(% NlogN)

B w
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GSP for High-density Data

> Not much room for removing empty regions for dense data

* OpST and AKDTree will hurt the data locality/smoothness
* Pad zeros into the few empty regions—> higher error at the boundary

-

Zero Filling (CR = 156.7, PSNR = 32.8 dB)

Visualization of data distributions of an example AMR dataset (coarse level) 2 i
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GSP for High-density Data

> Ghost Shell Padding (GSP)

* Partition =2 pad empty unit block using the average of its non-empty neighbors’ boundary data values
* For empty unit blocks have more than one non-empty neighbors = use the avg value of all its neighbors for padding

2D Example of GSP. Non-empty blocks are in navy blue;
padded blocks are in light blue/red; padded blocks based on
more than one non-empty neighbors are in red.

-

GSP (CR = 161.3, PSNR = 33.5 dB)
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Hybrid Compression Strategy

> Adaptively choose a best-fit pre-process strategy

*  We have: OpST (low-density), AKDTree (medium-density), and GSP (high density)

* Use two data-density thresholds to determine when to use OpST, AKDTree, or GSP
> First threshold T, for switching between OpST and AKDTree

* OpST and AKDTree have almost same compression performance in terms of bit-rate and PSNR
* Time cost of OpST increases linearly with data density

45
4 }
35 ¢

—
(9]

CPU time (ms)
[\S]

—A—tree = —@—opst ------- opst (theoretical)

20 30 60 70

Density >0
Time overhead of OpST and AKDTree on different datasets with different densities.
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Hybrid Compression Strategy

> Second threshold T, for switching between AKDTree and GSP

* When the density is low, AKDTree is better; when the density gets higher, GSP gradually outperforms AKDTree
* AKDTree and GSP have similar compression performance when the density is around 60% = T,= 60%
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Compression performance comparison (PSNR vs Bitrate) of GSP, OpST and AKDTree on six datasets with different densities
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Evaluation

Experimental Setup

Real-word application: Nyx cosmology simulation based on AMReX
Datasets: 7 datasets generated by 2 runs with different numbers of
AMR levels, simulating a region of 64 megaparsecs (Mpc)

Platform: two 28-core Intel Xeon Gold 6238R processors and 384
GB DDR4 memory

Dataset # Levels Grid Size of Each Level | Density of Each Level

(Fine to Coarse) (Fine to Coarse)
Run1_Z10 2 512, 256 23%, 77% |
Runi_Z5 2 512, 256 58%, 42%
Runl_Z3 2 512, 256 64%, 36%
Run1_Z2 2 512, 256 63%, 37%
Run2_ T2 2 256, 128 0.2%, 99.8% B
Run2_T3 3 512, 256, 128 0.02%, 0.56%, 99.42% B
Run2_T4 4 1024, 512, 256, 128 3E-5, 0.02%, 2.2%, 97.7% '

Our tested datasets

z5 (later timestep)
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Evaluation

> Evaluation on Rate-distortion

| 1D (naive) 1D (zMesh) —8—3D —e—TAC | 1D (naive) —=—3D —e—TAC |

e Outperforms naive 1D baseline & zMesh (up to 3.3x)

115
* Perform much better than 3D baseline when % | 105 /
(1) finest level has a relatively low density, or 95

. 80 | R
(2) decompressed data has a high PSNR 8 |
7 0 1 ; 3I> 4 5 » 0 50 100 150 200 250
Bitrate Bitrate
Run1_Z10 (finest-level density = 23%) Run2_T4 (finest-level density = 0.02%)
> Discussion on Comparison with Baselines [ 1D (uivo 1D @Mesh) —=—3D ——TaC] 1o =D @aive —&—3D —e~TAC |
155
* 3D baseline works better when finest level is dense s | 100
* Dense finest Ivl 2 similar to non-AMR dataset g s | %90
— no need to use AMR compress strategies 125 ¢ |
* zMesh cannot improve the smoothness if there is . ; : ; s 0 a0 w0 s s 100

Bitrate Bitrate

no data redundancy in the AMR datasets Run1_z2 (finest-level density = 63%) Run2_T3 (finest-level density = 3E-5)
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Evaluation

> Evaluation on Time Overhead
* Up to 75x faster than 3D baseline on the Run2 datasets and 2.4x faster on the Runl
* Due to Run2 has higher overhead of redundant data for the 3D baseline

* Throughput degrades on the small datasets
Due to a relatively heavy launching time compared to the overall time on the small datasets

EB,y, Run1 72 Run1 73 Run1 75 Run1 710 Run2 T2 Run2 T3 Run2 T4
1D | 3D | TAC| 1D | 3D | TAC | 1D | 3D | TAC | 1D | 3D | TAC | 1D | 3D | TAC | 1D | 3D | TAC | 1D | 3D | TAC
1E+08 | 169 94 97 166 90 94 161 76 99 160 | 40 95 152 | 17 76 143 | 2.4 60 125 | 0.4 30
1E+09 | 219 | 115 121 213 | 120 127 208 | 109 123 208 | 63 117 193 | 27 91 184 | 3.9 66 159 | 0.5 32
1E+10 | 259 | 125 135 256 | 125 136 253 | 117 137 250 | 65 135 242 | 30 102 | 229 | 4.0 72 197 | 0.5 34

Overall compression/decompression throughput (MB/s) of different approaches with different absolute error bounds
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Evaluation

> Evaluation on Post-analysis Quality with Adaptive Error Bound

* TAC can apply different error bounds to different AMR levels based on (1) the post-analysis metrics, (2) the
up-sampling rates of coarse levels, and (3) the rate-distortion trade-off between different AMR levels

* Power spectrum (PS) eb ratio: (1) 1:1, PS focus on the global quality = (2) 8:1, up-sample rate is 23 = (3) 3:1

* Halo finder (HF) eb ratio: (1) 2:1 HF focus on finer data—> (2) 4:1 - (3) 2:1

P Y S S S R A
_ .‘ —m— 3D baseline CR | Rel Mass Diff | Cell Nums Diff
S Ours (uniform eb) 3D baseline 198.5 6.66E-04 39.00
5 —e—Ours (adp eb) TAC (uniform eb) | 198.5 4.97E-04 28.00
PAR TAC (adp eb) | 198.6 | 4.49E-04 25.00
«
E|

The mass change, and the number of cells change for the
0 biggest halo identified using the 3D baseline, TAC with
0 2 4 6 8 10 uniform and, TAC with adaptive error bound

PS error of the 3D baseline and TAC (both uniform and adp
eb) on run1-22.

We compare the PS p’(k) of decompressed data with the
original p(k) and accept a maximum relative error within 1%
(red dashed line) for all k < 10.
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Conclusion & Future Work

» Conclusion

* Propose TAC, an error-bounded lossy compression for 3D AMR data

* Propose three pre-processing strategies that can adapt based on the density of each AMR level

* Improve the compression ratio compared to the STOA approach by up to 3.3x under the same data quality loss
* Tune the error-bound ratio of fine and coarse levels for better post analysis quality

> Future work

* Apply our hybrid compression approach to more AMR simulations.
e Address the issue of low throughput on small AMR datasets.
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Thank you!

Any questions and ideas are welcomed

Dingwen Tao: dingwen.tao@wsu.edu

Contact:
Daoce Wang: daoce.wang@wsu.edu
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