FZ-GPU A Fast and High-Ratio Lossy Compressor for Scientific Computing Applications on GPUs

Boyuan Zhang *

Jiannan Tian * Sheng Di Xiaodong Yu Yunhe Feng Xin Liang Dingwen Tao Franck Cappello Indiana University Indiana University Argonne National Laboratory Argonne National Laboratory University of North Texas Denton University of Kentucky Indiana University Argonne National Laboratory

The 32nd International Symposium on High-Performance Parallel and Distributed Computing Orlando, Florida, United States, June 21, 2023

Big Data Problem for Scientific Applications INDIANA UNIVERSITY

application

HACC cosmology simulation 20 PB one-trillion-particle

data scale

bottleneck

reduce by

use up filesystem (26 PB in total) Mira@ANL 10×

in need

CESM climate simulation 50% vs 20% storage in hardware budget, 2017 vs 2013

5h30m to store NSF Blue Waters 1-TBps I/O 10× in need

Lossy Compressors for HPC

2:1 (FP-type)

lossless on scientific datasets	reduction ratio in need
industry lossy compressor (JPEG)	high in reduction rate, but not suitable for HPC
need diverse compression modes	 absolute error bound (infinity-norm) pointwise relative error bound RMSE error bound (2-norm) fixed bitrate satisfying post-analysis requirements

Lossy compression for scientific data at varying reduction ratio (10:1 to 250:1, left to right)

Issues of the SOTA Compressors

SOTA GPU error-bounded lossy compressors suffer from:

Low quality rooted in fixed-rate method

- Seen in cuZFP with limited bit budget
- Slightly higher in throughput compared with cuSZ and MGARD-GPU
- At a high cost of much lower compression quality

Issues of the SOTA Compressors

SOTA GPU error-bounded lossy compressors suffer from:

Low throughput rooted in Huffman encoding

- Seen In cuSZ and MGARD-GPU.
- Huffman encoding being a long pipeline: multiple kernels, resulting in low throughputs.
- Challenging to parallelize in a fine-grained manner

Our Solution: FZ-GPU

- 1. Inspired by cuSZ, we apply the **dual-quantization** in the first stage
- 2. Instead of using Huffman encoding as cuSZ, we utilize **bitshuffle**
- 3. We propose a fast lossless encoding kernel specifically for our pipeline
- 4. To save the data movement time between CPU and GPU, we use kernel fusions

HPDC '23 June 21, 2023 FZ-GPU

INDIANA UNIVERSITY

Design Details

Algorithm Level Optimizations

- **1. Optimizing dual-quantization**
- **2.** Optimizing bitshuffle on GPUs
- **3.** Fast lossless encoders and kernel fusions

Optimizing Dual-Quantization

- 1. Avoid separately handling outliers for high performance
 - One less branched data path
- 2. Use 1 bit to denote the sign of each quantization code instead of using 2's complement
 - Much fewer set bits (1's)

Optimizing Bitshuffle on GPUs

Input 8 Bytes 8 Bytes 8 Bytes <8 Bytes ... Sequence Byte 0 \rightarrow 0 0 0 0 0 0 Byte 1 \rightarrow 0 0 0 0 0 0 Byte 2 \rightarrow 0 0 0 0 0 1 0 ... Byte 7 \rightarrow 0 0 0 0 0 0 1 Output Chunk 2 Chunk 1 Chunk 0 Chunk 7 ... Sequence

A simplistic fine-grained parallel bitshuffle

with padding

- Use a warp-level vote function to shuffle bits to resolve data access conflicts
- Store the result locally to enable coalesced memory access
- Fully leverage shared memory in each thread block

Optimizing Bitshuffle on GPUs

INDIANA UNIVERSITY

BLOOMINGTON

- Use a warp-level vote function to shuffle bits to resolve data access conflicts
- Store the result locally to enable coalesced memory access
- Fully leverage shared memory in each thread block

HPDC '23 June 21, 2023 FZ-GPU

Fast GPU Lossless Encoder & Kernel Fusion

- Partition data into chunks and iterate all data blocks
- Record **whether all values in one block are zeros** (use 1 bit to denote) and copy data if not all zeros
- Fuse bitshuffle kernel and the first phase of our encoding to save one time of global memory access

Figure 6: Our proposed fast GPU encoding method.

Evaluation

IU BigRed 200 HPC Cluster node

- 2x 64-core AMD EPYC 7742 CPUs at 2.25GHz.
- 4 NVIDIA Ampere A100 GPUs (108 SMs, 40GB), CUDA 11.4.120.

Workstation

- 2x 28-core Intel Xeon Gold 6238R CPUs at 2.20GHz.
- 2x NVIDIA GTX A4000 GPUs (40 SMs, 16 GB), CUDA 11.7.99.

