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ABSTRACT
Linear algebra operations have been widely used in big data an-
alytics and scientiic computations. Many works have been done
on optimizing linear algebra operations on GPUs with regular-
shaped input. However, few works are focusing on fully utilizing
GPU resources when the input is not regular-shaped. Current op-
timizations lack of considering fully utilizing the memory band-
width and computing power, therefore they could only achieve
sub-optimal performance. In this paper, we propose a performant
tall-and-skinny matrix-matrix multiplication algorithm on GPUs ś
TSM2. It focuses on optimizing linear algebra operation with none
regular-shaped input. We implement the proposed algorithm and
test on three diferent Nvidia GPU micro-architectures: Kepler,
Maxwell, and Pascal. Experiments show that our TSM2 speedups
the computation by 1.1x - 3x, improves memory bandwidth utiliza-
tion by 8% - 47.6%, and improves computing power utilization by 7%
- 37.3% comparing to the current state-of-the-art works. We replace
the original matrix operations in K-means and Algorithm-Bases
Fault Tolerance (ABFT) with TSM2 and achieve up to 1.89x and 1.90x
speed up.
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1 INTRODUCTION
Matrix-matrix multiplication (GEMM) has been one of the most
extensively used linear algebra operations in big data analytics
and scientiic computations. Due to many factors (e.g., algorithms,
input data, etc.) the size or shape of input matrices of GEMM usu-
ally varies when it is used in diferent applications. For example,
many modern highly scalable scientiic simulations packages in
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the ield of luid dynamics, such as Finite Element Method (FEM)
needs to compute many GEMM with small-sized input matrix. Ar-
tiicial neural networks (ANN) involve using GEMM with small to
medium input matrices. Matrix decompositions uses GEMM with
large-sized input matrices[2, 12, 20, 21]. So, besides large-sized in-
put, which has already been extensively optimized during the past
decades, GEMM with small to medium sized input has also drawn
a lot of attention to recent researchers. For example, [14] proposed
MAGMA-Batched, which aims to batch small input matrices into
larger ones to utilize the highly optimized implementations for
large input size on GPUs. [16] proposed to speed up GEMM with
small input using architecture and instruction level optimization
on modern CPU architectures.

Although previous works have focused on optimizing GEMM
with diferent matrix sizes, most of them only assume that the input
matrix is regular-shaped. In another word, the size they mentioned
in their works usually refers to both dimensions of the input matrix.
So, for example, a small matrix means both its width and height
are small and their magnitudes are close each other. However, not
much work has been done to optimizing GEMM for non-regular
shaped input. For example, there is one particular kind of non-
regular shaped input in which the magnitude of both dimensions
has signiicant diference i.e., tall-and-skinny. To the best of our
knowledge, GEMM with tall-and-skinny input has not been fully
studied and optimized for. Tall-and-skinny input has been used in
many applications. For example, recent highly optimized K-means
implementations [1, 13] use GEMM as their core computation and
input size is usually tall-and-skinny since the number of centroids
is usually far less than the number of input data points. Also, when
GEMM is used for encoding checksums for many ABFT applications
[9ś11, 17, 18, 22, 28ś30], the input usually involves a tall-and-skinny
checksum weight matrix.

Previous eforts made for optimizing GEMMwith regular-shaped
input may not work for the non-regular shaped input. For instance,
[9] shows that calculating GEMM with tall-and-skinny input using
vendor’s highly optimized linear algebra library (e.g., cuBLAS [19])
is slower than disassembling the tall-and-skinny input matrix into
several vectors and then applying matrix-vector multiplications
instead. However, it can be easily seen that this workaround is not
eicient, since elements in input matrices are accessed by GPU
more times than necessary. Although the performance can be opti-
mized by grouping many tall-and-skinny input matrices into large
ones similar to the approach proposed, there are cases where this
grouping approach is not feasible. For example, tall-and-skinny
input matrices may be generated one at a time from a producer
process in user’s worklow. Grouping several of them into a large
matrix requires extended waiting time, which is not applicable for
time-sensitive applications. On the other hand, the memory space
may limit the total number matrices that can it into the memory
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at the same time, if the input matrices are large (e.g., multiplica-
tion between regular-shaped large matrices and tall-and-skinny
matrices).

In this work, we target on optimizing the computation of GEMM
with tall-and-skinny input on the GPU platform since many appli-
cations that use GEMM are deployed on GPUs. So, our optimization
could greatly beneit those applications. The insight of our work is
that when input matrices size is regular-shaped (e.g., an n×nmatrix
multiplies ann×nmatrix, each element in the input matrices loaded
into GPU requires O(n) for computation), the computation time is
usually longer than memory access time (especially for large matri-
ces). Then the GEMM operation is compute-bound. However, when
input matrices size is tall-and-skinny (an n × n matrix multiplies
an n × k matrix with k much smaller than n, each element is only
use for O(k) times on average for computation), depending on k
and the ratio between executing GPU’s peak computing power and
peak memory throughput, the GEMM computation can be either
compute-bound or memory-bound. As k gets smaller, it moves to-
ward memory-bound; Otherwise, it moves toward compute-bound.
To optimize GEMM with tall-and-skinny input, it is critical to de-
sign a computation algorithm that considers both compute-bound
and memory-bound cases.

