
TAC: Optimizing Error-Bounded Lossy Compression for
Three-Dimensional Adaptive Mesh Refinement Simulations

Daoce Wang

Washington State University

Pullman, WA, USA

daoce.wang@wsu.edu

Jesus Pulido

Los Alamos National Laboratory

Los Alamos, NM, USA

pulido@lanl.gov

Pascal Grosset

Los Alamos National Laboratory

Los Alamos, NM, USA

pascalgrosset@lanl.gov

Sian Jin

Washington State University

Pullman, WA, USA

sian.jin@wsu.edu

Jiannan Tian

Washington State University

Pullman, WA, USA

jiannan.tian@wsu.edu

James Ahrens

Los Alamos National Laboratory

Los Alamos, NM, USA

ahrens@lanl.gov

Dingwen Tao
∗

Washington State University

Pullman, WA, USA

dingwen.tao@wsu.edu

ABSTRACT

Today’s scientific simulations require a significant reduction of data

volume because of extremely large amounts of data they produce

and the limited I/O bandwidth and storage space. Error-bounded

lossy compression has been considered one of the most effective

solutions to the above problem. However, little work has been done

to improve error-bounded lossy compression for Adaptive Mesh

Refinement (AMR) simulation data. Unlike the previous work that

only leverages 1D compression, in this work, we propose to lever-

age high-dimensional (e.g., 3D) compression for each refinement

level of AMR data. To remove the data redundancy across different

levels, we propose three pre-process strategies and adaptively use

them based on the data characteristics. Experiments on seven AMR

datasets from a real-world large-scale AMR simulation demonstrate

that our proposed approach can improve the compression ratio by

up to 3.3× under the same data distortion, compared to the state-

of-the-art method. In addition, we leverage the flexibility of our

approach to tune the error bound for each level, which achieves

much lower data distortion on two application-specific metrics.

CCS CONCEPTS

• Theory of computation→ Data compression.

KEYWORDS

AMR; Lossy compression; scientific data; compression performance.

ACM Reference Format:

Daoce Wang, Jesus Pulido, Pascal Grosset, Sian Jin, Jiannan Tian, James

Ahrens, and Dingwen Tao. 2022. TAC: Optimizing Error-Bounded Lossy

Compression for Three-Dimensional Adaptive Mesh Refinement Simula-

tions. In Proceedings of the 31st International Symposium onHigh-Performance
Parallel and Distributed Computing (HPDC ’22), June 27-July 1, 2022, Min-
neapolis, MN, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.

1145/3502181.3531458

∗
Corresponding author: Dingwen Tao, School of Electrical Engineering and Computer

Science, Washington State University, Pullman, WA 99163, USA.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

HPDC ’22, June 27-July 1, 2022, Minneapolis, MN, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9199-3/22/06.

https://doi.org/10.1145/3502181.3531458

1 INTRODUCTION

Motivation. The increase in supercomputer performance over

the last few years has been insufficient to solve many challenging

modeling and simulation problems. For example, the complexity of

solving evolutionary partial differential equations (PDEs) scales as

Ω(𝑛4), where 𝑛 is the number of mesh points per dimension. Thus,

the performance improvement of about three orders of magnitudes

over the past 30 years has meant just a 5.6× gain in spatio-temporal

resolution [8]. To address this issue, many high-performance com-

puting (HPC) simulation packages [15] (such as AMReX [41] and

Athena++ [33]) use Adaptive Mesh Refinement (AMR)—which ap-

plies computation to selective regions of most interest—to increase

resolution. Compared to the method where a high resolution is

applied everywhere, the AMR method can greatly reduce the com-

putational complexity and storage overhead; thus, it is one of most

widely used frameworks for many HPC applications [2, 31, 34, 38]

in various science and engineering domains.

Although AMR can save storage space to some extent, AMR ap-

plications running on supercomputers still generate large amounts

of data, making the data transmission and storage challenging. For

example, one Nyx simulation [30] with a resolution of 4096
3
(i.e.,

0.5 × 20483 mesh points in the coarse level and 0.5 × 40963 in the

fine level) can generate up to 1.8 TB of data for a single snap-

shot; a total of 1.8 PB of disk storage is needed assuming running

the simulation 5 times with 200 snapshots dumped per simulation.

