
Delta-DNN: Efficiently Compressing Deep Neural Networks
via Exploiting Floats Similarity

Zhenbo Hu§,∗, Xiangyu Zou§,∗, Wen Xia§,$, Sian JinZ , Dingwen TaoZ , Yang Liu§,$,
Weizhe Zhang§,$, Zheng Zhang§

§School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China
$Cyberspace Security Research Center, Peng Cheng Laborary, Shenzhen, China

Z School of Electrical Engineering and Computer Science, Washington State University, WA, USA
zhenbohu.hitsz@gmail.com,xiangyu.zou@hotmail.com
{xiawen,liu.yang,wzzhang,zhengzhang}@hit.edu.cn

{sian.jin,dingwen.tao}@wsu.edu

ABSTRACT
Deep neural networks (DNNs) have gained considerable attention
in various real-world applications due to the strong performance on
representation learning. However, a DNN needs to be trained many
epochs for pursuing a higher inference accuracy, which requires
storing sequential versions of DNNs and releasing the updated ver-
sions to users. As a result, large amounts of storage and network
resources are required, significantly hampering DNN utilization on
resource-constrained platforms (e.g., IoT, mobile phone).

In this paper, we present a novel delta compression framework
called Delta-DNN, which can efficiently compress the float-point
numbers in DNNs by exploiting the floats similarity existing in
DNNs during training. Specifically, (1) we observe the high simi-
larity of float-point numbers between the neighboring versions of a
neural network in training; (2) inspired by delta compression tech-
nique, we only record the delta (i.e., the differences) between two
neighboring versions, instead of storing the full new version for
DNNs; (3) we use the error-bounded lossy compression to compress
the delta data for a high compression ratio, where the error bound
is strictly assessed by an acceptable loss of DNNs’ inference accu-
racy; (4) we evaluate Delta-DNN’s performance on two scenarios,
including reducing the transmission of releasing DNNs over the
network and saving the storage space occupied by multiple versions
of DNNs.

According to experimental results on six popular DNNs, Delta-
DNN achieves the compression ratio 2×-10× higher than state-of-
the-art methods, while without sacrificing inference accuracy and
changing the neural network structure.

* Z. Hu and X. Zou equally contributed to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8816-0/20/08. . . $15.00
https://doi.org/10.1145/3404397.3404408

KEYWORDS
Lossy compression, neural network, delta compression

1 INTRODUCTION
In recent years, deep neural networks (DNNs) have been widely
applied to many artificial intelligence tasks in various scientific
and technical fields, such as computer vision [44], natural language
processing [4]. Generally, DNNs are designed to solve complicated
and non-linear problems (e.g., the face recognition [45]) by using
multi-layer structures, which consist of millions of parameters (i.e.,
floating-point data types).

To further improve the data analysis capabilities by increasing
the inference accuracy, DNNs are becoming deeper and more com-
plicated [43]. Meanwhile, the frequent training of DNNs results in
huge overheads for storage and network. The overheads overwhelm
resource-constrained platforms such as mobile devices and IoT de-
vices. For instance, a typical use case is to train a DNN in the cloud
servers using high-performance accelerators, such as GPUs or TPUs,
and then transfer the trained DNN model to the edge devices to
provide accurate, intelligent, and effective services [20], while the
cloud to edge data transfer is very costly.

Compressing neural networks [32] is an effective way to reduce
the data transfer cost. However, existing approaches focus on simpli-
fying DNNs for compression such as pruning [21, 33], low-rank ap-
proximation [14], quantization [12, 37], knowledge distillation [11],
and compact network design [38, 55]. These methods usually operate
on models that have already been trained, modifying the model struc-
ture and may make the model untrainable [30]. Therefore, in this
paper, we focus on designing an approach to effectively compressing
DNNs without changing their structures.

Existing studies [15, 24] suggest that DNNs are difficult to be
compressed using traditional compressors (e.g., GZIP [5], LZMA [35])
since there are large amounts of floating-point numbers with the ran-
dom ending mantissa bits. However, our observation on existing
DNNs suggests that most of the floating-point values only slightly
change during the training of DNNs. Thus, there exists data simi-
larity between the neighboring neural networks1 in training, which
means we only need to record the delta (i.e., the differences) of

1Neighboring neural networks in this paper refers to the checkpointed/saved neural
network models in the training epochs/iterations.

https://doi.org/10.1145/3404397.3404408

the data between two neighboring versions for potentially higher
data reduction. Moreover, considering the locality of the delta, error-
bounded lossy compression mechanisms can be very effective.

In this paper, we present a novel delta compression framework
called Delta-DNN to efficiently compress DNNs with a high com-
pression ratio by exploiting the data similarity existing in DNNs
during training. Our contributions are four-fold:

(1) We observe the high similarity of floating-point numbers (i.e.,
parameters) existing in the neighboring versions of a DNN,
which can be exploited for data reduction.

(2) We propose to only store the delta data between neighboring
versions, then apply error-bounded lossy compression to the
delta data for a high compression ratio. The error bound
is strictly assessed by the maximal tolerable loss of DNNs’
inference accuracy. To the best of our knowledge, this is the
first work to employ the idea delta compression for efficiently
reducing the size of DNNs.

(3) We discuss Delta-DNN’s benefits on two typical scenarios,
including significantly reducing the bandwidth consumption
when releasing DNNs over the network and reducing the
storage requirements by preserving versions of DNNs.

(4) Our evaluation on six popular DNNs suggests that compared
with state-of-the-art compressors including SZ, LZMA, and
Zstd, Delta-DNN can improve the compression ratio by 2× to
10× while keeping the neural network structure unchanged at
the cost of only losing inference accuracy by less than 0.2%.

The rest of the paper is organized as follows. Section 2 presents
the background and motivation of this work. Section 3 describes
the design methodologies of the Delta-DNN framework in detail.
Section 4 discusses the two typical application scenarios of Delta-
DNN. Section 5 discusses the evaluation results of Delta-DNN on
six well-known DNNs, compared with state-of-the-art compressors.
In Section 6, we conclude this paper and present our future work.

2 BACKGROUND AND MOTIVATION
In this section, we present the necessary background about data
compression techniques, compressibilities of DNNs, lossy compres-
sion of floats, and also discuss our critical observations of the data
similarity existing in DNNs as our research motivation.

2.1 Data Compression Techniques
Recently, data grows exponentially in cloud computing, big data,
and artificial intelligence environments. As a result, efficient data
compression techniques are especially important for data reduction.
Generally, data compression can be categorized into lossless com-
pression and lossy compression techniques.

General lossless compression, such as GZIP [5], LZMA [35],
and Zstd [57], has been developed for decades. These techniques usu-
ally deal with data as byte streams, and reduce data at the byte/string
level based on classic algorithms such as Huffman coding [13] and
dictionary coding [56]. These fine-grained data compression tech-
niques are extremely compute-intensive, and are usually used to
eliminate redundancies inside a file or in a limited data range.

Recently, some other special lossless compression techniques
have been proposed, such as data deduplication [8, 31], and delta
compression [42], which eliminates redundancies among files. For

example, data deduplication, a coarse-grained compression tech-
nique, detects and eliminates the duplicate chunks/files among the
different backup versions in backup storage systems. Delta compres-
sion observes the high data similarity and thus the high data redun-
dancies in the neighboring versions of the (modified) files in backup
storage systems, and then records the delta data (the differences)
of them for space savings [42, 51], by eliminating redundancies
between the similar files at the byte- and string-level.

Lossy compression also appears for decades. The typical lossy
compressors are for images, and their designs are based on human
perception, such as JPEG2000 [36]. Thus they use lossy compression
techniques, such as wavelet transform and vector optimization, to
dramatically reduce the image data sizes.