The main contributions of this paper include:

• We study the limitation of current state-of-the-art GEMM im-
plementation with tall-and-skinny input. With benchmark-
ing, we ind that the under-utilization of GPU resources is
the main reason that causes low performance when the input
is tall-and-skinny.
• We design a GEMM on GPU optimized for tall-and-skinny in-
put with both double and single loating point precisions. We
call our optimized version as TSM2. By leveraging the knowl-
edge on the input size and hardware architecture characteris-
tic, we redesign computation algorithm to ensure high mem-
ory bandwidth utilization in memory-bound cases and high
computing performance for compute-bound cases. Experi-
ments show that our TSM2 can obtain 1.1x - 3x speedup com-
paring to state-of-the-art cuBLAS library on modern GPU
micro-architectures. We also replace the original GEMM op-
erations in K-means and ABFT applications with TSM2 and
achieve up to 1.89x and 1.90x overall speed up.

2 BACKGROUNDS

2.1 Deinition of tall-and-skinny input
In this work, we restrict our scope to GEMM with tall-and-skinny
input on GPUs. The tall-and-skinny input size means that, for
the two input matrices, at least one matrix is tall-and-skinny (one
dimension is signiicantly smaller than the other). For example,
input matrix A with size 20480 × 20480 and matrix B with size
20480 × 2 are considered as tall-and-skinny input in our work. In
this paper, we focus on optimizing GEMM with one regular large
input matrix and one tall-and-skinny input matrix. We refer matrix
A as the larger input matrix (n × n) and matrix B (n × k) as the tall-
and-skinny input matrix in this paper. We choose this input size and
shape because we believe it can expose most of the challenges in all
kinds of tall-and-skinny input, so the design idea and optimization
techniques introduced in this paper can be easily applied to other
cases with slight modiication. Also, we choose to let the larger
matrix to be in squared-shape only for simpliied representation.
Our optimization can work with other non-squared input as well
with similar efects.

2.2 cuBLAS
One of the most commonly used standard linear algebra libraries
optimized for GPU is the cuBLAS library developed by Nvidia. The
cuBLAS is the core computing library ofmany big data and scientiic
computing applications. For example, it is the GPU computing
library for MAGMA heterogeneous linear algebra library [15, 23,
24], cuLA library [6], and cuDNN deep learning library [5]. With
deep optimization by Nvidia, the cuBLAS library is able to provide
state-of-the-art performance in many use cases. For example, with
large regular-shaped input matrix, their GEMM implementation is
able to achieve near peak performance of GPU [3].

However, we found that the GEMM subroutine is not fully op-
timized with certain input matrix sizes [11]. For example, with
tall-and-skinny input, the GEMM operation in current best imple-
mentation (cuBLAS 9.0 running on NVIDIA Tesla K40c GPU) only
uses less than 10% of the theoretical peak memory bandwidth on
average with k = 2 (Fig. 5 (a) - (b)). When k = 16, the same GEMM
operation only uses less than 20% of the theoretical peak memory
bandwidth on average (Fig. 5 (g) - (h)). The resource utilization is
even lower with larger input dimensions. By comparing the two
input sizes, it can be seen for input with smallerk values, the compu-
tation utilizes higher memory bandwidth (close to memory bound).
On the other hand, for input with larger k values, the computation
utilizes higher computing power (close to compute bound). How-
ever, since we are not able to analyze the implementation of GEMM
in none open-sourced cuBLAS library, it is hard to tell the exact
characteristic of their computation.

3 OPTIMIZATION DESIGN

3.1 Insight on tall-and-skinny input size
For regular-shaped GEMM (n×nmatrix multiplies n×nmatrix), the

input matrices size isO(n2), while the computing time complexity is

O(n3), so each element in input matrices is used O(n) times within
the entire computation process. Since loading data from GPU of-
chip DRAM (i.e., global memory) to GPU is expensive and to avoid
extensive data load operations, one common optimization for this
kind of problem is minimizing the number of times each element
needs to be loaded into the GPU by using fast on-chip memory
(e.g., cache, registers) to enable data reuse. As the number of loads
reduces, optimized GEMM tends to be compute bound. For example,
current GEMM implementation in cuBLAS library can reach near
bare-metal performance on GPUs [3].

However, unlike regular-shaped GEMM, when the input size is

tall-and-skinny, the input matrices size is still O(n2), however, the

computing time complexity isO(n2k). So, each element in the input
matrices is used k times on average:

(n × n) × k times + (n × k) × n times

n × n + n × k
≈ k times

Depending on the size of k and target GPU peak computing power
and memory throughput ratio, the TSM2 can be either compute
bound or memory bound. When k gets smaller, the computation
tends to be memory bound. Otherwise, the problem tends to be
compute bound. In either case, the problem is always near the
boundary between memory bound and compute bound, so it is
critical to design an algorithm that is optimized for both two cases.