Therefore, reducing data size is necessary to lower the storage over-

head and I/O cost and improve the overall application performance

for large-scale AMR applications running on supercomputers.

A straightforward way to address this issue is to use data com-

pression. However, traditional lossless compression techniques such

as GZIP [12] and Zstandard [44] can only provide a compression

ratio up to 2 for scientific data [32]. On the other hand, a new gener-

ation of lossy compressors which can provide a strict error control

(called “error-bounded” lossy compression) has been developed,

such as SZ [14, 24, 35], ZFP [27], MGARD [1], and TTHRESH [6].

Using those error-bounded lossy compressors, scientists can achieve

relatively high compression ratios while minimizing the quality

loss of reconstructed data and post analysis, as demonstrated in

many prior studies [4, 5, 9, 17, 18, 21, 28, 40].

Limitation of state-of-the-art approach. Only a few existing con-

tributions have investigated error-bounded lossy compression for

AMR applications and datasets. A common approach is to generate

uniform resolution data by up-sampling the coarse-level data and

https://doi.org/10.1145/3502181.3531458
https://doi.org/10.1145/3502181.3531458
https://doi.org/10.1145/3502181.3531458

merging them with the �nest-level data, and then to perform com-
pression on the merged data. However, this approach introduces
redundant information to the data, which will signi�cantly degrade
the compression ratio, especially when the up-sampling rate is high
or there are multiple coarse levels to up-sample. Recently, Luoet al.
introduced zMesh [29], a technique that groups data points that
are mapped to the same or adjacent geometric coordinates such
that the dataset is smoother and more compressible. However, since
zMesh maps data points from di�erent AMR levels to adjacent geo-
metric coordinates and generates a 1D array, it cannot adopt 3D
compression which most HPC simulations use. Moreover, zMesh is
designed only for patch-based AMR applications. The patch-based
AMR structure saves the data blocks that will be re�ned at the next
level in the current level redundantly. While the state-of-the-art
AMR framework AMReX provides quadtree/octree-based structure
besides patch-based structure [3], many newly developed AMR
applications such as Nyx adopt the tree-based structure to avoid
redundancy by only saving each data point in the level of its �nest
re�nement. For this scenario, the reorganization approach proposed
by zMesh may not improve the data smoothness appropriately (will
be demonstrated in Section 4).

Key contributions.To solve these issues, we propose an approach
(calledTAC) to optimize error-boundedThree-dimensionalAMR
lossy Compression. Speci�cally, we propose to adopt 3D compres-
sion for each AMR level. However, each level may contain many
empty regions (i.e., zero blocks), where data points are saved in
other levels; these empty regions (zero blocks) signi�cantly decrease
the data smoothness/compressibility and increase the data size
(hence reduce the compression ratio). Thus, we propose to either
remove these empty regions or partially pad them with appropriate
values, based on the density of empty regions. Furthermore, we
propose an optimization to reduce the time cost of removing empty
regions. Finally, we evaluateTAC on seven datasets and compare
it with the state-of-the-art approach. Our main contributions are
summarized as follows.

� We propose to leverage 3D compression to compress each
level of an AMR dataset separately. We propose a hybrid
compression approach based on the following three pre-
process strategies and data characteristics (e.g., data density).

� For sparse AMR data, we propose an optimized sparse tensor
representation to e�ciently remove empty regions.

� To reduce the time overhead of removing empty regions, we
propose an optimization based on the enhanced: -d tree.

� For dense AMR data, we propose a padding approach to
improve the smoothness and compressibility.

� We tune the error bound for each AMR level for Nyx cos-
mology simulation, which improves the compression quality
in terms of two application-speci�c post-analysis metrics.

� Experiments show that, compared to the state-of-the-art
approach zMesh,TAC can improve the compression ratio
by up to 3.3� under the same data distortion on the tested
real-world datasets.

Experimental methodology and artifact availability.We evaluate
TAC on seven datasets from two real-world AMR simulation runs.
The AMR simulations are well-known, open-source cosmology

simulations�Nyx [30]. We compareTAC with three baselines in-
cluding zMesh using generic metrics such as compression ratio and
peak signal-to-noise ratio (PSNR) and application-speci�c metrics
such as power spectrum and halo �nder. Our code and datasets are
available at https://github.com/hipdac-lab/3dAMRcomp.