Nowadays, more attention is paid to the lossy compression of
floating-point data generated from HPC. The most popular lossy
compressor includes ZFP [27], SZ [6, 26, 47]. ZFP is an error-
controlled lossy compressor designed for scientific data. Specifically,
ZFP first transforms the floating-point numbers to fixed-point data
values block by block. Then, a reversible orthogonal block transfor-
mation is applied in each block to mitigate the spatial correlation,
and embedded coding [39] is used to encode the coefficients.

SZ, another lossy compressor, is designed for scientific data focus-
ing on a high compression ratio by fully exploiting the characteristics
of floating-point numbers. Specifically, there is a data-fitting predic-
tor in SZ’s workflow, which generates a predicted value for each
data according to its surrounding data (i.e., data’s spatial correla-
tion). Predictor utilizes the characteristics (or the rules) in floats for
prediction while ensuring the point-wise error controls on demand.
Consequently, the difference between the predicted value and the
real value will be quantized, encoded, and batch compressed, which
often achieve a much higher compression ratio than directly com-
pressing the real value. Note that SZ’s compression ratio depends
on the predictor design, and also the rules are existing in the data.
Thus, to achieve a high compression ratio, some variants of SZ try
to explore more rules existing in the data, such as the temporal
correlation and spatiotemporal decimation [23, 25].

2.2 Compressing DNNs
Recently, with the rise of AI boom, efficiently compressing deep neu-
ral networks (DNNs) are also gaining increasing attention. However,
this is not easy, due to that DNNs consist of many floating-point
numbers generated from training on a large amount of users’ data,
which is of very low compressibility.

A widely adopted method of training DNNs is called Gradient
Descent [19], which usually generates large amounts of floating-
point numbers and requires lots of resources (e.g., memory, storage,
and network). More specifically, in the training process of a DNN, a
snapshot will be generated periodically for backup, to prevent the
case of accuracy decreasing by over-fitting the DNN. Thus, storing
many versions of DNNs is space-consuming, and also the case of
frequently dispatching a new version of DNN to users, is becoming
a challenge for using DNN in practical, especially in the resource-
limited scenarios, such as mobile phones and wireless sensors.

Generally, compressing DNNs means compressing a large amount
of very random floating-point numbers. Due to the strong random-
ness of the ending mantissa bits in DNNs’ floats, existing traditional

2

compression approaches only achieve a very limited compression
ratio on DNNs according to recent studies [28, 41], both lossless
compressors (such as GZIP [5], Zstd [57], and LZMA [35]) and
lossy compressors (such as SZ [6, 26, 47] and ZFP [27]).

Therefore, other special technologies for compressing DNNs are
proposed, such as pruning [7, 21, 33] and quantization [12, 37].
Deep Compression [9] uses the techniques of pruning (removing
some unimportant parameters), quantization (transforming the floats
into integers), and Huffman coding to compress DNNs, which may
change the neural network structure (by pruning) and may signifi-
cantly degrade the networks’ inference accuracy (by quantization
and pruning). Therefore, the network needs to be retrained many
times to avoid accuracy degradation, thus resulting in huge execu-
tion overheads. DeepSZ [15] combines SZ lossy compressor and the
pruning technique to achieve a high compression ratio on DNNs, but
it may also change the structure of networks due to pruning.

There are also some other approaches focusing on not only com-
pressing the storage space of DNNs but also simplifying the models
in DNNs to reduce computation, which is called structured prun-
ing [21, 50]. For example, Wen et al. [50] added a LASSO (Least
Absolute Shrinkage and Selection Operator) regular penalty term
into the loss function to realize the structured sparsity of DNNs. Li
et al. [21] proposed a method of pruning the filter of convolutional
layers to remove the unimportant filters accordingly.

Overall, the pruning or quantization based approaches will de-
stroy the completeness of the structure of DNNs, and may degrade
the inference accuracy. In this paper, we focus on using the tradi-
tional compression approaches to compress the parameters of DNNs
without changing DNNs’ structures.

2.3 Observation and Motivation
As introduced in the last subsection, there are many parameters (i.e.,
floating-point numbers) in a neural network, and in the training pro-
cess (i.e., Gradient Descent), some parameters in the networks vary
greatly while some parameters vary slightly. According to our ex-
perimental observations, most of the parameters vary slightly during
training, which means data similarity exists (i.e., data redundancy)
among the neighboring neural network versions.

To study the similarity in DNNs, we collect 368 versions of
six popular neural networks in training (six DNNs’ characteristics
and the training dataset will be detailed in Subsection5.1) and then
linearly fit all the corresponding parameters from every two neigh-
boring networks (including all layers) as shown in Figure 1. Besides,
in this test, we use the metric of Structural Similarity (SSIM) [49]
(also shown in Figure 1), which is widely used to measure the simi-
larity of two bitmap pictures. Because bitmap pictures and neural
networks both can be regarded as matrices, it is reasonable to use
this metric to measure the similarity of two networks.

Observation: the results shown in Figure 1 suggest the floating-
point numbers of the neighboring networks are very similar: 1○ the
results of the linear fitting are very close to 𝑦 = 𝑥 . Specifically, in
Figure 1, the x-axis and y-axis denote the parameters of two neigh-
boring network versions, respectively. We can observe a clear linear
relationship, which reflects the extremely high similarity between
the neighboring neural network models. 2○ the SSIM is very close
to 1.0, which usually suggests that bitmaps are very similar [49].

Although there exists data similarity, parameters in neighboring
versions of DNNs are completely different in terms of bit repre-
sentation due to the random ending mantissa bits. Thus, traditional
lossless compression methods can not achieve an ideal compression
ratio on these similar floats in DNNs. Meanwhile, SZ compressor
can well compress the similar floats (i.e., the rule existing in floats)
by using a data-fitting predictor and an error-controlled quantizator.

Therefore, according to the above observation and discussion, we
present the motivations of this paper: Motivation 1○, inspired by
the delta compression technique used in the area of backup stor-
age, we can calculate the delta data (i.e., difference) of the similar
floats between neighboring networks, which is very compressible
in the lossy compression; Motivation 2○, we employ the ideas of
error-bound SZ lossy compression, i.e., a data-fitting predictor and
an error-controlled quantizator, to compress the delta data while
ensuring the inference accuracy loss under control.

The two motivations, combined with our observations of floats
similarity existing in DNNs, inspire us to adopt delta compression
and error-bounded lossy compression with high compressibility.
Specifically, regarding there exists floats similarity between two
neighboring versions of a DNN (see Figure 1), we propose an “inter-
version” predictor to predict the corresponding data value between
two neighboring network versions, which will achieve a much higher
compression ratio (as demonstrated in Section 5), and the specific
techniques will be introduced in Section 3.

Note that DeepSZ [15] also uses the error-bounded SZ lossy com-
pression to compress DNNs, and the key difference between DeepSZ
and our approach Delta-DNN is that DeepSZ directly compresses
floats one-by-one on DNNs combining with some pruning tech-
niques (may change the network structure [30]). At the same time,
Delta-DNN exploits the floats similarity of neighboring networks
for lossy compression to target at a much higher compression ratio
on DNNs regardless of whether or not to use the pruning techniques.

3 DESIGN AND IMPLEMENTATION
Generally, Delta-DNN runs after the time-consuming training or fine-
tuning of the network on the training datasets (to get the updated
neural networks). In this section, we describe Delta-DNN design
in detail, including exploiting similarity of the neighboring neural
networks to calculate the lossy delta data, optimizing parameters,
and encoding schemes.

3.1 Overview of Delta-DNN Framework
The general workflow of Delta-DNN framework is shown in Figure
2. To compress a neural network (called target network), we need a
reference neural network, which is usually the former version of the
network in training, and Delta-DNN will calculate and compress the
delta data of two networks for efficient space savings. Specifically,
Delta-DNN consists of three key steps: calculating the delta data,
optimizing the error bound, and compressing the delta data.