3.2 Algorithm design
As the core of our optimization, algorithm design plays an impor-
tant role. First, we need to consider how to it the workload of our
TSM2 into the programming model of CUDA (i.e., thread hierarchy).

107



ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

Jieyang Chen, Nan Xiong, Xin Liang, Dingwen Tao∗, Sihuan Li, Kaiming Ouyang, Kai Zhao, Nathan DeBardeleben∗∗, Qiang Guan∗∗∗,

Zizhong Chen

Although the workload can be easily decomposed into many in-
dependent smaller workloads, careful consideration on workload
distribution is still necessary, since any unnecessary performance
penalty can drastically cause GPU resource underutilization. Sev-
eral factors are considered in our design:

(1) Total number of global memory accesses;
(2) Eiciency on global memory throughput;
(3) Utilization on global memory throughput;
(4) Parallelism of overall workload;
(5) On-chip memory utilization;
(6) Streaming Multiprocessor (SM) utilization;
(7) Optimization for both compute and memory bound cases.

To achieve good performance, there must exist enough number of
active threads in each SM of GPU to ensure proper instruction and
memory access latency hiding. So, in our algorithm we divide the
workload by assigning n rows of matrix A to n diferent threads.
Each vector-matrix multiplication is assigned to one thread (i.e.,
(A[i, :]×B)). The beneit is three-fold: 1) this ensures high parallelism
and high SM occupancy; 2) since the number of elements of matrix
A is much higher than matrix B, this kind of distribution ensures
minimum number of memory accesses in favor of matrix A; 3) it
also enables high memory access eiciency and throughput, since
all memory accesses to matrix A are naturally coalesced (assuming
matrices are stored in column-major by convention).

As for the vector-matrix multiplication assigned to each thread,
to further reduce the number of memory accesses to matrix A, we
use outer-product style computation instead of the regular inner-
product style computation. As shown in Alg. 1, if we use inner-
product, each element of matrix A is repeatedly referenced k times.
On the other hand, if we use outer-product as shown in Alg. 2,
each element of matrix A is referenced only once. (Please note, as
we will discuss in later sections, when k is larger than a certain
threshold, elements in matrix A still need to be referenced more
than once due to the limited resources available for each thread,
but it is still far lower than using inner-product). For large matrix A,
the beneit is signiicant, since it greatly reduces the total number
of global memory accesses during the entire GEMM computation.
Also, the outer-product style does not bring any extra memory
accesses to matrix B compared to inner-product style. The only cost
for outer-product is extra registers holding k intermediate results.
However, with proper tuning, they only bring little performance
impact compared with extra memory accesses.

Require: input matrix A (n × n) and B (n × k )
Require: output matrix C (n × k )
1: for i = 1 to k do
2: for j = 1 to n do
3: C[thread_id, i]+ = A[thread_id, j] × B[j, i]
4: end for
5: end for

Algorithm 1:Workload of each thread with inner product

3.3 Eicient of-chip memory access
One key factor of optimizing memory intensive applications is
ensuring high of-chip memory access eiciency. Depending on the
GPU model type or runtime conigurations, global memory (of-
chip) accesses of threads within the same warp can to coalesced
into 128 byte- or 32 byte-transactions [4] if their access addresses
fall into the same 128 byte- or 32 byte-segments in global memory,
which enables eicient use of memory bandwidth. Otherwise, the
GPU still loads memory in 128 byte- or 32 byte-transactions, but it

may contain unrequested data that are stored in neighbor addresses,
which causes ineicient memory accesses.

Since each thread reads one row of matrix A and the matrix
is stored in column-major by convention, memory accesses are
naturally coalesced when threads within the same warp access ele-
ments on diferent rows but on the same column. So, 100% memory
access eiciency is achieved on matrix A. However, for matrix B,
all threads access the same element at the same time, which results
a single memory transaction containing one requested element and

several unrequested neighbor elements. So, only
8 bytes
128 bytes

= 6.25%

or
8 bytes
32 bytes

= 25% memory access eiciency is achieved for ac-

cessing 64-bit double loating point elements. Although the total
number of elements in matrix B is small, given that each element
needs to be accessed n times, this ineicient access pattern can still
greatly impact the overall performance.

To improve the eiciency of memory accesses to matrix B, we
utilize shared memory in GPU. Since it is located on-chip, shared
memory gives us the speed of L1 cache and it is fully programmable.
Threads within one thread block can use shared memory to share
data. So, one key advantage of shared memory is that it eliminates
the need for the consistency between patterns of data loading and
data using pattern, which enables us to load global memory in the
most eicient way and keep the way we use data as before.

