
TSM2: Optimizing Tall-and-Skinny Matrix-
Matrix Multiplication on GPUs

Jieyang Chen, Nan Xiong, Xin Liang, Dingwen Tao*, Sihuan Li, Kaiming Ouyang, 
Kai Zhao, Nathan DeBardeleben**, Qiang Guan***, Zizhong Chen

University of California, Riverside             *University of Alabama  
**Los Alamos National Laboratory     ***Kent State University



Linear algebra kernels are widely used

• Linear algebra kernels have been widely used.
• E.g., scientific simulation, big data analytics, 

machine leaning, etc.  

• Matrix-matrix multiplication (GEMM)
• One of the most fundamental computation 

kernel that is used to build up other kernels
• Core computation of many applications.
• Cost most of the computation time of 

applications

(Source: Berkeley Dwarfs Report)



Input shape of GEMM can varies from application to 
application

Deep Neural Networks

Dense Matrix Decompositions K-means

Algorithm Based Fault Tolerance

Relative regular shape input Tall-and-skinny shape input



Two Kinds of Computations

• Computation bound
• Memory bound

A B C× =

n

n

n

n

n

n

A B× =

n

n

k

n B

k

n

Computation bound                                                                                                            memory bound

Matrix-matrix multiplication

Matrix-matrix multiplication with Tall-and-skinny input

n > 10,000 and k < 100

A x× =

n

n

1

n yn

Matrix-vector multiplication
1

à Performance of application is bounded by the computation power.
à Performance of application is bounded by the memory bandwidth.



Why tall-and-skinny behaves differently than regular shape input?

A B C× =

n

n

n

n

n

n

Matrix-matrix multiplication

A B× =

n

n

k

n C

k

n

Matrix-matrix multiplication with Tall-and-skinny input

Input matrices size is O(n2).
Computing time complexity is O(n3).
Each element is used n times.

Input matrices size is O(n2).
Computing time complexity is O(n2k) 
Each element is used k times on average

• So for tall and skinny matrix input, depending on the k and the ratio between target GPU’s peak 
computation power and peak memory throughput, it is usually memory bound.



GPUs are widely used for accelerating applications

• Good at parallelized computations.
• Higher computation power and memory throughput.
• Commonly used for accelerating matrix-related computations.



cuBLAS library

• One of the most commonly used standard linear algebra 
libraries optimized for GPUs, which is developed by Nvidia.
• The core computing library of many big data and scientific 

computing applications.
• With deep optimization by Nvidia, the cuBLAS library is able to 

provide state-of-the-art performance in regular-shaped input 
matrix cases.
• But not fully optimized for tall-and-skinny matrix cases.



Poor Performance on Current State-of-the-Art Design:

A B C× =

n

n

n

n

n

n A B× =

n

n

k

n B

k

n

Computation bound                                                                                                            memory bound

Regular-sized matrix multiplication Tall-and-skinny matrix multiplication

With large n, k in similar magnitude n >> k 

Current state-of-the-art design only 
optimized for computation bound case

0

50

100

150

200

250

300

350

0

50

100

150

200

250

10
24
0

11
26
4

12
28
8

13
31
2

14
33
6

15
36
0

16
38
4

17
40
8

18
43
2

19
45
6

20
48
0

21
50
4

22
52
8

23
55
2

24
57
6

25
60
0

26
62
4

27
64
8

28
67
2

29
69
6

30
72
0

M
em

or
y	
Th
ro
ug
hp
ut
	(G

B/
s)

Pe
rf
or
m
an
ce
	(G

flo
p/
s)

Matrix	Size	(n)	with	k	=	16
Performance	(cuBLAS) Peak	Performance

Memory	Throughput	(cuBLAS) Peak	Memory	Throughput

0

50

100

150

200

250

300

350

0

50

100

150

200

250

1
0
2
4
0

1
1
2
6
4

1
2
2
8
8

1
3
3
1
2

1
4
3
3
6

1
5
3
6
0

1
6
3
8
4

1
7
4
0
8

1
8
4
3
2

1
9
4
5
6

2
0
4
8
0

2
1
5
0
4

2
2
5
2
8

2
3
5
5
2

2
4
5
7
6

2
5
6
0
0

2
6
6
2
4

2
7
6
4
8

2
8
6
7
2

2
9
6
9
6

3
0
7
2
0

M
em

or
y	
Th
ro
ug
hp

ut
	(G

B/
s)