(1) Calculating the delta data is to calculate the lossy delta data
of the target and reference networks (including all layers),
which will be much more compressible than directly com-
pressing the floats in DNNs, as detailed in Subsection 3.2.

(2) Optimizing the error bound is to select the suitable error
bound used for maximizing the lossy compression efficiency

3

(a) VGG-16, SSIM: 0.99994 (b) ResNet101, SSIM: 0.99971 (c) GoogLeNet, SSIM: 0.99999

(d) EfficientNet, SSIM: 0.99624 (e) MobileNet, SSIM: 0.99998 (f) ShuffleNet, SSIM: 0.99759

Figure 1: Parameter similarity (using linear fitting) of the neighboring neural networks in training, from the six popular DNNs.

Calculating the Delta Data &Optimizing the Error Bound Compressing the Delta Data

ca
lc
ul
at
in
g

different relative error param

an
al
yz
e

co
m
pr
es
sin

g

reference
network

target
network

decompressed
network

compressed
binary file

compute score

reference
network

Figure 2: Overview of Delta-DNN framework for compressing deep neural networks.

while meeting the requirements of the maximal tolerable loss
of DNNs’ inference accuracy, as detailed in Subsection 3.3.

(3) Compressing the delta data is to reduce the delta data size by
using the lossless compressors, as detailed in Subsection 3.4.

In the remainder of this section, we will discuss these three steps
in detail to show how Delta-DNN efficiently compresses the floating-
point numbers by exploiting their similarity.

3.2 Calculating the Delta Data
In Delta-DNN, because of the observed floats similarity existing in
the neighboring networks, the corresponding parameters (i.e., floats)
of the target network and reference network will be calculated their
lossy delta data, following the idea of SZ lossy compressor [6, 26,
47]. Specifically, we denote a parameter from the target network as
𝐴𝑖 and the corresponding parameters from the reference network as
𝐵𝑖 , and the lossy delta data of the floats 𝐴𝑖 and 𝐵𝑖 can be calculated
and quantized as below.

𝑀𝑖 = ⌊
𝐴𝑖 − 𝐵𝑖

2 · 𝑙𝑜𝑔(1 + 𝜖) + 0.5⌋ (1)

Here 𝜖 is the predefined relative error bound used for SZ lossy
compression (e.g., 1E-1 or 1E-2), and 𝑀𝑖 is an integer (called ‘quan-
tization factor’) for recording the delta data of 𝐴𝑖 and 𝐵𝑖 . This delta
calculation of floats shown in Equation (1) is demonstrated to be very
efficient in lossy compression of scientific data (i.e., compressing
large amounts of floats) where the ‘quantization factors’ (i.e., the
integers 𝑀𝑖) are highly compressible [26].

In Delta-DNN, according to the similarity we observed in Sub-
section 2.3, we believe that 𝐴𝑖 − 𝐵𝑖 will be very small in most cases,
which means most of 𝑀𝑖 are equal to zero. Therefore, the ‘quantiza-
tion factors’ 𝑀 are also very compressible in Delta-DNN as that in
Scientific data. Then the target network will be replaced by “the 𝑀𝑖

network” (the lossy delta data) for space savings in Delta-DNN.
With the delta data (i.e., amounts of 𝑀𝑖) and the reference network

(i.e., 𝐵𝑖), we can recover (i.e., decompress) the target network (i.e.,
the parameters 𝐴𝑖) as illustrated in Equation (2) with a limited loss

4

based on the error bound 𝜖: |𝐴𝑖 −𝐴′𝑖 | < 𝜖.

𝐴′𝑖 = 2 ·𝑀𝑖 · 𝑙𝑜𝑔(1 + 𝜖) + 𝐵𝑖 (2)

All in all, the delta data 𝑀𝑖 between the target and reference
networks are very compressible, while its compression ratio depends
on the two key factors. The first factor is the similarity of the data 𝐴𝑖

and 𝐵𝑖 , which is demonstrated to be very high in Subsection 2.3. The
second one is the predefined relative error bound 𝜖 used for lossy
compression, which also impacts the inference accuracy of DNNs in
our lossy delta compression framework. The selection of the error
bound 𝜖 used in our Delta-DNN will be discussed in Subsection 3.3.

3.3 Optimizing the Error Bound
In this subsection, we discuss how to get a reasonable relative error
bound 𝜖 to maximize the compression ratio of Delta-DNN without
compromising DNNs’ inference accuracy.

From Equation (1) described in Subsection 3.2, we can know that
the larger error bound results in the smaller ‘quantization factor’
and thus the higher compression ratio. Nevertheless, at the same
time, it leads to an uncertain inference accuracy loss of DNNs.
This is because the recovered target network parameters would vary
randomly (i.e., sometimes larger, sometimes smaller) along with
different error bounds, after decompression in Delta-DNN.

Figures 3 and 4 show examples of studying the impact of the error
bound 𝜖 on the final compression ratio on DNNs, with Delta-DNN
running on six well known DNNs. Generally, the results demonstrate
our discussion in the last paragraph that Delta-DNN can achieve a
higher compression ratio (see Figure 4) but cause uncertain inference
accuracy when increasing the error bounds (see Figure 3).

Note that Figure 3 shows of the inference accuracy of the last
model files on six DNNs using Delta-DNN with different error
bounds. Figure 3 (c) has a significant accuracy decrease, and we
also observe this phenomenon among the different training stages
in other DNNs. This is because gradient descents are nonlinear, and
some steps of them seem to be more sensitive.

Therefore, in Delta-DNN’s workflow of calculating the delta data,
we need to find a reasonable error bound for both considering the
two key metrics: the compression ratio and the inference accuracy
loss on DNNs. Moreover, we need to design a flexible solution to
meet the users’ various requirements on both the two metrics while
strictly ensuring the inference accuracy loss is acceptable for DNNs
(e.g., 0.2% as shown in Figure 3).

To this end, Algorithm 1 presents our method of selecting an
optimal error bound by assessing its impact on both compression
ratio and inference accuracy loss on DNNs. Generally, it consists
of two steps: 1○ Collecting the results of compression ratio and
the inference accuracy degradation along with the available error
bounds, while meeting the requirement of the maximal tolerable
accuracy loss of the tested DNN, 2○ Assessing the collected results
to select an optimal error bound according to Formula (3) as below.

𝑆𝑐𝑜𝑟𝑒 = 𝛼 · Φ + 𝛽 · Ω, (𝛼 + 𝛽 = 1) (3)

where Φ is the relative loss of inference accuracy (calculated the
recovered network after decompression, compared with the original
network); Ω is the compression ratio (i.e., the ratio of before/after
compression); 𝛼 and 𝛽 are the influencing weights defined by users,
which are used to fine-tune the importance of Φ and Ω in Formula

Algorithm 1: Error Bound Assessment and Selection
Input: Target network: 𝑁1; Reference network: 𝑁2;
Accepted accuracy loss: \ ; Available error bounds: 𝐸𝐵;
Compression ratio of network 𝑁 with error bound 𝜖: Ω (𝑁, 𝜖);
Accuracy degradation of network 𝑁 with error bound 𝜖: Φ(𝑁, 𝜖);
Output: The best error bound: 𝐸𝐵𝑏𝑒𝑠𝑡 ;
//𝛼, 𝛽 are weights of compression ratio & accuracy defined by user;
for 𝜖 in 𝐸𝐵 do
{Φ(𝑁1, 𝜖),Ω (𝑁1, 𝜖) } ← 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 (𝑁1, 𝑁2, 𝜖);
if 𝑎𝑏𝑠 (Φ(𝑁1, 𝜖)) < \ then

save {Φ(𝑁1, 𝜖),Ω (𝑁1, 𝜖) } in 𝑆𝑒𝑡𝑠;