Require: input matrix A (n × n) and B (n × k )
Require: output matrix C (n × k )
1: Reд1← C[thread_id, 1]
2: Reд2← C[thread_id, 2]
3: ...
4: Reдk ← C[thread_id, k ]
5: for i = 1 to n do
6: tmp ← A[thread_id, i]
7: Reд1+ = tmp × B[i, 1]
8: Reд2+ = tmp × B[i, 2]
9:

10: Reдk+ = tmp × B[i, k ]
11: end for
12: C[thread_id, 1] ← Reд1
13: C[thread_id, 2] ← Reд2
14: ...
15: C[thread_id, k ] ← Reдk

Algorithm 2:Workload of each thread with outer product

By using shared memory for accessing matrix B, we can reduce
the total number of memory accesses and enable coalesced memory
access. As shown in Alg. 3, for each iteration, instead of letting
threads request elements they need individually by themselves
ineiciently, we now let a block of threads work together to fetch a
tile of matrix B into the shared memory in a coalesce-compatible
way (line 13-15). Then during computation, each thread references
elements in matrix B through the shared memory instead of loading
each one of them individually from global memory. This reduces
the total number of accesses to matrix B from global memory (from
n to n/t1 per element). Also, threads in a same thread block (also
warp) fetch elements of matrix B column by column, which enables
coalesced memory access. This greatly improves memory access
eiciency of matrix B to 100%.

In Alg. 3, we also introduce three parameters: t1, t2, and t3.
These parameters are used for adjusting the performance and will
be discussed in later sections.
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Require: input matrix A (n × n) and B (n × k )
Require: output matrix C (n × k )
1: t1 ← t ile_size_B , t2 ← t ile_size_C , t3 ← t ile_size_A
2: Register: A1, A2, ..., At3
3: Register: C1, C2, ..., Ct2
4: Shared Memory: currB with size t1 × t2
5: Threads per thread block← t1
6: Total thread blocks← n/t1
7: for p = 1 to k with step size = t2 do
8: C1 ← C[thread_id, p]
9: C2 ← C[thread_id, p + 1]

...
10: Ct2 ← C[thread_id, p + t2 − 1]
11: for j = 0 to n with step size = t1 do

/* Load a tile of B into shared memory */
12: ThreadsSynchronization()
13: currB[thread_id, 1] ← B[j + thread_id, p]
14: currB[thread_id, 2] ← B[j + thread_id, p + 1]

...
15: currB[thread_id, t2] ← B[j + thread_id, p + t2 − 1]
16: ThreadsSynchronization()
17: for l = j to j + t1 with step size = t3 do

/* Load a tile of A into registers */
18: A1 ← A[thread_id, l ]
19: A2 ← A[thread_id, l + 2]

...
20: At3 ← A[thread_id, l + t3 − 1]
21: C1+ = A[1. . .t3] × currB[[l ...l + t3], 1]

22: C2+ = A[1. . .t3] × currB[[l ...l + t3], 2]
...

23: Ct2+ = A[1. . .t3] × currB[[l ...l + t3], t2]

24: end for
25: end for
26: C[thread_id, p] ← C1

27: C[thread_id, p + 1] ← C2

...
28: C[thread_id, p + t2] ← Ct2
29: end for

Algorithm 3: TSM2 with shared memory

3.4 Optimize use of shared memory
Although fast, elements in shared memory still need to be loaded
into registers before using [7]. Its accessing speed can afect the
overall performance. Shared memory is divided into several same-
sized memory banks for fast parallel accesses. Diferent threads
accessing diferent memory banks can be done simultaneously.
So, total b memory banks can speedup overall shared memory
throughput by up to b times compared to the throughput of one
single memory bank. However, if x threads in the same warp access
diferent data from the same memory bank, x-way bank conlict
would occur and each request is processed sequentially, which
dramatically reduces the accessing throughput by a factor of 1/x .

In our algorithm, threads in the same thread block load data
from global memory into shared memory column by column to
enable fast coalesced global memory access. Then threads access
data from shared memory row by row during computation. How
we store elements in shared memory will afect how these elements
are accessed from memory banks, which afects the throughput of
shared memory. We have two ways of storing a tile of matrix B in
shared memory: column-major storage and row-major storage. To
choose between the two ways, we need to analyze and compare
which way brings the least overall bank conlict. We assume the
size of one tile of matrix B is t1 × t2 and t1 is the multiply of total
number of memory banks b for simplicity.

For column-major storage, elements (32-bit words or 64-bit words)
in the same column of one tile of matrix B are stored in successive
memory banks. So, for shared memory with b memory banks, ev-
ery t1 elements of one column are stored in b diferent successive

memory banks with each bank stores at most t1
b
elements and is

accessed by at most
warp size

b
threads at the same time, which may

potentially cause bank conlict if
warp size

b
is greater than one.