Limitations of the proposed approach.Compared with the ap-
proach that up-samples the coarse-level data and then compresses
the data with uniform resolution (denoted by �3D baseline�),TAC
provides much better compression performance (i.e., rate-distortion),
when the �nest level of the AMR dataset has a relatively low density.
However, when the �nest level has a relatively high density,TAC is
slightly worse than the 3D baseline. We will discuss this limitation
in detail in Section 4.3.

In Section 2, we present background information about error-
bounded lossy compression, AMR method,: -d tree, and related
work on AMR data compression. In Section 3, we describe our pro-
posed pre-process strategies and hybrid compression. In Section 4,
we show the experimental results on di�erent AMR datasets. In
Section 5, we conclude our work and discuss the future work.

2 BACKGROUND AND RELATED WORK
In this section, we introduce background information about lossy
compression for scienti�c data, AMR method and data, classic: -d
tree used in particle data compression, and discuss the state-of-the-
art method of AMR data compression and remaining challenges.

2.1 Lossy Compression for Scienti�c Data
There are two main categories for data compression: lossless and
lossy compression. Compared to lossless compression, lossy com-
pression can o�er much higher compression ratio by trading a little
bit of accuracy. There are some well-developed lossy compressors
for images and videos such as JPEG [36] and MPEG [23], but they
do not have a good performance on the scienti�c data because they
are mainly designed for integers rather than �oating points.

In recent years there is a new generation of lossy compressors
that are designed for scienti�c data, such as SZ [14, 24, 35], ZFP [27],
MGARD [1], and TTHRESH [6]. These lossy compressors provide
parameters that allow users to �nely control the information loss
introduced by lossy compression. Unlike traditional lossy compres-
sors such as JPEG [36] for images (in integers), SZ, ZFP, MGARD,
and TTHRESH are designed to compress �oating-point data and
can provide a strict error-controlling scheme based on the user's
requirements. Generally, lossy compressors provide multiple com-
pression modes, such as error-bounding mode and �xed-rate mode.
Error-bounding mode requires users to set an error type, such as
the point-wise absolute error bound and point-wise relative error
bound, and an error bound level (e.g.,10� 3). The compressor ensures
that the di�erences between the original data and the reconstructed
data do not exceed the user-set error bound level.

In this work, we focus on the SZ lossy compression (2021 R&D
100 Award Winner [39]) because SZ typically provides higher com-
pression ratio than ZFP [28, 42] and higher (de)compression speeds
than MGARD [26, 42] and TTHRESH [6]. SZ is a prediction-based
error-bounded lossy compressor for scienti�c data. It has three main
steps: (1) predict each data point's value based on its neighboring
points by using an adaptive, best-�t prediction method; (2) quantize

https://github.com/hipdac-lab/3dAMRcomp

Figure 1: Visualization (one zoom-in 2D slice) of three key timesteps
generated from an AMR-based cosmology simulation. The grid struc-
ture changes with the universe's evolution. The red boxes indicate
di�erent resolutions within one AMR level.

the di�erence between the real value and predicted value based
on the user-set error bound; and (3) apply a customized Hu�man
coding and lossless compression to achieve a higher ratio.

2.2 AMR Method and AMR data
AMR is a method of adapting the accuracy of a solution (e.g., solving
hydrodynamics equations) by using a non-uniform grid to increase
computational and storage savings while still achieving the desired
accuracy. AMR applications change the mesh or spatial resolution
based on the level of re�nement needed by the simulation and use
�ner mesh in the regions with more importance/interestandcoarser
mesh in the regions with less importance/interest. Figure 1 shows
that during an AMR run, the mesh will be re�ned when the value
meets the re�nement criteria, e.g., re�ning a block when its norm
of the gradients or maximum value is larger than a threshold [20].

Figure 2: A typical example of AMR data storage and usage.