𝑆𝐶𝑂𝑅𝐸𝑏𝑒𝑠𝑡 ← 0;
𝐸𝐵𝑏𝑒𝑠𝑡 ← _; //_ is user-defined default minimal error bound;
for {Φ(𝑁1, 𝜖),Ω (𝑁1, 𝜖) } in 𝑆𝑒𝑡𝑠 do

𝑆𝑐𝑜𝑟𝑒 ← 𝐶𝑎𝑙𝑐𝑆𝑐𝑜𝑟𝑒 (Φ(𝑁1, 𝜖),Ω (𝑁1, 𝜖), 𝛼, 𝛽);
if 𝑆𝑐𝑜𝑟𝑒 > 𝑆𝐶𝑂𝑅𝐸𝑏𝑒𝑠𝑡 then

𝑆𝐶𝑂𝑅𝐸𝑏𝑒𝑠𝑡 ← 𝑆𝑐𝑜𝑟𝑒;
𝐸𝐵𝑏𝑒𝑠𝑡 ← 𝜖;

return 𝐸𝐵𝑏𝑒𝑠𝑡 ;

(3), and 𝛼 + 𝛽 = 1 (e.g., the user can set 𝛼 = 0, 𝛽 = 1 to maximize
the importance of compression ratio in Delta-DNN).

Thus, as shown in Formula (3) and Algorithm 1, we use the 𝑆𝑐𝑜𝑟𝑒
to assess the compression efficiency of Delta-DNN to select the
optimal error bound for DNNs, satisfying users’ requirements on
both the compression ratio and the inference accuracy of DNNs.

Note that the computation cost of Algorithm 1 is minor compared
with the training process of DNNs, which is explained as below.
Generally, the time complexity of Algorithm 1 is 𝑂 (𝑛 · (𝜏 + 𝑒 +
𝑑)), where 𝑛 is the number of error bounds for testing, and 𝑛 is
equal to 10 in this paper; 𝑂 (𝜏) is the time complexity of testing
a network’s inference accuracy on a testing dataset; 𝑂 (𝑒) is the
time complexity of compressing a network, and 𝑂 (𝑑) is the time
complexity of decompressing a network (usually negligible [15]).
The time costs of compressing and testing (for DNN accuracy) are
both positively related to the size of the network while compressing
is usually faster than testing (for DNN accuracy). Hence, the time
complexity of Algorithm 1 can be simplified to 𝑂 (𝑛 · 𝑘 · 𝜏) where
1 < 𝑘 < 2. Delta-DNN is running after the time-consuming training
or fine-tuning of the network on the training datasets. Specifically,
in deep neural networks, the time complexity of training DNN on
the training datasets 𝑂 (𝑀) over that of verifying DNN’s accuracy
on the testing datasets, is usually 99:1 2, so the time complexity of
Algorithm 1 is about 𝑂 (𝑛 ·𝑘 ·𝑀99) ≈ 𝑂 (𝑀5), which is much smaller
than the training time complexity 𝑂 (𝑀) in deep learning.

3.4 Compressing the Delta Data
After calculating the lossy delta data (i.e., ‘quantization factor’ as
introduced in Equation (1) in Subsection 3.2) with the optimized
error bound according to the requirement of the inference accuracy
of DNNs, Delta-DNN then compresses these delta data using the
lossless compressors, such as Zstd and LZMA, which is widely used
to compress ‘quantization factor’ in lossy compression [6]. Here
before using Zstd and LZMA in Delta-DNN, we introduce Run-
Length Encoding (RLE) that efficiently records the duplicate bytes

2Andrew Ng. https://www.deeplearning.ai/

5

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%
Relative Error Bound

92.0%

92.1%

92.2%

92.3%

92.4%

92.5%

In
fe
re
nc
e
Ac
cu
ra
c%

ΔΔDNN Accurac%
Original Accurac%
Acce ted Accurac%

(a) VGG-16

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%
Relative Error Bound

92.9%

93.0%

93.1%

93.2%

93.3%

93.4%

In
fe
re
nc
e
Ac
cu
ra
c%

ΔΔDNN Accurac%
Original Accurac%
Acce ted Accurac%

(b) ResNet101

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%
Relative E o Bound

65%
70%
75%
80%
85%
90%
95%

In
fe

 e
nc

e
Ac

cu
 a

cy

%ΔDNN Accu acy
O iginal Accu acy
Accepted Accu acy

(c) GoogLeNet

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%
Relative Error Bound

84.0%

84.2%

84.4%

84.6%

84.8%

In
fe
re
nc
e
Ac
cu
ra
c%

ΔΔDNN Accurac%
Original Accurac%
Acce ted Accurac%

(d) EfficientNet

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%
Relative Error Bound

92.5%
92.6%
92.7%
92.8%
92.9%
93.0%
93.1%

In
fe
re
nc
e
Ac
cu
ra
c%

ΔΔDNN Accurac%
Original Accurac%
Acce ted Accurac%

(e) MobileNet

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%
Relative Error Bound

85.8%
85.9%
86.0%
86.1%
86.2%
86.3%
86.4%
86.5%

In
fe
re
nc
e
Ac
cu
ra
c%

ΔΔDNN Accurac%
Original Accurac%
Acce ted Accurac%

(f) ShuffleNet

Figure 3: Inference accuracy of the last model files on six neural networks using Delta-DNN with different error bounds.

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%
Relative Error Bound

5
6
7
8
9

10
11

Co
m

pr
es

sio
n

Ra
tio

GoogLeNet
MobileNet
ShuffleNet
VGG-16
EfficientNet
ResNet101

Figure 4: Compression ratio of Delta-DNN using different rela-
tive error bounds on six neural networks.

for quick space saving. This is because the delta data are calculated
from the very similar floats of the neighboring neural networks,
which is very compressible.

Figure 5 shows the compression ratio of four types of compressors
in Delta-DNN on six DNNs, which suggests RLE+ LZMA achieves
the highest compression ratio than others. Thus we adopt this hybrid
approach combining RLE and LZMA to compress the lossy delta
data into the compressed binary file in Delta-DNN.

VGG-16
ResNet101

GoogLeNet

EfficientNet

MobileNet

ShuffleNet

5

10

15

20

25

Co
m
pr
es
sio

n
Ra

tio

Zstd
LZMA
RLE+Zstd
RLE+LZMA

Figure 5: Compression ratios of Delta-DNN running 4 compres-
sors (to process the lossy delta data) in error bound 10%.

To recover the target network, as also shown in Figure 2, we will
decompress the compressed binary file by LZMA to get the delta data
𝑀𝑖 , to recover all the parameters in the target network according
to the reference network and the delta data 𝑀𝑖 (as illustrated in
Equation (2) in Subsection 3.2), which is very fast.

4 TYPICAL APPLICATION SCENARIOS
In this section, we introduce two typical application scenarios for
delta compressing the deep neural networks (or called model) using
Delta-DNN: optimizing the network transmission and saving the
storage space for DNNs.

4.1 Optimizing Network Transmission for DNNs
In view of the effect of Delta-DNN framework, calculating and
compressing the delta data between neighboring neural networks,
we consider one of the current popular ways: DNNs are trained
on the server and deployed locally on the client [21, 29] (such as
mobile device [53] and IoT device [22]). Therefore, the process
of transferring the newly trained model (i.e., the latest version of
the deep neural network) from the server to the client is usually
similar to that of the software updating on the smart devices. It
can be regarded as packaging the DNN (or called the model) into
an updating package (usually using lossless compressors to reduce
size) on the server and then transmitting it to the target devices via
network.

In this scenario, the network of the resource-constrained clients
is usually a system bottleneck when updating DNNs [3, 9, 18].
Thus, applying Delta-DNN in this scenario, as shown in Figure 6,
can optimize the network transmission for DNNs by compression.
Specifically, we deploy Delta-DNN on the server, calculate and com-
press the lossy delta data of the target model along with the reference
model, and then transmit the compressed file to the client devices.