For row-major storage, elements in the same row of matrix B
are stored in successive memory banks. So, elements of the same

column are stored in b
t2

diferent banks with each bank stores t1×t2
b

elements from one column. Since each bank has t2 times more
elements from one column, totally each bank has at most t2 times

more thread accessing at the same time:
warp size

b
× t2, which may

also potentially cause bank conlict.
On modern Nvidia GPUs, thewarp size is ixed to 32 and total

number of banks is also 32 [4], so column-major storage does not
cause bank conlict, since each bank can only have up to one thread
accessing. Row-major storage can cause up to t2-way bank conlict,

which decreases overall shared memory throughput to 1
t2

of the

peak throughput. As shown in Fig. 1, we load a 64 × 2 matrix tile
into shared memory using column-major storage (left) and row-
major storage (right). When using column-major storage, threads
in one warp all access diferent banks, so no bank conlict occurs.
On the other hand, when using row-major storage, 32 elements are
stored in 16 banks causing 2-way bank conlict.
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Figure 1: Comparing column-major (left) with row-major
(right) storage for storing a 64 × 2 tile of matrix B in shared
memory. Blue and yellow squares represent elements in the
irst and second column. When one warp of 32 threads ac-
cessing 32 elements in one column (e.g. element 0 to 31 of
the irst column), the column-major storage brings no bank
conlict and row-major storage brings 2-way bank conlict,
which reduces throughput by half.

When accessing elements in shared memory for computation,
threads in a warp all access the same element at a time in our
algorithm. Although multiple threads are accessing one bank, they
are accessing the same element, so one broadcast is initiated, which
does not cause bank conlict. It is the same for both storage styles.
So, we choose column-major storage as it brings no bank conlict
and potentially brings the highest shared memory throughput.

3.5 Overlapping Computation and Memory
Access Latency

During execution, for each instruction issuing moment, each warp
scheduler picks an eligible warp and send it to the correspond-
ing component for execution. A warp becomes eligible only if all
operands of its next instruction are ready. However, if a warp is
loading data from global memory, it would take several hundred
cycles before it can be ready for execution. To hide this long latency,
we can either increase the number of threads reside in each SM to
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ensure there always exist eligible warps [25] or put independent in-
structions in between data loading and data consuming operations,
so that warps are also eligible for execution during memory loading
time. The irst approach requires us to adjust the on-chip resource
usage of each thread block. We will leave that discussion in the next
section. In this section, we aim to add independent instructions in
between data loading and data consuming operations.

A shown in Alg. 3, line 13-15 and 18-20 load data from global
memory and line 21-23 consume data once data is loaded. However,
due to data dependency, there is no independent instruction in
between, so once each warp issues global memory access requests,
it must wait for the requested elements to be ready before it can
proceed to computation.

So, to add independent instructions, we use data prefetching to
mix the data loading and consuming between neighbor iterations.
Speciically, instead of letting each iteration loads data that is going
to be used for current iteration, we let the data needed for current
iteration to be loaded by the previous iteration, so that its calculation
will not be blocked by data loading (since the data are ready). When
doing calculation, it also loads data that is going to be used for the
next iteration. By overlapping data loading and computation, we
can signiicantly improve memory bandwidth and SM utilization.
We apply data prefetching to both matrix A and B.

As shown inAlg. 4, we design our TSM2with data prefetching. In
line 4 and 5, we allocate two sets of t3 registers for storing current
tile of elements of matrix A and next tile of element of matrix A
for prefetching. In line 6 and 8, we allocate t2 registers for data
prefetching of elements in matrix B, and allocate t1 × t2 for storing
currently loaded tile of matrix B. Note that we cannot store current
tile of matrix B in registers, because elements in matrix B need to
be shared between threads during computation.

Before the core computation iteration (line 20-40), we pre-load
current tile of matrix A and B into registers and shared memory
(line 13-19), so that computation can start immediately as soon
as we enter the computation loop without being blocked by any
data dependency. The main computation resides in line 28-30. To
overlap computation with memory accesses, we initiate loading for
the next tile before the computation (line 21-23 for matrix B and
line 25-27 for matrix A). We use two loops for loading matrix A
and B, because we want to have the lexibility to adjust loading pace
(tile size) diferently for the two matrices. We will discuss this in the
next subsection. Fig. 2 and 3 show one iteration of our optimized
TSM2 with data prefetching. LD C and ST C represent loading initial
values from matrix C and storing inal results back to matrix C.
Each iteration we show three sub-iterations for loading matrix B. As
we can see, we load pre-load the next tile of matrix B in concurrent
with computation to improve memory bandwidth utilization. A
threads synchronization is inserted in the end of each iteration. For
the inner most iteration, we do the actual computation and pre-load
elements from matrix A each time. Please note that the length of
each rectangle does not accurately represent the exact execution
time length and the ratio between number of LD nextA and LD

nextB is not necessarily two in actual computation. Also, we show
one thread block with four threads only for illustration proposes.
As we will discuss in the next subsection that diferent parameter
values can afect the length of each part and the ratio between
number of LD nextA and LD nextB. Especially on the execution
time of LD nextA and Compute, which will afect the characteristic
of computation (i.e. memory bound or compute bound). Also, for
simplicity, we ignore the part that moves data between next tile
storage to current tile storage of each iteration in this igure.