Pe
rf
or
m
an
ce
	(
G
flo
ps
)

Input	Matrix	Size	(n)	with	 k	=	2

Performance	(cuBLAS) Peak	Performance

Memory	Throughput	(cuBLAS) Peak	Memory	Throughput

Low GPU utilization:
• K = 2: 

• 49.9% memory band.
• 37.9% peak comp. power 

• K=16: 
• 31.1% memory band. 
• 56.6% peak comp. power

Regular size: 
80%-90% of 
the peak 
computation 
power

Performance
Memory 

throughput

Comp./Mem. HW peak

Sudden drop
Sudden dropPerformance

Memory 
throughput

Comp./Mem. HW peak



TSM2: redesigned matrix-matrix multiplication for tall-and-skinny input

1) Total number of global memory accesses.
2) Efficiency on global memory throughput. 
3) Parallelism of overall workload.
4) On-chip memory utilization.
5) Streaming Multiprocessor (SM) utilization. 

• Several factors are considered:



Algorithm design: how to fit the workload into the programming 
model of CUDA(Continued)

• We divide the workload by assigning n rows of matrix A to n different 
threads. Each vector-matrix multiplication is assigned to one thread. 

A B× =

n

n

k

n C

k

n

i. To ensure high parallelism and high Streaming Multiprocessor occupancy.
ii. To ensure minimum number of memory access in favor of matrix  A.
iii. To enable high memory accesses efficiency.

Thread i



Redesigning matrix-matrix multiplication for tall-and-skinny input

• Rethinking algorithm design – aiming to reduce total number of memory access
• Inner product vs. Outer product

• Memory access to each element of A: k times
• Memory access to each element of B: n times
• Total number of accesses: 2kn2

• Memory access to each element of A: 1 time
• Memory access to each element of B: n times
• Total number of accesses: (k+1)n2

Version 0: Inner Product

Version 1: Outer Product

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

10K 15K 20K 25K 30K

Sp
ee

du
p

Matrix Size (n)

cuBLAS BLASX

TSM2-V0 TSM2-V1

Tall-and-skinny GEMM with K=8 on Nvidia Tesla K40c 



Global memory access efficiency analysis

• Global memory access efficiency per transaction = useful data/cache line size
• Affect overall application memory access efficiency
• Determined by the memory access pattern and the algorithm
• Can be challenging to improve without modifying the algorithm design

• For outer product GEMM:

8 𝑏𝑦𝑡𝑒𝑠
128 𝑏𝑦𝑡𝑒𝑠 = 𝟔. 𝟐𝟓% 𝑜𝑟

8 𝑏𝑦𝑡𝑒𝑠
32 𝑏𝑦𝑡𝑒𝑠 = 𝟐𝟓%

128 𝑏𝑦𝑡𝑒𝑠
128 𝑏𝑦𝑡𝑒𝑠 = 𝟏𝟎𝟎% 𝑜𝑟

32 𝑏𝑦𝑡𝑒𝑠
32 𝑏𝑦𝑡𝑒𝑠 = 𝟏𝟎𝟎%



Improving global memory access efficiency

Version 2: Outer Product + Shared Mem. • GPU shared memory: sharing data between threads with threadblock
• Benefit: decoupling data load pattern and data use pattern.

Load data in shared memory in a 
more efficient way. 
Mem. transaction efficiency = 100%

Keeping the original data use 
pattern in outer product version.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

10K 15K 20K 25K 30K

Sp
ee

du
p

Matrix Size (n)

cuBLAS BLASX

TSM2-V0 TSM2-V1 TSM2-V2

Tall-and-skinny GEMM with K=8 on Nvidia Tesla K40c 



Improving global memory access efficiency

Version 2: Outer Product + Shared Mem.

Load

Use

Data dependency between data load and data use instructions

• Even with efficient global memory loading pattern, 
it still brings high GPU underutilization
• Main cause: long memory access latency can be 

hard to hide.