6

target network

reference network

compressed
file

decompressed
network

compressed
filenetwork

transmission

local reference
network

SERVER CLIENTS
Figure 6: Delta-DNN for reducing network transmission.

On the client devices, Delta-DNN is also deployed for decompres-
sion, and the delta data will be decompressed for recovering the
target model along with the reference model.

In this scenario, the client only needs to download the full network
model package when installing the model at the first time, and when
updating, it only needs to download the lossy delta data generated
by Delta-DNN (from the server), which can efficiently reduce the
network overhead of transferring the updated model. And we also
evaluate Delta-DNN performance on this scenario in Section 5.3.
Note that here we should always guarantee that: 1○ the target network
always remains the same as the traditional way (i.e., without using
Delta-DNN) during training; 2○ the reference network on the clients
(used for decompression) is the same as the reference network on the
server (used for compression, it is also a lossy version). Therefore,
the accuracy loss is always under control.

4.2 Saving Storage Space for DNNs
In many applications, neural networks are trained with dynamically
growing datasets (i.e., size of training data will be enlarged in appli-
cations with time) or different tasks (e.g., Transfer Learning [54]),
and the network model needs to be continuously trained and updated.
Thus multiple snapshots or versions of DNNs are saved in the train-
ing process for the possible purposes of avoiding over-fitting [1],
Transfer Learning, and Incremental Learning [2].

Version 3

Version 4

training

Neural Network Training Neural Network Storage

Compressed V3

Compressed V4Delta-DNN

Direct Storage

Version 2

Version 1

Compressed V2

Version 1

training

training

Delta-DNN

Delta-DNN

Figure 7: Delta-DNN for reducing storage cost.

In this scenario, with Delta-DNN, the original version of the
neural network will be fully saved, and the following versions will

be saved as a lossy delta data which is much smaller than the full
version, and thus the storage space will be greatly reduced, which
is shown in Figure 7. The left part in Figure 7 represents the model
training/fine-tuning processes and the model storage process in the
traditional way; The right part indicates that Delta-DNN is applied.
After processing by Delta-DNN, only the lossy delta data of the two
neighboring versions will be stored, instead of the full model, and
thus the consumption of storage for DNNs can be greatly reduced,
which will be evaluated in Section 5.4.

When recovering a model for retraining/fine-tuning, Delta-DNN
just needs to process the lossy delta data along with the reference
model. Note that there is a delta “chain” [42, 51] in this scenario
as shown in Figure 7: to recover the target network v4, Delta-DNN
needs to first recover the reference network v3 and thus another
reference network v2, which is time-consuming. To guarantee the
recovering performance of the latest version, backward encoding
(using the latest one as the reference network) or hop encoding
(selectively and fully storing some networks), which are widely used
in the traditional delta compression based storage systems [51, 52].

4.3 Discussion
Using Delta-DNN without pre-known accuracy: In some prac-
tical use cases, we need to apply DNNs on a new task, and the
accuracy in this situation is unknown to us. In this case, although the
actual accuracy is not available, the inference accuracy in training
and testing can be acquired, and an ‘acceptable‘ loss of accuracy
can be defined and adjusted based on the testing inference accuracy.
On the other hand, the error bound range in the paper (configured
as 1%-10%) is just for the demonstration purpose. Respecting the
individual use cases, a user can set and adjust their error bound range
according to their applications to obtain an optimal result.

Parallelizing the compression process in Delta-DNN: In sub-
section 3.3, the compressing process needs to acquire the inference
accuracy on each error bound, and the process is a loop, which is
shown in Algorithm 1. Therefore, the time cost is nearly to 𝑂 (𝑛),
where 𝑛 is the number of candidate error bounds. To accelerate the
compression process, we can run Algorithm 1 parallel with multi-
thread or multi-progress.

Compression overhead of Delta-DNN on larger datasets: In
subsection 3.3, Algorithm 1 needs to compress and decompress
the model several times to explore the effects of error bounds, and
pick up the best one. In this process, the main overhead is to obtain
the inference accuracy on each error bound after compression and

7

decompression. Obtaining the inference accuracy means running de-
compressed DNNs on a user-specified test dataset, and the overhead
is linear related to the size of the dataset. To reduce this overhead,
there are some solutions to effectively reduce the size of test datasets,
like Dataset Distillation [48] or analyze the distribution of datasets.

5 PERFORMANCE EVALUATION
In this section, we evaluate our proposed Delta-DNN framework
compared with state-of-the-art compressor Zstd, LZMA, SZ (also
used in DeepSZ [15]), on six popular DNNs.

5.1 Experimental Setup
We conduct our experiments on an Ubuntu server with an Intel Xeon
Gold 6130 processor (with 128 GB of memory) and a NVIDIA
TITAN RTX GPU (with 24 GB of memory).

We implement Delta-DNN based on the known Pytorch deep
learning framework [34]. Six popular DNNs3 are used in our eval-
uation: VGG-16 [40], ResNet101 [10], GoogLeNet [43], Efficient-
Net [46], MobileNet [38], and ShuffleNet [55]. We train each neural
network on CIFAR-10 dataset [17] by SGD with Batch Normal-
ization and momentum (learning rate=0.01, momentum=0.9, and
weight decay=1e-4). These neural networks and the dataset are com-
monly used in amounts of studies for DNNs compression [29, 50].

In Delta-DNN framework, we set the default relative error bounds
as 0.1% and the optimized error bound is selected from 1%∼10%
according to Algorithm 1 (where 𝛼 and 𝛽 are all set to 0.5). In terms
of neural network preserving, we generally follow the best inference
accuracy method, that is, during training, the epoch will be saved if
the inference accuracy of the neural network has been improved on
the test dataset, or within a fixed epochs interval (e.g., save the first
one for every 20 epochs).

Three state-of-the-art compressors are evaluated for comparison
in this section: Zstd, LZMA, and SZ, which are used directly on the
floats of the evaluated DNNs. Zstd is short for Zstandard [57], which
is developed recently by Facebook, and it consists of dictionary
coding and entropy coding techniques. LZMA is a compression
approach focusing on the compression ratio, also known as 7zip [16].
SZ is an open-source project for compressing large amounts of
scientific data, and is also used in DeepSZ [15] for compressing
floats after using the pruning techniques. Among them, Zstd and
LZMA belong to the lossless compression, while SZ is for lossy
compression (similar to Delta-DNN). To get the optimal error bound
for SZ, we also use Algorithm 1 for SZ to select the best error bound
from 1%∼10%, with the same configuration as Delta-DNN.

5.2 Compression Performance of Delta-DNN
In this subsection, we evaluate the overall compression performance
of Delta-DNN, mainly using two metrics: compression ratio and in-
ference accuracy of DNNs. In the evaluation, the acceptable relative
inference accuracy loss for Delta-DNN and SZ is set to 0.2%, which
reflects the maximal tolerable accuracy loss using lossy compression,
as discussed in Subsection 3.3.

Table 1 shows the compression ratio results of the four compres-
sors on six popular DNNs: compressing the last epoch of the neural
network that has the highest inference accuracy. Among them, Zstd
3https://github.com/kuangliu/pytorch-cifar.

and LZMA are lossless compression algorithms, and both of them
do not cause any changes in inference accuracy. As the lossy com-
pressors, the network inference accuracy results of Delta-DNN and
SZ, are also shown in this table. For comparison to the original
DNN accuracy before lossy compression, the percentage differences
(in parentheses) are also calculated in the table, where ‘-’ means
accuracy loss and ‘+’ means accuracy gain.

