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Introduction

Why Compression
• Large-scale scientific simulations generate extremely large amounts of data
• Limited storage capacity even for large-scale parallel computers
• The I/O bandwidth required to save this data to disk can create bottlenecks in the transmission

Lossy Compression
• High compression ratio
• Controllable compression error
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Introduction

Why Compression
• Large-scale scientific simulations generate extremely large amounts of data
• Limited storage capacity even for large-scale parallel computers
• The I/O bandwidth required to save this data to disk can create bottlenecks in the transmission

Lossy Compression
• High compression ratio
• Controllable compression error

Take Advantage Of Lossy Compressors
• Identify the optimal trade-off between the compression ratio and compressed data quality
• No analytical model available
• Trial-and-error experiments

• High computational cost
• Identified configuration setting is dependent on specific conditions and input data
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Introduction

Our Ratio-Quality Modeling
• Estimate compression ratio and compressed data quality

• General model suiting most scientific datasets and applications
• High accuracy
• Low computational overhead

Contributions
• We decouple prediction-based lossy compressors to build a modularized model
• We theoretically analyze how to estimate the encoder efficiency and provide essential
parameters for compression ratio estimation

• We propose a theoretical analysis to estimate the qualification of lossy decompressed
data on post-hoc analysis

• We evaluate our model using 10 real-world scientific datasets involving 17 fields.
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Background

Data Management in Scientific Applications
• HDF5, netCDF, and Adaptable IO System (ADIOS)
• Compression techniques are often adopted

Compression Mode
• Error bounded mode

• Absolute error bound (ABS)
• Relative error bound (REL)
• Point-wise relative error bound (PW_REL)

• Fix rate mode

Error Bounded Lossy Compressors
• Transform-based lossy compressor (ZFP)
• Prediction-based lossy compressor (SZ)
• Data distortion metrics

• Peak signal-to-noise ratio (PSNR)
• Structural similarity (SSIM)

Scientific data management with compression
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Background
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Prediction-Based Lossy Compression
• Each data point’s value is predicted based on its neighboring data
points by an adaptive, best-fit prediction method

• Each floating-point weight value is converted to an integer number
by a linear-scaling quantization based on the difference between
the real value and predicted value and a specific error bound.

• Lossless compression is applied to reduce the data size thereafter

Main Challenges
• How to decompose prediction-based lossy compression into
multiple stages and model the compression ratio for each stage?

• How to reduce the time cost of extracting data information needed
by the model?

• How to model the quality degradation in terms of diverse post-
analysis metrics?

• How does our model benefit real-world applications?
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Rate-Quality Model

An overview of ratio-quality modeling workflow for prediction-based
lossy compression and scientific data analysis

Overview
• Compression ratio

• Predictor (prediction error histogram)
• Quantizor (quantization code histogram)
• Encoder (encode efficiency)

• Post-hoc analysis quality
• Estimated error distribution
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Analysis
• Model compression ratio of popular
encoders

• Refine compression ratio modeling for
various predictors and quantizers

• Model quality degradation for both
generic and specific post-hoc analysis
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Rate-Quality Model

Modeling Encoder Efficiency
• Quantization code is highly randomized
• Encoding efficiency provided by
Huffman encoding is highly separated
from that provided by the optional
lossless encoders

• Zero would always dominate the
Huffman codes after the red dashed line

Compression ratio from Huffman encoder and optional lossless encoder
from Zstandard and Gzip on quantization code
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Huffman Encoding Run-Length Encoding (After Huffman)



9

Rate-Quality Model

Modeling Quantized Prediction Error Histogram
• Prediction error histogram: different sampling solutions for different predictors

• Lorenzo Predictor
• Linear Interpolation Predictor
• Linear Regression Predictor

Error rate between sampled prediction error and original prediction error
under different sampling rates with three predictors. The error bar
indicates the max and min values
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• Quantization code histogram
• Based on sampled prediction error
• Large distortion under large error
bounds
• Bin transfer scheme

[..., 0.0, 1.3]
[..., 0, 0][..., 0, 1]

Original Value
Quantization Code

Ours Actual
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Rate-Quality Model

Post-hoc Analysis Quality Model
• Error distribution, described by its variance

FFT quality degradation estimation compared to measurement. Evaluated
on Nyx temperature field at ABS 500

• Peak signal-to-noise ratio (PSNR)
• Structural similarity index (SSIM)
• Data-specific post-hoc analysis
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Unified distribution

Refined centralized distribution at high error bounds
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Evaluation

Compression ratio (bit-rate) estimation accuracy compared to
measurement by the encoders

SSIM estimation accuracy compared to measurement

PSNR estimation accuracy compared to measurement
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Ratio-Quality Model Accuracy
• Accuracy of Compression Ratio Model
• Accuracy of Post-Hoc Analysis Quality Model
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Details of Evaluation Results on Tested Data and Fields
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Use Cases
• Predictor Selection

• Select the most efficient predictor
for a given dataset & error bound

• Memory Limitation Control
• Efficiently utilize available memory

• In-Situ Compression Optimization
• optimize the compression
performance individually for each
partition with overall compression
ratio and overall analysis quality as
objectives

Rate-distortion curve of multiple predictors with different error
bound. Evaluated with RTM dataset
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Evaluation
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Ratio of measured space consumption to assigned space. Evaluated
with RTM dataset, randomly choose time steps and error bound for
15 groups

Evaluation
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Use Cases
• Predictor Selection

• Select the most efficient predictor
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• In-Situ Compression Optimization
• optimize the compression
performance individually for each
partition with overall compression
ratio and overall analysis quality as
objectives
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Error bound optimization for RTM dataset with multiple time
steps in consideration for post-hoc analysis

Evaluation
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Performance
• Significantly lower overhead compared
to previous solution

• One sampling, prediction on all error
bound setting

• Outperforms the trial-and-error
solution by 18.7× on average when
considering 7 candidate error bounds
to estimate with the Lorenzo and
interpolation predictors as candidates Performance comparison between proposed modeling solution and

previous trial-and-error approach
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Overall Performance of Data
Management

• Optimize the most efficient
compression configuration
for each snapshot

• Provide consistent and the
fastest data dumping time

Overall data dumping performance with parallel HDF5. Comparison between traditional method, trial-and-error and our modeling-based method. Dashed lines
highlight the maximum dumping time occurred in the simulation. “Tr” refers to the traditional approach, “TAE” refers to the in-situ trial-and-error approach.
‘Comp’, ‘I/O’, and ‘Op’ refer to times of compression, I/O, and optimization, respectively

Comparison between our modeling-based
method with offline optimization method
in terms of both bit-rate and
corresponding PSNR across different
snapshots when target PSNR is 56 dB.

17/18

Evaluation



18

Thank you!
Any questions are welcome!

Contact Dingwen Tao: dingwen.tao@wsu.edu
Sian Jin: sian.jin@wsu.edu

The 38th IEEE International Conference on Data Engineering (ICDE 2022)
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