Require: input matrix A (n × n) and B (n × k )
Require: output matrix C (n × k )
1: t1 ← t ile_size_B , t2 ← t ile_size_C , t3 ← t ile_size_A
2: Register: currA1, currA2,...,currAt3
3: Register: nextA1, nextA2,...,nextAt3
4: Register: nextB1, nextB2,...,nextBt2
5: Register: C1, C2,...,Ct2
6: Shared Memory: currB with size t1 × t2
7: Threads per thread block← t1
8: Total thread blocks← n/t1
9: for p = 1 to k with step size = t2 do
10: C1 ← C[thread, p]
11: C2 ← C[thread, p + 1]

...
12: Ct2 ← C[thread, p + t2 − 1]
13: currB[thread_id, 1] ← B[thread_id, p]
14: currB[thread_id, 2] ← B[thread_id, p + 1]

...
15: currB[thread_id, t2] ← B[thread_id, p + t2 − 1]
16: currA1 ← A[thread_id, 1]
17: currA2 ← A[thread_id, 2]

...
18: currAt3 ← A[thread_id, t3]
19: for j = 0 to n with step size = t1 do
20: ThreadsSynchronization()

/* prefetch the next tile of B into registers */
21: if j + t1 < n then
22: nextB1 ← B[j + t1 + thread_id, p]
23: nextB2 ← B[j + t1 + thread_id, p + 1]

...
24: nextBt2 ← B[j + t1 + thread_id, p + t2 − 1]
25: end if
26: for l = j to j + t1 with step size = t3 do

/* prefetch the next tile of A into registers */
27: if l + t3 < n then
28: nextA1 ← A[thread_id, l + t3]
29: nextA2 ← A[thread_id, l + t3 + 1]

...
30: nextAt3 ← A[thread_id, l + t3 + t3 − 1]
31: end if
32: C1+ = currA[1. . .t3] × currB[[l ...l + t3], 1]

33: C2+ = currA[1. . .t3] × currB[[l ...l + t3], 2]
...

34: Ct2+ = currA[1. . .t3] × currB[[l ...l + t3], t2]
35: currA1 ← nextA1

36: currA2 ← nextA2

...
37: currAt3 ← nextAt3
38: end for
39: ThreadsSynchronization()
40: currB[thread_id, 1] ← nextB1

41: currB[thread_id, 2] ← nextB2

...
42: currB[thread_id, t2] ← nextBt2
43: end for
44: C[thread, p] ← C1

45: C[thread, p + 1] ← C2

...
46: C[thread, p + t2] ← Ct2
47: end for

Algorithm 4: TSM2with shared memory and data prefetch-
ing
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Figure 2: Example workload of one iteration of our opti-
mized TSM2 with data prefetching
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Figure 3: Matrix view of tall-and-skinny matrix matrix mul-
tiplication with data prefetching

3.6 Parameters Deinition
In Alg. 3 and Alg. 4, we introduced three adjustable parameters:
t1, t2, and t3. In this section, we irst discuss how each parameter
controls the computation of our TSM2. Then, we introduce our
performance model that estimates how certain performance metrics
change with these parameters. Finally, we explain our strategies of
choosing values for these parameters in order to achieve high GPU
resources utilization and optimized overall performance. Please
note that the following discussions are all based on Alg. 4.

3.6.1 Behaviors of Parameters. First, we list the behaviors of each
parameter as follows:

• t1 speciies the number of rows of one tile of matrix B. To
maximize use of available active threads and to avoid any
ineicient thread execution caused by warp divergence, we
let all threads in each thread block participating in fetch-
ing elements of matrix B. For fast coalesced global memory
access, we let each thread fetch one row, so t1 is also the
total number of threads in each thread block. Also, since
we let total n threads working on the computation, the total
number of thread blocks can be calculated as: n/t1.
• t2 speciies the number of elements in matrix C that each
thread is working on at a time. It is used to divide the over-
all workload into several smaller workloads that are pro-
cessed iteratively by each thread. Smaller workload makes
each thread’s SM resource usage smaller, which allows us to
keep higher SM occupancy. However, dividing the workload
means we need to load matrix A repeatedly for each small
workload. So, there is a trade-of. t2 also afects the ratio
between total number of memory fetches and computation
operations in core part of our algorithm, which allows us
to adjust the computation to be compute or memory bound
(will be discussed later in detail).
• t3 speciies the number of elements in matrix A that each
thread fetches at a time. Since elements fetches are inde-
pendent to each other, they can be done without blocking

each other, so t3 can be used to adjust the memory loading
concurrency.

3.6.2 Performance Metrics Estimation. In this section, we intro-
duce our parameters based performance model that is used to esti-
mate three important performance metrics: SM occupancy, memory
bandwidth utilization and computing power utilization. These esti-
mations will be used for optimizing the overall performance.