As shown in Table 1, Delta-DNN achieves the highest compres-
sion ratio while keeping the inference accuracy less than 0.2%. SZ is
the second-best compressor in Table 1, using a smaller error bound
and obtains a slightly higher accuracy loss than Delta-DNN. This is
because: the to-be-compressed data in our Delta-DNN framework,
namely, the float pairs in the neighboring networks, are more com-
pressible than that in the SZ framework, i.e., the neighboring floats
in the data arrays. Meanwhile, LZMA and Zstd achieve the lowest
compression ratio, all less than 1.1, due to the known reason that
the floating-point numbers with the random ending mantissa bits are
difficult to be compressed (by lossless compressors).

Table 2 further studies the compression ratio and inference ac-
curacy of Delta-DNN and the other three compressors on different
epochs of VGG-16. Here the epochs of VGG-16 (i.e., the stable
versions) are saved only if the inference accuracy has been improved
over the last saved epoch on the datasets during training. The results
shown in this table are generally consistent with that in Table 1,
which suggests Delta-DNN achieves the highest compression ratio
and the comparable inference accuracy in all the tested five epochs.
Note that the results of other DNNs are similar to those of VGG-16
and are omitted due to space limit.

In all, by exploiting the floats similarity existing in the neighbor-
ing networks for the efficiently lossy delta compression, Delta-DNN
achieves about 2× ∼ 10× higher compression ratio compared with
the state-of-the-art approaches, LZMA, zstd, and SZ, while keeping
the inference accuracy loss smaller than 0.2%.

5.3 Case 1: Optimizing Network Transmission
Network transmission of DNNs is a widely used application scenario
for deep learning. In this subsection, we use the statistical global
average network bandwidth from the SPEEDTEST tool 4 as the test
bandwidth, to evaluate the transmission time required for DNNs,
after compression by Delta-DNN and other approaches.

As discussed in Subsection 4.1, Delta-DNN is designed to re-
duce network transmissions by delta compressing the neighboring
neural networks, and then sending the compressed networks from
server to clients. Here the server mainly uses the wired network to
transfer models to clients, and the clients can use both the wired or
wireless network to download models from the server. So the net-
work configuration for this case includes uploading and downloading
models over the wired network, and downloading models over the
wireless network. And the SPEEDTEST tool provides the global
average network bandwidth in January 2020: the upload bandwidth
of wired broadband is 40.83𝑀𝑏𝑝𝑠, the download bandwidth of wired
broadband is 74.32𝑀𝑏𝑝𝑠, and the download bandwidth of wireless
broadband is 31.95𝑀𝑏𝑝𝑠.

Figure 8 shows the time cost of the network transmission of the
six DNNs after compression by the four compressors, i.e., running

4SPEEDTEST. https://www.speedtest.net/global-index

8

Table 1: Compression ratio and inference accuracy of LZMA, Zstd, SZ, and Delta-DNN (Δ-DNN).

Networks Original Size Compression Ratio (and the error bound) Inference Accuracy (and the differences)
LZMA Zstd SZ Δ-DNN Original SZ Δ-DNN

VGG-16 56.2 MB 1.096 1.088 4.415 (7%) 7.394 (8%) 92.45% 92.31% (–0.15%) 92.32% (–0.15%)
ResNet101 162.6 MB 1.098 1.078 4.192 (5%) 9.341 (10%) 93.05% 92.87% (–0.19%) 93.44% (+0.42%)
GoogLeNet 23.6 MB 1.097 1.078 3.565 (2%) 7.811 (2%) 94.95% 94.88% (–0.07%) 94.95% (+0.00%)
EfficientNet 11.3 MB 1.099 1.078 3.204 (1%) 10.266 (10%) 84.82% 84.76% (–0.07%) 84.88% (+0.07%)
MobileNet 8.9 MB 1.101 1.077 3.788 (3%) 9.627 (9%) 92.68% 92.57% (–0.12%) 93.16% (+0.52%)
ShuffleNet 3.5 MB 1.097 1.076 3.192 (1%) 11.291 (10%) 86.29% 86.19% (–0.12%) 86.18% (–0.13%)

Table 2: Inference accuracy and compression ratio for the last 5 epochs of VGG-16 with and without Delta-DNN.

Epochs Compression Ratio (and the error bound) Inference Accuracy (and the differences)
LZMA Zstd SZ Delta-DNN Original SZ Delta-DNN

740 1.090 1.081 4.154 (5%) 5.702 (6%) 91.19% 91.04% (–0.16%) 91.25% (+0.07%)
744 1.090 1.081 3.959 (4%) 7.130 (7%) 91.99% 91.81% (–0.20%) 91.92% (–0.08%)
747 1.089 1.080 4.277 (6%) 6.626 (5%) 92.13% 92.09% (–0.04%) 92.07% (–0.07%)
761 1.089 1.080 3.775 (3%) 6.717 (10%) 92.23% 92.30% (+0.08%) 92.16% (–0.08%)
765 1.088 1.079 4.310 (6%) 7.394 (8%) 92.45% 92.44% (–0.01%) 92.32% (–0.14%)

VGG-16
ResNet101

GoogLeNet

EfficientNet

MobileNet

ShuffleNet

0

10

20

30

40

50

Ne
tw

or
k
Tr
an

sm
iss

io
n
Ti
m
e(
S)

LZMA
Zstd
SZ
ΔΔDNN

(a) Mobile Broadband Downloading

VGG-16
ResNet101

GoogLeNet

EfficientNet

MobileNet

ShuffleNet

0

5

10

15

20

Ne
tw
or
k
Tr
an
s
iss
io
n
Ti

e(
S)

LZMA
Zstd
SZ
(-ΔNN

(b) Fixed Broadband Downloading

VGG-16
ResNet101

GoogLeNet

EfficientNet

MobileNet

ShuffleNet

0
5

10
15
20
25
30
35
40

Ne
tw

or
k
Tr
an

sm
iss

io
n
Ti
m
e(
S)

LZMA
Zstd
SZ
ΔΔDNN

(c) Fixed Broadband Uploading

Figure 8: Network time cost on six DNNs after compression using Delta-DNN, SZ, LZMA, and Zstd.

the compression approaches on the server/client architecture shown
in Figure 6. It can be seen that Delta-DNN significantly reduces
the network consumption of six neural networks, regardless of the
network bandwidth configurations. This is because the Delta-DNN-
compressed networks are about 7× ∼ 11× smaller than the size
before compression. Meanwhile, Zstd, LZMA, and SZ take more
time for network transmission, as shown in Figure 8, which is due
to their lower compression ratio on DNNs.

5.4 Case 2: Saving Storage Space
In this subsection, we evaluate the performance of the Delta-DNN
framework in reducing the storage overhead in neural network train-
ing where many epochs are stored. We compare Delta-DNN with
other compressors on the two metrics: the DNNs’ inference accuracy
and storage space overhead.

Table 3 shows the total occupied storage space, the total compres-
sion ratio, and the average accuracy loss on six neural networks in
training, while using Delta-DNN. Since many versions of networks
in training are saved in this case, the storage sizes are much larger
than one network. However, Delta-DNN can effectively reduce the
storage size of the six DNNs by 5× ∼ 10× while the average infer-
ence accuracy loss is all less than 0.001%. Note that the compression

Table 3: Storage space consumption in training 6 DNNs before
and after using Delta-DNN. In the last column of the accuracy
loss results, ‘-’ denotes the inference accuracy gain.

Network Epochs Total Size Comp.
Ratio

Accuracy
LossOriginal Δ-DNN

VGG-16 95 5.21 GB 693 MB 7.702 -0.0003%
ResNet101 89 14.1 GB 2.18 GB 6.488 -0.0015%
GoogLeNet 83 1.91 GB 191 MB 10.259 -0.0009%
EfficientNet 110 1.21 GB 208 MB 5.946 0.0001%
MobileNet 115 1.00 GB 140 MB 7.311 -0.0004%
ShuffleNet 113 391 MB 73 MB 5.302 0

ratio in this table is a little lower than that in Table 1, this is be-
cause some of the saved epochs are training with a long distance
(over many epochs) to get an improved inference accuracy and thus
have the less similarity to be exploited for delta compression in
Delta-DNN. However, the storage consumption is still significantly
reduced by Delta-DNN framework.