Metrics

- Compression ratio
- Compression throughput
- Overall throughput/data transfer rate
- Quality of reconstructed data

datasets	FIELD DATA SIZE dimensions	#FIELDS examples(s)
COSMOLOGY	1,123.81 MB	6 in total
HACC	280,953,867	XX, VX
CESM	25.92 MB 1,800×3,600	^{70 in total} CLDICE, RELHUM
cosmology	536.87 MB	^{6 in total}
NYX	512×512×512	baryon_density
climate	100 MB	13 in total
Hurricane	100×500×500	CLDICE, QRAIN
QUANTUM CIRCUITS	630.74 MB	1 in total
QMCPACK	7,935×69×288	einspline
PETROLEUM EXPLORATION	189.50 MB	16 in total
RTM	449×449×235	snapshot_1200

Evaluation: Compression Throughput

Compressor Throughputs on A100 GPU for Range-Based Relative Error Bounds

and a speedup of up to **4.2x** over **cuZFP** on A100

Evaluation: Compression Throughput

Compressor Throughputs on A4000 GPU for Range-Based Relative Error Bounds

and a speedup of up to **2.1x** over **cuZFP** on A4000

Evaluation: Optimizing Kernels

INDIANA UNIVERSITY BLOOMINGTON

Evaluation: Overall Throughput

FZ-GPU achieves the **best** overall GPU-CPU throughput on almost all datasets and evaluated relative error bounds GPU-CPU Data Transfer Throu

 $T_{overall} = ((BW \times CR)^{-1} + T_{comp}^{-1})^{-1}$

GPU-CPU Data Transfer Throughput in GB/s for Range-Based Relative Error Bounds

Figure 11: Overall CPU-GPU data-transfer throughput of cuZFP, cuSZ, cuSZx, MGARD-GPU, and FZ-GPU on NVIDIA A100. HPDC '23 June 21, 2023 FZ-GPU

Evaluation: Compression Ratio & Quality

INDIANA UNIVERSITY

Argonne

Evaluation: Compression Ratio & Quality

INDIANA UNIVERSITY Argon

Evaluation: Compression Ratio & Quality

- FZ-GPU is up to 1.1x higher than cuSZ and 1.7x higher than cuZFP on average.
- FZ-GPU has an average compression ratio improvement of 2.4x and 4.3x higher compression ratio at most than cuSZx.
- MGARD-GPU, similar curve in RTM dataset. But much lower compression throughput.

Rate-distortion of five lossy compressors.

Evaluation on Distortion

SSIM:

FZ-GPU has the highest SSIM among all compressors

PSNR advantage of FZ-GPU

- VS cuZFP/cuSZx: 1.3X/1.1X higher
- VS MGARD-GPU: multi-grid-based MGARD-GPU has **slightly** better quality at a **high** cost of **13.34x** FZ-GPU kernel time

INDIANA UNIVERSITY

BLOOMINGTON

Figure 12: Reconstructed data quality using various GPU-based lossy compressors on field QSNOWF48 (slice 50) in the Hurricane dataset, under a similar compression ratio. The first row shows the visualization of the region of interest, while the second row shows the data distribution comparison between the decompressed and the original data for each compressor.

Conclusion & Future Work

INDIANA UNIVERSITY

In this paper, we design a new compression pipeline that consists of

- dual-quantization
- bit-shuffle •
- fast lossless encoding. ٠

We also propose a series of architectural optimizations, including

- warp-level optimization for bitwise • operations,
- maximization of shared memory utilization, ۲
- and multi-kernel fusion. ۲

In the future, we plan to

- exploit fusing all GPU kernels into 1. one to improve the performance further,
- 2. adapt FZ-GPU to other GPU platforms by using code translation tools such as HIPFY for AMD GPUs and SYCLomatic for Intel GPUs
- 3. Evaluate FZ-GPU with real-world applications requiring fast compression, such as memory compression.

Acknowledgment

This R&D was supported by the Exascale Computing Project (ECP), Project Number: 17-SC-20-SC, a collaborative effort of two DOE organizations-the Office of Science and the National Nuclear Security Administration, responsible for the planning and preparation of a capable exascale ecosystem. This repository was based upon work supported by the U.S. Department of Energy, Office of Science, under contract DE-AC02-06CH11357, and also supported by the National Science Foundation under Grants SHF-1617488, SHF-1619253, OAC-2003709, OAC-1948447/2034169, and OAC-2003624.

NSP

Thank you. **Questions?**

github.com/szcompressor/FZ-GPU

Boyuan Zhang bozhan@iu.edu contact

S

Dr. Dingwen Tao ditao@iu.edu

