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Why Compression
* Large-scale scientific simulations generate extremely large amounts of data
« Limited storage capacity even for large-scale parallel computers
 The I/0 bandwidth required to save this data to disk can create bottlenecks in the transmission

Lossy Compression
* High compression ratio
e Controllable compression error

(a) Original (b) Reconstructed with (c) Reconstructed with
PW_REL = 0.1 PW_REL = 0.25
Jin, Sian, et al. "Understanding GPU-based lossy compression for extreme-scale cosmological simulations." 2020
IEEE International Parallel and Distributed Processing Symposium (IPDPS). 1IEEE, 2020.
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Why Compression
« Large-scale scientific simulations generate extremely large amounts of data
* Limited storage capacity even for large-scale parallel computers
* The [/0 bandwidth required to save this data to disk can create bottlenecks in the transmission

Lossy Compression
* High compression ratio
* Controllable compression error

Take Advantage Of Lossy Compressors
* Identify the optimal trade-off between the compression ratio and compressed data quality
* No analytical model available
* Trial-and-error experiments

* High computational cost
« Identified configuration setting is dependent on specific conditions and input data
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Our Ratio-Quality Modeling

e Estimate compression ratio and compressed data quality

* General model suiting most scientific datasets and applications
* High accuracy

* Low computational overhead

Contributions

* We decouple prediction-based lossy compressors to build a modularized model

We theoretically analyze how to estimate the encoder efficiency and provide essential
parameters for compression ratio estimation

We propose a theoretical analysis to estimate the qualification of lossy decompressed
data on post-hoc analysis

We evaluate our model using 10 real-world scientific datasets involving 17 fields.
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Data Management in Scientific Applications
 HDFS5, netCDF, and Adaptable 10 System (ADIOS)
* Compression techniques are often adopted

E B ded L C Parallel Parallel Parallel Parallel
rror bounde 0ssy LOmMPressors Application Application Application Application
* Transform-based lossy compressor (ZFP) RS s T RS s T o . s
* Prediction-based lossy compressor (SZ) . Compression/ Compression/ Compression/ Compression/ \
e Data distortion metrics - Decompression ~ Decompression  Decompression  Decompression
 Peak signal-to-noise ratio (PSNR) R L R—— A e (e /
« Structural similarity (SSIM) Parallel Scientific Data Management Library
Compression Mode Parallel I/O
e Error bounded mode J J J J
e A | rror n AB .Parallel Parallel Parallel -Parallel
bsolute error bound ( S) File System File System File System File System

« Relative error bound (REL)
e Point-wise relative error bound (PW REL) Scientific data management with compression

* Fix rate mode
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Prediction-Based Lossy Compression Quantization Code
* Each data point’s value is predicted based on its neighboring data - zn-q-l
points by an adaptive, best-fit prediction method
« Each floating-point weight value is converted to an integer number
by a linear-scaling quantization based on the difference between | I
the real value and predicted value and a specific error bound. 2*Error Bound — 2mi+
* Lossless compression is applied to reduce the data size thereafter

2*Error Bound— 2mi+2

C ——

Main Challenges cbohase  —il -

« How to decompose prediction-based lossy compression into e } sound
multiple stages and model the compression ratio for each stage?

* How to reduce the time cost of extracting data information needed *rreod-
by the model?

« How to model the quality degradation in terms of diverse post-
analysis metrics? :

 How does our model benefit real-world applications? : .

amig

\
|
I

2*Error Bound—= 2m1-2
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Post analysis

Lorenzo, I—) est. error distribution ——

Interpolation, . PSNR,

Linear Regression _§ optional: SSIM,

etc. — = = Huffman = run-length, FFT-based,
S ..

Predictor &  Encoder dictionary, etc. etc.

redictor <« compression workflow h |
P . select best-fit predictor dynamically | |

memory compression |
select error-bound for fixed ratio

compression ratio

error bound <— : , io- 1
. overall ratio-quality ; \\B_‘{_t_'_‘_’__qy_f{lff}f_Mﬂf{e_l__,
fine-grained error-bound config ', I
Config \._ Optimization i

An overview of ratio-quality modeling workflow for prediction-based
lossy compression and scientific data analysis

Overview
* Compression ratio
* Predictor (prediction error histogram)
* Quantizor (quantization code histogram)
* Encoder (encode efficiency)
* Post-hoc analysis quality
* Estimated error distribution

Analysis
* Model compression ratio of popular
encoders

* Refine compression ratio modeling for
various predictors and quantizers

* Model quality degradation for both
generic and specific post-hoc analysis
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128
S 64 —&— Huffman . o
- —8—17SS Modeling Encoder Efficiency
z 2 e S 41 * Quantization code is highly randomized
e 16 . . . .
2 < * Encoding efficiency provided by
E. 4 Huffman encoding is highly separated
S 2 from that provided by the optional
1 lossless encoders