• Max SM occupancy estimation
With these parameters we can calculate the max occupancy
of each SM, which is deined as max number of active threads
per SM. (Some works also use max number of warps, which
is similar to ours. We found that using max thread is more
consistent across our performance models. We also choose
thread block size to be the dividend of this value to ensure
expected number of threads are active.) This occupancy is
mainly bound by the maximum hardware allowable number
of threads (HW _MAX ) and on-chip memory utilization per
thread. We irst calculate the total number of registers uti-
lized per thread. Since register utilization can potentially be
optimized by the nvcc compiler, we use maximum number
of registers to estimate this value. First of all, there is a rela-
tively ix amount of registers uses for CUDA initial setup, and
we represent this amount as C . We get its amount through
of-line proiling. Then, we need two sets of t2 registers for
storing elements of matrix B for both next tile fetching and
current tile calculation. Please note that although the current
tile of matrix B is stored in shared memory, it still needs to
be transferred to registers for calculation. Next, we need t2
registers for keeping intermediate results of matrix C. Finally,
we need two sets of t3 registers for storing elements of ma-
trix A for both next tile fetching and current tile calculation.
So, the total number of registers is:

Rthread = (t2 × 3 + t3 × 2) ×
bytes_per_element

bytes_per_reдister
+C

As for shared memory, through shared memory is allocated
per thread block, we calculate the average amount of shared
memory that each thread uses for consistent calculation
here. Since the size of allocated shared memory per thread
block is t1 × t2, and as we will discuss earlier that we set
t1 = threads_per_threadblock , the amount of shared mem-
ory allocated for each thread on average is:

Sthread = t2 × bytes_per_element

So, the max SM occupancy can be calculated as:

MaxOccupSM =min(HW _MAX ,
RSM

Rthread
,

SSM

Sthread
)

In this above calculation, RSM and SSM stand for the max
available registers and shared memory per SM.
• Max memory bandwidth utilization estimation
Next, we estimate the max memory bandwidth utilization
of our algorithm when the computation is memory bound.
In this case, loading elements of matrix A dominates the
computation instead of loating point calculations in our
algorithm. So, we can estimate max memory bandwidth
utilization using the maximum number of concurrent global
memory accesses per SM. It can be calculated as:

Concurrentmem ≈ MaxOccupSM × t3

Please note that, we only consider the memory accesses to
matrix A here for simplicity. Since the majority memory
accesses are for matrix A, this only brings minor inaccuracy.
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Then, similar to [25, 27] we calculate the least number of
concurrent memory accesses per SM needed to achieve max
memory bandwidth utilization using Little’s Law:

Throuдhputmax_mem =
Peak Band .

#_o f _SM × core_clock

Concurrentmax_mem = latencymem ×Throuдhputmax_mem

The latencymem is the average global memory access la-
tency, which is considered as a constant in our model and is
obtained through oline proiling. The estimated memory
bandwidth utilization is:

Utilmem =
Concurrentmem

Concurrentmax_mem

• Max computing power utilization estimation
Next, we estimate the max computing power utilization of
our algorithm when the computation is compute bound. In
this case, loating point calculation dominates the compu-
tation instead of memory accesses in our algorithm. So, we
can estimate max computing power utilization using the
maximum number of concurrent loating point operations
per SM. It can be calculated as:

Concurrentcomp = MaxOccupSM × t3 × t2

Then, also similar to [25] we calculate the least number
of concurrent loating point operations per SM needed to
achieve max computing power utilization using Little’s Law:

Throuдhputmax_comp =
Peak Per f .

#_o f _SM × core_clock

Concurrentmax_comp = latencycomp ×Throuдhputmax_comp

The latencycomp is the average latency of loating point oper-
ations in our calculations, which is considered as a constant
in our model and is obtained through oline proiling. So,
the estimated computing power utilization is:

Utilcomp =
Concurrentcomp

Concurrentmax_comp

• Determine computing or memory bound
Given parameters and GPU speciication, we can determine
whether the current computation is memory or compute
bound. This is mainly determined by the inner most loop
(line 24 - 34) of Alg. 4. The memory loading instructions
(line 25-27) are overlapping with computation (line 28-
30). Since line 31-33 depends on memory loading results, it
serves as an implicit synchronization point for memory load
and computation. The time takes for the two parts will de-
termine whether the current computation is compute bound
or memory bound. So, we irst estimate the time takes for
computation and memory access as follows:

timecomp =
t3 × t2

Peak Per f . × #_o f _SM ×OccupancySM

timemem =
t3 × bytes_per_elem.

Peak Band . × #_o f _SM ×OccupancySM
Then, by comparing the two time costs, we can determine
whether the current computation is compute bound or mem-
ory bound.

r =
timecomp

timemem
=

t2

bytes_per_elem.
×
Peak Band .

Peak Per f .

As we can see, when r is greater than one, the computation
is compute bound. Otherwise, the computation is memory

bound. Also, since we divide the original workload into sev-
eral smaller workloads using t2, this ratio is determined by
t2. By adjusting t2, the actual computation can be shifted be-
tween compute and memory bound. The boundary between
the two cases can be calculated by setting the ratio r = 1, so
we get a threshold for t2:

t threshold2 =

Peak Per f .

Peak Band .
× bytes_per_elem.