Figure 9 shows the comparison of inference accuracy before and
after using Delta-DNN when training the six DNNs. Even they are
two different DNN-training processes (using Delta-DNN or not), it
still could be seen that after using Delta-DNN, the inference accuracy

9

0 200 400 600 800 1000
Epoch

55%
60%
65%
70%
75%
80%
85%
90%

In
fe
re
nc
e
Ac
cu
ra
cy

Original
 ΔDNN

200 400 600 800 1000
90%
91%
92%

(a) VGG-16

0 200 400 600 800 1000
Epoch

40%

50%

60%

70%

80%

90%

In
fe
re
nc
e
Ac
cu
ra
cy

Original
 ΔDNN

200 400 600 800 100090%
92%
94%

(b) ResNet101

0 200 400 600 800 1000
Epoch

65%
70%
75%
80%
85%
90%

In
fe
re
nc
e
Ac
cu
ra
cy

Original
 ΔDNN

200 400 600 800 1000
88%
90%
92%

(c) GoogLeNet

0 200 400 600 800 1000
Epoch

50%
55%
60%
65%
70%
75%
80%
85%
90%

In
fe
re
nc
e
Ac

cu
ra
c

Original
ΔΔDNN

0 200 400 600 800 1000
82.5%
85.0%
87.5%

(d) EfficientNet

0 200 400 600 800 1000
Epoch

40%

50%

60%

70%

80%

90%

In
fe
re
nc
e
Ac
cu
ra
cy

Original
 ΔDNN

200 400 600 800 1000
88%
90%
92%

(e) MobileNet

0 200 400 600 800 1000
Epoch

40%

50%

60%

70%

80%

90%

In
fe
re
nc
e
Ac
cu
ra
cy

Original
 ΔDNN

200 400 600 800 100084%
86%
88%

(f) ShuffleNet

Figure 9: Inference accuracy on different epochs of DNNs before and after using Delta-DNN (Δ-DNN).

in training is almost the same as the original before compression.
Even the accuracy loss from Delta-DNN exists in the earlier epochs,
but this loss has almost no impact on the following epochs, whose
inference accuracy loss is always minimal, as shown in this figure
(the average accuracy loss is also shown in Table 3). Note that the
inference accuracy may decrease in the training neural networks in
Figure 9 (c), this is because they belong to two training processes
of mini-batch gradient descent. The same phenomenon can be also
observed when repeating the same training process twice. And Delta-
DNN guarantees the accuracy loss within a user-specified limit but
is not responsible for the convergence of DNNs.

6 CONCLUSION AND FUTURE WORK
In this paper, we propose a novel delta compression framework for
deep neural networks, called Delta-DNN, which can significantly
reduce the size of DNNs by exploiting the floats similarity existing
in neighboring networks in training. Specifically, we observe that
large amounts of parameters are slightly changed in DNN training.
And inspired by the delta compression technique used in the backup
storage area, we calculate the lossy delta data between the neighbor-
ing networks and then use the lossless compressors to further reduce
the delta data. The high compression ratio of Delta-DNN is due to
the very compressible lossy delta data in our framework that exploits
floats similarity. Our evaluation results on six popular DNNs suggest
Delta-DNN achieves 2× ∼ 10× higher compression ratio compared
with Zstd, LZMA, and SZ approaches, while keeping the DNNs’
inference accuracy loss smaller than 0.2%.

In our future work, we plan to further improve the compression
ratio of Delta-DNN combining other model compression techniques
(such as pruning and quantization) and evaluating it on more DNNs.
Furthermore, we will continue to extend Delta-DNN framework into
more scenarios, such as deep learning in the distributed systems, to
further reduce the storage and network overheads.

ACKNOWLEDGEMENTS
We are grateful to the anonymous reviewers for their insightful com-
ments and constructive suggestions on this work. This research was
partly supported by NSFC No. 61972441, No. 61672186, and No.
61872110, the Shenzhen Science and Technology Program under
Grant No. JCYJ20190806143405318 and JCYJ20190806142601687,
Key Technology Program of Shenzhen, China under Grant No.
JSGG20170823152809704, Key-Area R&D Program for Guang-
dong Province under Grant No. 2019B01013600, Guangdong Basic
and Applied Basic Research Foundation No. 2019A1515110475.

The work of Sian Jin and Dingwen Tao was partly supported by
the U.S. National Science Foundation under Grants OAC-1948447
and OAC-2003624, and the U.S. Exascale Computing Project (Project
Number: 17-SC-20-SC), a collaborative effort of two DOE organi-
zations - the Office of Science and the National Nuclear Security
Administration, responsible for the planning and preparation of a
capable exascale ecosystem, including software, applications, hard-
ware, advanced system engineering and early testbed platforms, to
support the nation’s exascale computing imperative.

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the funding agencies. Wen Xia is the
corresponding author (xiawen@hit.edu.cn).

REFERENCES
[1] Rich Caruana, Steve Lawrence, and C Lee Giles. 2001. Overfitting in neural nets:

Backpropagation, conjugate gradient, and early stopping. In Advances in neural
information processing systems. 402–408.

[2] Francisco M Castro, Manuel J Marín-Jiménez, Nicolás Guil, Cordelia Schmid,
and Karteek Alahari. 2018. End-to-end incremental learning. In Proceedings of
the European Conference on Computer Vision (ECCV). 233–248.

[3] Yuntao Chen, Naiyan Wang, and Zhaoxiang Zhang. 2018. Darkrank: Accelerating
deep metric learning via cross sample similarities transfer. In Thirty-Second AAAI
Conference on Artificial Intelligence.

[4] Gobinda G Chowdhury. 2003. Natural language processing. Annual review of
information science and technology 37, 1 (2003), 51–89.

10

[5] Peter Deutsch et al. 1996. GZIP file format specification version 4.3.
[6] Sheng Di and Franck Cappello. 2016. Fast error-bounded lossy HPC data com-

pression with SZ. In 2016 ieee international parallel and distributed processing
symposium (ipdps). IEEE, 730–739.

[7] Peiyan Dong, Siyue Wang, Wei Niu, Chengming Zhang, Sheng Lin, Zhengang Li,
Yifan Gong, Bin Ren, Xue Lin, Yanzhi Wang, and Dingwen Tao. 2020. RTMobile:
Beyond Real-Time Mobile Acceleration of RNNs for Speech Recognition. arXiv
preprint arXiv:2002.11474 (2020).

[8] Mike Dutch. 2008. Understanding data deduplication ratios. In SNIA Data Man-
agement Forum. 7.

[9] Song Han, Huizi Mao, and William J Dally. 2015. Deep compression: Compress-
ing deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 770–778.

[11] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

[12] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2016. Binarized neural networks. In Advances in neural information
processing systems. 4107–4115.

[13] David A Huffman. 1952. A method for the construction of minimum-redundancy
codes. Proceedings of the IRE 40, 9 (1952), 1098–1101.

[14] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. 2014. Speeding
up convolutional neural networks with low rank expansions. arXiv preprint
arXiv:1405.3866.

[15] Sian Jin, Sheng Di, Xin Liang, Jiannan Tian, Dingwen Tao, and Franck Cappello.
2019. DeepSZ: A Novel Framework to Compress Deep Neural Networks by Using
Error-Bounded Lossy Compression. In Proceedings of the 28th International
Symposium on High-Performance Parallel and Distributed Computing. 159–170.