1.00E-10 1.00E-09 1.00E-08 1.00E-07 1.00E-06 1.00E-05 e 7Zero would always dominate the

EEEorIEouRd Huffman codes after the red dashed line
Compression ratio from Huffman encoder and optional lossless encoder

from Zstandard and Gzip on quantization code

Huffman Encoding Run-Length Encoding (After Huffman)
B = Z?:o P(s;)L(si) = — Z?:o P(s;)logy P(si), Rrie = 1/(01(1 —po)Po + (1 — F)). 7
er = 25-B'¢, po=1/1- Rl - ((CL -~ 1)/2)2 + (C1 - 1)/2
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Modeling Quantized Prediction Error Histogram
* Prediction error histogram: different sampling solutions for different predictors

* Lorenzo Predictor
* Linear Interpolation Predictor 4%

* Linear Regression Predictor —e— Interpolation
« Quantization code histogram g *—Lorenzo
_ = —e—Regression
* Based on sampled prediction error & 20
S (1]
* Large distortion under large error £
bounds M 1%
* Bin transfer scheme
0%
Niran = Piran - N =Ca- (1 —po)- N, whenpy >0,  0005% 0.050% 0.500% 5.000%
Sample Rate
Original Value [.., 0.0, 1.3] Error rate between sampled prediction error and original prediction error
Quantization Code [’ 0, 1] [’ 0, 0] ynder different samplmg. rates with three predictors. The error bar
indicates the max and min values
Ours Actual
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Post-hoc Analysis Quality Model
* Error distribution, described by its variance

a(E)? =0 (E[]? — p?) ~ [© Lta?dz = le*  Unified distribution

o(E)?2 = Y\ PN (B2 — 12y 4 SN (B[i)2 — 42) Refined centralized distribution at high error bounds

— (1 - po)%GQ —I—poU(B[O]), —— Ours
3000 - ,
—— Previous
« Peak signal-to-noise ratio (PSNR) 2 oo Real
U s i
* Structural similarity index (SSIM) &
* Data-specific post-hoc analysis E oo
PSNR(D',D) = 20log;o(minmazx) — 10log,o(c(E)?) 0 : ] . I I
—20000 —10000 0 10000 20000
2 Error/Error bound
SSIM(D',D) = — 27D Cs | | o
20%, 4+ Cs + o(FE)? FFT quality degradation estimation compared to measurement. Evaluated

on Nyx temperature field at ABS 500
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Ratio-Quality Model Accuracy

. . 200
* Accuracy of Compression Ratio Model
. . 150 .
* Accuracy of Post-Hoc Analysis Quality Model ™"t T
Z 100 .Q"*\.M .'.%.""-o- ~
g-) s Riar e SO

1E+2 50 —— 1 | TPreee ] 1 1 1 TPees.,
@ 1E+1 4 “‘\\\ 0
;‘3 1E+0 | ade ) 1IE-7 1E-6 1E-5 1E-4 1E-3 1E-2 1E-7 1E-6 1E-5 1E4 1E-3 1E-2
1 ol e,
.jé N Error Bound Error Bound

Lk L ~N Weighted est. ~ +eeeeeeee PSNR est. e  Measures

1E-2 . .

. PSNR estimation accuracy compared to measurement

1E+0 -
e/‘j{".

i~ ik :\ ‘N 2 /’/"
] 1E-2 »”
zl 1E+0 - =2 .~0=0—-0—4- — é ‘.p,/
2 ~, . @ 1E-3 7 s

1E-1 - - ~ 1E-4 - "

{5 . . | . . | . | 1E-5 > g

IE-7 1E-6 1E-5 1E-4 1E-3 1E-21E-7 1E-6 1E-5 1E4 1E-3 1E-2 1E-6 ‘
1IE-5  1E-4  1E3  1E-2  1E-11E-5 1E4  1E-3  1E2  1E-
Error Bound Error Bound
Error Bound Error Bound
e Huff.(meas.) e H+L(meas.) Huff.(est.) -~ H+L(est.) ¢ SSIM (mees) SSIM (est)

SSIM estimation accuracy compared to measurement

Compression ratio (bit-rate) estimation accuracy compared to
measurement by the encoders
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Name Field Dim Sample Err. Huff Err. Lossless Err. Huff+LL. Err. PSNR Err. SSIM Err.