Clearly, the data generated by an AMR application are hierarchi-
cal data with di�erent resolutions. The data of each AMR level are
usually stored separately (e.g., in a 1D array). For example, Figure 2
(left) shows a simple example of two-level AMR data; �0� means
high resolution (the �ne level) and �1� for low resolution (the coarse
level). When the AMR data are needed for post analysis or visual-
ization, users will typically covert the data from di�erent levels to
a uniform resolution. In the previous example, we will up-sample
the data in the coarse level and combine it with the data in the �ne
level, as shown in Figure 2 (right).

2.3 Existing AMR Data Compression
2.3.1 1D AMR Compression.The main challenge for AMR data
compression is that the AMR data is comprehensive and hierar-
chical with di�erent resolutions. A naive approach is to compress
the 1D data of each AMR level separately. However, this approach
loses most of the topological/spatial information, which is criti-
cal for data compression. zMesh [29] is a state-of-the-art AMR

data compression based on the 1D approach. Di�erent from the
naive 1D approach, zMesh re-organizes the 1D data based on each
point's coordinate in the 2D layout; in other words, zMesh puts
the points neighbored in the 2D layout closer in the 1D array. It
can increase the data smoothness/compressibility to bene�t the
following 1D compression such as SZ on the traditional patch-
based [37] AMR data with redundancy. However, zMesh does not
leverage high-dimensional compression, while many previous stud-
ies [35, 43] proved that leveraging more dimensional information
(e.g., spatial/temporal information) can signi�cantly improve the
compression performance (e.g., compression ratio). Moreover, it
only focuses on 2D patch-based AMR data.TAC aims to leverage
high-dimensional data compression and supports 3D AMR data.

2.3.2 High-dimensional AMR Compression.Similar to the idea de-
scribed in Section 2.2, a straightforward way to leverage 3D com-
pression on 3D AMR data is to compress di�erent levels together by
up-sampling coarse levels. However, this approach must handle ex-
tra redundant data generated by the up-sampling process. As shown
in Figure 2,1A, 1B, and1Care redundant points in the compression.
Note that the storage overhead of these redundant points will be
higher when more data are in the coarse levels or up-sampling rate
is higher, especially for 3D AMR data. This is because we only need
to duplicate one point from the coarse level for 4 times for 2D AMR
data but 8 times for 3D AMR data, with an up-sampling rate of 2.
Another limitation of this approach is that it cannot apply di�erent
compression con�gurations (e.g., error bound) to di�erent AMR
levels, because after up-sampling all data points will have the same
importance. However, the purpose of using the AMR method is to
set di�erent interests to di�erent AMR levels, so the error bound
for each AMR level can be chosen adaptively based on the analysis.

2.4 : -D Tree for Particle Data Compression
: -d tree [7] is a binary tree in which every node represents a certain
space. Without loss of generality, for the 3D case, every non-leaf
node in a: -d tree splits the space into two parts by a 2D plane
associated with one of the three dimensions. The left subspace is
associated with the left child of the node, while the right subspace
is associated with the right child.: -d tree is commonly used in
particle data compression [10, 13, 19] to locate each particle and
remove empty regions. Speci�cally, a: -d tree keeps dividing the
space in between along one dimension until the space is empty or
contains only one particle. We will propose to optimize the classic
k-d tree and use it to remove empty regions and increase the data
compressibility for each AMR level (to be detailed in Section 3.2).

3 OUR PROPOSED DESIGN
In this section, we propose a pre-process approach for AMR data
to leverage high-dimensional data compression algorithms in each
AMR level. Speci�cally, we propose three pre-process strategies to

Figure 3: Work�ow overview of our proposed TAC.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Lossy Compression for Scientific Data
	2.2 AMR Method and AMR data
	2.3 Existing AMR Data Compression
	2.4 k-D Tree for Particle Data Compression

	3 Our Proposed Design
	3.1 Optimized Sparse Tensor Representation for Low-density Data
	3.2 Adaptive k-D Tree for Medium-density Data
	3.3 Ghost-Shell Padding for High-density Data
	3.4 Hybrid Compression Strategy

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Evaluation Metrics
	4.3 Evaluation on Rate-distortion
	4.4 Discussion on Comparison with Baselines
	4.5 Evaluation on Post-analysis Quality with Adaptive Error Bound
	4.6 Evaluation on Time Overhead

	5 Conclusion and Future Work
	References