[16] Dominik Kempa and Simon J Puglisi. 2013. Lempel-Ziv factorization: Simple,
fast, practical. In 2013 Proceedings of the Fifteenth Workshop on Algorithm
Engineering and Experiments (ALENEX). SIAM, 103–112.

[17] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. 2014. The cifar-10 dataset.
online: http://www. cs. toronto. edu/kriz/cifar. html 55 (2014).

[18] Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Lei
Jiao, Lorena Qendro, and Fahim Kawsar. 2016. Deepx: A software accelerator for
low-power deep learning inference on mobile devices. In 2016 15th ACM/IEEE
International Conference on Information Processing in Sensor Networks (IPSN).
IEEE, 1–12.

[19] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature
521, 7553 (2015), 436–444.

[20] Dawei Li, Xiaolong Wang, and Deguang Kong. 2018. Deeprebirth: Accelerat-
ing deep neural network execution on mobile devices. In Thirty-second AAAI
conference on artificial intelligence.

[21] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. 2016.
Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710.

[22] He Li, Kaoru Ota, and Mianxiong Dong. 2018. Learning IoT in edge: Deep
learning for the Internet of Things with edge computing. IEEE network 32, 1
(2018), 96–101.

[23] Sihuan Li, Sheng Di, Xin Liang, Zizhong Chen, and Franck Cappello. 2018.
Optimizing lossy compression with adjacent snapshots for N-body simulation data.
In 2018 IEEE International Conference on Big Data (Big Data). IEEE, 428–437.

[24] Zhaoqi Li, Yu Ma, Catalina Vajiac, and Yunkai Zhang. 2018. Exploration of
Numerical Precision in Deep Neural Networks. arXiv preprint arXiv:1805.01078
(2018).

[25] Xin Liang, Sheng Di, Sihuan Li, Dingwen Tao, Zizhong Chen, and Franck Cap-
pello. [n.d.]. Exploring Best Lossy Compression Strategy By Combining SZ with
Spatiotemporal Decimation.

[26] Xin Liang, Sheng Di, Dingwen Tao, Sihuan Li, Shaomeng Li, Hanqi Guo, Zizhong
Chen, and Franck Cappello. 2018. Error-controlled lossy compression optimized
for high compression ratios of scientific datasets. In 2018 IEEE International
Conference on Big Data (Big Data). IEEE, 438–447.

[27] Peter Lindstrom. 2014. Fixed-rate compressed floating-point arrays. IEEE Trans-
actions on Visualization and Computer Graphics 20, 12 (2014), 2674–2683.

[28] Peter Lindstrom. 2017. Error distributions of lossy floating-point compressors.
Technical Report. Lawrence Livermore National Lab.(LLNL), Livermore, CA
(United States).

[29] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Chang-
shui Zhang. 2017. Learning efficient convolutional networks through network
slimming. In Proceedings of the IEEE International Conference on Computer
Vision. 2736–2744.

[30] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. 2018.
Rethinking the value of network pruning. arXiv preprint arXiv:1810.05270.

[31] Mengting Lu, Fang Wang, Dan Feng, and Yuchong Hu. 2019. A Read-leveling
Data Distribution Scheme for Promoting Read Performance in SSDs with Dedupli-
cation. In Proceedings of the 48th International Conference on Parallel Processing.
1–10.

[32] Yao Lu, Guangming Lu, Jinxing Li, Yuanrong Xu, Zheng Zhang, and David Zhang.
2020. Multiscale conditional regularization for convolutional neural networks.
IEEE Transactions on Cybernetics (2020).

[33] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. 2016.
Pruning convolutional neural networks for resource efficient inference. arXiv
preprint arXiv:1611.06440.

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
2019. PyTorch: An imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems. 8024–8035.

[35] Igor Pavlov. 1998. The Algorithm: Lempel-Ziv-Markov Chain.
[36] Majid Rabbani. 2002. JPEG2000: Image compression fundamentals, standards

and practice. Journal of Electronic Imaging 11, 2 (2002), 286.
[37] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016.

Xnor-net: Imagenet classification using binary convolutional neural networks. In
European conference on computer vision. Springer, 525–542.

[38] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
4510–4520.

[39] Jerome M Shapiro. 1993. Embedded image coding using zerotrees of wavelet
coefficients. IEEE Transactions on signal processing 41, 12 (1993), 3445–3462.

[40] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556.

[41] Seung Woo Son, Zhengzhang Chen, William Hendrix, Ankit Agrawal, Wei-keng
Liao, and Alok Choudhary. 2014. Data compression for the exascale computing
era-survey. Supercomputing Frontiers and Innovations 1, 2 (2014), 76–88.

[42] Torsten Suel, Nasir Memon, and Khalid Sayood. 2002. Algorithms for delta
compression and remote file synchronization. Lossless Compression Handbook.

[43] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition. 1–9.

[44] Richard Szeliski. 2010. Computer vision: algorithms and applications. Springer
Science & Business Media.

[45] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. 2014. Deep-
face: Closing the gap to human-level performance in face verification. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
1701–1708.

[46] Mingxing Tan and Quoc V Le. 2019. Efficientnet: Rethinking model scaling for
convolutional neural networks. arXiv preprint arXiv:1905.11946.

[47] Dingwen Tao, Sheng Di, Zizhong Chen, and Franck Cappello. 2017. Significantly
improving lossy compression for scientific data sets based on multidimensional
prediction and error-controlled quantization. In 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 1129–1139.

[48] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. 2018.
Dataset distillation. arXiv preprint arXiv:1811.10959 (2018).

[49] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image
quality assessment: from error visibility to structural similarity. IEEE transactions
on image processing 13, 4 (2004), 600–612.

[50] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning
structured sparsity in deep neural networks. In Advances in neural information
processing systems. 2074–2082.

[51] Wen Xia, Hong Jiang, Dan Feng, Fred Douglis, Philip Shilane, Yu Hua, Min
Fu, Yucheng Zhang, and Yukun Zhou. 2016. A comprehensive study of the past,
present, and future of data deduplication. Proc. IEEE 104, 9 (2016), 1681–1710.

[52] Lianghong Xu, Andrew Pavlo, Sudipta Sengupta, and Gregory R Ganger. 2017.
Online deduplication for databases. In Proceedings of the 2017 ACM International
Conference on Management of Data. 1355–1368.

[53] Lei Yang, Jiannong Cao, Zhenyu Wang, and Weigang Wu. 2017. Network aware
multi-user computation partitioning in mobile edge clouds. In 2017 46th Interna-
tional Conference on Parallel Processing (ICPP). IEEE, 302–311.

[54] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. 2014. How trans-
ferable are features in deep neural networks?. In Advances in neural information
processing systems. 3320–3328.

[55] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2018. Shufflenet:
An extremely efficient convolutional neural network for mobile devices. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
6848–6856.

[56] Jacob Ziv and Abraham Lempel. 1977. A universal algorithm for sequential data
compression. IEEE Transactions on information theory 23, 3 (1977), 337–343.

[57] Zstandard. 2018. Fast real-time compression algorithm. http://facebook.github.
io/zstd/

11

http://facebook.github.io/zstd/
http://facebook.github.io/zstd/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Data Compression Techniques
	2.2 Compressing DNNs
	2.3 Observation and Motivation

	3 Design and Implementation
	3.1 Overview of Delta-DNN Framework
	3.2 Calculating the Delta Data
	3.3 Optimizing the Error Bound
	3.4 Compressing the Delta Data

	4 Typical Application Scenarios
	4.1 Optimizing Network Transmission for DNNs
	4.2 Saving Storage Space for DNNs
	4.3 Discussion

	5 Performance Evaluation
	5.1 Experimental Setup
	5.2 Compression Performance of Delta-DNN
	5.3 Case 1: Optimizing Network Transmission
	5.4 Case 2: Saving Storage Space

	6 Conclusion and Future Work
	References