1000 235x449x449 0.03% 5.67% 9.82% 8.72% 0.77% 9.34%

RTM 2000 235x449x449 0.02% 3.32% 9.01% 7.76% 1.56% 6.56%

3000 235x449x449 0.06% 1.88% 9.15% 7.57% 2.84% 4.12%

CESM TS 1800x3600 0.06% 6.88% 11.26% 8.85% 3.97% 2.54%

TROP_Z 1800x3600 0.20% 7.56% 10.52% 9.66% 2.97% 4.44%

. U 100x500x500 0.10% 4.62% 3.46% 5.75% 1.56% 5.43%
Hurricane

TC 100x500x500 0.12% 5.44% 2.96% 5.95% 2.42% 3.80%

Dark Matter 512x512x512 0.14% 7.53% 4.36% 7.67% 1.78% 6.55%

Nyx Temperature 512x512x512 0.13% 3.92% 5.13% 3.99% 1.89% 4.34%

Velosity Z 512x512x512 0.07% 6.85% 8.65% 8.08% 2.64% 3.90%

HACC XX 280953867 0.26% 2.29% 1.34% 3.22% 1.98% -

VX 280953867 0.27% 3.71% 1.49% 3.83% 3.67% -

Brown Pressure 8388609 0.11% 5.99% 5.68% 6.46% 4.42% -

Miranda VX 256x384x384 0.13% 7.90% 6.95% 8.71% 2.55% 8.92%

QMCPACK einspine 69x69x115 0.13% 6.84% 8.83% 6.20% 5.67% 7.43%

SCALE PRES 98x1200x1200 0.16% 1.65% 2.79% 2.36% 1.72% 5.35%

EXAFEL raw 10x32x185x388 0.12% 5.64% 4.25% 6.23% 3.80% -

Average - - 0.12% 5.16% 6.21% 6.53% 2.72% 5.59%

* Bold items highlight the larger prediction error between the two encoders and between the two post analyses

Details of Evaluation Results on Tested Data and Fields
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Use Cases 160
* Predictor Selection 140
* Select the most efficient predictor 120
for a given dataset & error bound o 100
% 80
~ 60
40

e Lorenzo (meas.) e Interp. (meas.) o Regre. (meas.)
20 Lorenzo (est.) Interp. (est.) Regre. (est.)
0
1 2 4 8 16

Bit-Rate

Rate-distortion curve of multiple predictors with different error
bound. Evaluated with RTM dataset
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Use Cases

= 1.2
S ] U U ——
2 08
e Memory Limitation Control *gégj
- Efficiently utilize available memory g o2
S 0
[

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Evaluation Group

Ratio of measured space consumption to assigned space. Evaluated
with RTM dataset, randomly choose time steps and error bound for
15 groups
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Traditional [
0 0.2 0.4 0.6 0.8 1 1.2
Normalized Compression Bit-Rate
8 —=a— Traditional
% =0 Qurs
: : L, 2 4
* In-Situ Compression Optimization 2
e optimize the compression I
performance individually for each
partition with overall compression 1 ol SE o —
. . . 1E-11 1E-09 0.0000001 0.00001 0.001 0.1
ratio and overall analysis quality as Overall Quality Impact
objectives
Error bound optimization for RTM dataset with multiple time

steps in consideration for post-hoc analysis
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Performance 2%
 Significantly lower overhead compared 10%

to previous solution 8%

* One sampling, prediction on all error 8

bound setting ;;
* OQutperforms the trial-and-error 0%

solution by 18.7%x on average when 1.E-7 1.E-6 1.E-5 1.E4 1.E-3 1.E2 1.E-1
. . . Error Bound
considering 7 candidate error bounds .

. ) Epredictor Bhuffman Elossless Msample
to estimate with the Lorenzo and

interpolation predictors as candidates Performance comparison between proposed modeling solution and
previous trial-and-error approach

Overhead
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7
Overall Performance of Data 6
Management e’
. . 54
* Optimize the most efficient % ,
. . . 2
compression Conflguratlon 2 «—
1
for each snapshot 0 Comparison between our modeling-based
. . S 9 method with offline optimization method
* PI'OVlde Con515tent. and_ the S ’\'QQ ’Q'Q in terms of both bit-rate and
fastest data dumplng fime Snapshot corresponding PSNR across different
—o— Traditional-PSNR ~ —e— Ours-PSNR snapshots when target PSNR is 56 dB.
P E Traditional

Trail-And-Error

NN
NN R

NN, S |
NN,

NN S
NN
RN
SRR S
Y
1
NN
SR
NN
1
NSRS
NN, S
QTN
NRNRRRRY

1

Dumping Time (s)
S = N W A U0 NN X
]
]

NN
1
L ]
NN

NN R
NN, EE
NN
NN S
SRR,
NN
RN,
NN
NN

Y

1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400
Snapshot

200 400 600 800 1000

—_
[\
(=3
(=)

| BTr-Comp OTrlI/O BTAE-Op BTAE-Comp DTAE-/O mOurs-Op #@Ours-Comp [Ours-J/O |

Overall data dumping performance with parallel HDF5. Comparison between traditional method, trial-and-error and our modeling-based method. Dashed lines
highlight the maximum dumping time occurred in the simulation. “Tr” refers to the traditional approach, “TAE” refers to the in-situ trial-and-error approach.
‘Comp’, ‘I/0’, and ‘Op’ refer to times of compression, I/0, and optimization, respectively
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Thank you!

Any questions are welcome!

Contact Dingwen Tao: dingwen.tao@wsu.edu
Sian Jin: sian.jin@wsu.edu
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