Data prefetch: Improving GPU utilization

A

B

C

 Thread 0
 Thread 1
 Thread 2
 Thread 3

 Thread 0
 Thread 1
 Thread 2
 Thread 3

registers
holding 
current 
tile of A

shared mem.
holding current 

tile of B

t1

t2

t3

prefetch next tile A 
to registers

next tile becomes 
current tile in next iteration 

prefetch next 
tile B to registers

load next tile to 
shared mem.
before next 

iteration.

{one 
thread 
block

{one 
thread 
block

calculation on 
current tile

LD C

LD NextB

LD NextA

Compute

LD NextA

Compute

ST CThreads Sync.

LD NextB

LD NextA

Compute

LD NextA

Compute

Threads Sync.

LD NextB

LD NextA

Compute

LD NextA

Compute

Threads Sync.

Data prefetch

Version 3: Outer Product + 
Shared Mem. + Data Prefectch

Prefetch the data needed for the next 
iteration.

• Adding prefectch data for the next 
iteration improves latency hiding 
and GPU utilization.

Load

Use

Load data in shared memory in a 
more efficient way. 
Mem. transaction efficiency = 100%

Keeping the original data use 
pattern in outer product version.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

10K 15K 20K 25K 30K

Sp
ee

du
p

Matrix Size (n)

cuBLAS BLASX TSM2-V0 TSM2-V1 TSM2-V2 TSM2-V2

Tall-and-skinny GEMM with K=8 on Nvidia Tesla K40c 



Experimental evaluation:

GPU Model Micro-architectures Memory Peak performance Peak memory 
bandwidth

Tesla K40c Kepler 12 GB 1430 GFLOPS 288 GB/s

Tesla M40 Maxwell 24 GB 213 GFLOPS 288 GB/s

Tesla P100 Pascal 16 GB 4600 GFLOPS 720 GB/s



Experimental evaluation: Speedup (on Nvidia Tesla K40c) 



Experimental evaluation: Memory bandwidth (on Nvidia Tesla K40c) 



Experimental evaluation on Nvidia Tesla M40 and P100 

Tesla M40 Tesla P100



Showcase 1: K-means

• Execution time of the first 100 iterations of Lloyd’s K-means 
algorithm on K40c (d = 4096, k = 16). 

• Using our TSM2, we speedup K- means by 1.06x - 1.89x 
(avg. 1.53x).

• GPU version K-means originally developed by NVIDIA: 
https://github.com/NVIDIA/kmeans

Core computation of Lloyd’s K-means: distance calculation.
Common choice: Euclidean Distance

||x − y||2 = ||x||2 + ||y||2 − 2xy
When we have multiple x and y:

Group x à matrix X 
Group y à matrix Y 

calculating xy à XY 
(matrix matrix multiplication)

Calculating distance between:
• Data points X (n points with d dimensions);
• Centroids C (k centroids with d dimensions);
• à matrix-matrix multiplication: (n*d) times (d*k).
• Usually k << n,d à tall-and-skinny



Showcase 2: ABFT Matrix Checksum Encoding 

We compare the checksum encoding performance by using 
cuBLAS and TSM2 on K40c. As we can see, our TSM2 significantly 
improve the checksum encoding calculation with 1.10x to 1.90x 
speedup (avg. 1.67x). 

• Core computation of ABFT: calculating 
checksum (encode redundant info)

• E.g., calculate the checksum of matrix A 
with checksum weight vector v:

𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚 𝐴 = 𝐴𝑣
• Usually use multiple different checksum 

weight vectors. 
• If we use c different checksum weight 

vectors à (m-by-n) times (n-by-c)
• Common choice: c = 2 << m,n à tall-and 

skinny



Conclusion:

• We first analyzed the performance of current GEMM in the latest 
cuBLAS library. 
• We discovered the potential challenges of optimizing tall-and-skinny 

GEMM since its workload is memory bound. 
• We redesigned an optimized tall-and-skinny GEMM with several 

optimization techniques focusing on GPU resource utilization. 
• Experiment results show that our optimized implementation can achieve 

better performance on three modern GPU micro-architectures. 



We have an optimized design, but when do we use it?
How to determine when the computation is memory bound and when it is not?

Tuning 
parameters

Hardware parameters

GPU Peak Perf. GPU Peak Mem. Band.

Computation bound               memory bound

Computation bound               memory bound

Computation bound               memory bound

NVIDIA Tesla K40: K=40

NVIDIA Tesla M40: K=6

NVIDIA Tesla P100: K=50