Similarly, we can also estimate computation characteristic of
the original problem, in which the workload is not divided
into smaller workloads. In this case, t2 is always ixed to

k . So, by comparing k with t threshold2 we can estimate the

computation characteristic. If k is greater than t threshold2 ,
then the original problem is compute bound. Otherwise, it
is memory bound.
It can be easily seen, depending on the value of t2 and k ,
the computation characteristic of the current problem and
original problem can be diferent, which can afect the overall
performance. We discuss this in later part of this section.

3.6.3 Choosing parameters. When choosing parameters, the irst
thing we should determine is whether we should optimize for com-
putation or memory bandwidth. This is determined by whether the
given TSM2 computation on the given GPU should be compute or
memory bound. In the last section, we proposed to estimate this

characteristic by comparing k and t threshold2 , so that we can adjust
parameters to optimize the computation in the right direction.

In the case where original problem is memory bound (k ≤

t threshold2 ), we need to keep the actual computation to be memory

bound also (let 1 ≤ t2 ≤ k) and optimize for memory bandwidth
utilization. On the other hand, if the original problem is compute

bound (k > t threshold2 ), we irst try to keep the actual computation

to be compute bound too (let t threshold2 ≤ t2 ≤ k) and optimize of

computing power utilization. However, in the casewhere t threshold2
is too high on the given GPU, we also try to optimize it for memory

bound (let 1 ≤ t2 ≤ t threshold2 ) and output the result parameters
that deliver better performance.

Alg. 5 shows the parameter optimization procedure for t2 and
t3. We irst determine the computation characteristic in line 1. If it
is memory bound, we optimize for total time cost to access needed
elements from global memory (line 4). Otherwise, we optimize for
either total computation time (line 9) or memory access time (line
14). Please note that we only count the total amount of memory
accesses to matrix A for simplicity, since total accesses to matrix
B is much less than matrix A, so this simpliication only brings
minor inaccuracy. Also, considering the total accesses to matrix
B would bring one additional parameter (t1), which can be hard
to optimize since t1 is also related to threads organization that
is hard for modeling-based estimation. The memory bandwidth
utilization term (Utilmem ) and computing power utilization term
(Utilcomp ) is calculated using the equation mentioned before. Since
we have two parameters (t2 and t3) in our optimization target, we
use Gradient Descent (GD) to do the optimization. In GD, based on
our experience, we set initial value of both t2 and t3 to be 1, and
step size to be 0.1. The stop threshold is set to be 1e-4, since we do
not need very accurate precision. The inal t2 and t3 are rounded
to the nearest integers.

To optimize t1, we found it only controls the number of threads
in each thread block. Since the total number of threads is ixed to
n, t1 only determines how these threads are organized into thread
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Figure 4: Speedup comparison on K40c.

1: if k ≤ t threshold2 then

2: Total_memory ≈ n × n × k
t2
× bytes_per_elem .

3: Bandwidth = PeakBand . ×U tilmem

4: Use Gradient Descent to Optimize (t2 and t3):

T ime =
Total_memory
Bandwidth

with 1 ≤ t2 ≤ k and 1 ≤ t3
5: Output: t2 and t3
6: else
7: Total_f lops = n × n × k × 2
8: Compute_power = PeakPer f . ×U tilcomp

9: Use Gradient Descent to Optimize (t2 and t3):

T ime1 =
Total_f lops

Compute_power with t threshold2 ≤ t2 ≤ k and 1 ≤ t3
10: t2(t ime1) ← t2
11: t3(t ime1) ← t3

12: Total_memory ≈ n × n × k
t2
× bytes_per_elem .

13: Bandwidth = PeakBand . ×U tilmem

14: Use Gradient Descent to Optimize (t2 and t3) in

T ime2 =
Total_memory
Bandwidth

with 1 ≤ t2 ≤ t
threshold
2 and 1 ≤ t3

15: t2(t ime2) ← t2
16: t3(t ime2) ← t3
17: if T ime1 < T ime2 then
18: Output: t2(t ime1) and t3(t ime1)

19: else
20: Output: t2(t ime2) and t3(t ime2)

21: end if
22: end if

Algorithm 5: Parameter Optimization for TSM2

blocks. There is trade-of: if t1 is large, the total number of accesses
to elements of matrix B is reduced, however, large thread block
means large number of threads need to participate in the same syn-
chronization, which may have impact on performance. On the other
hand, if t1 is small, the total number of accesses to elements of ma-
trix B higher, but the smaller thread block makes scheduling more
lexible and eicient. It is hard to determine the optimum value of
t1 theoretically, so we use oline proiling to choose the best value.

Speciically, once t2 and t3 are determined, we benchmark diferent
t1 values that can divide MaxOccupSM as mentioned earlier and
choose the t1 that deliver the best performance. Although t1 seems
to have direct efect on shared memory allocation (or max SM occu-
pancy), it actually has limited impact on it, since we ix the amount
of shared memory per thread (Sthread = t2 × bytes_per_element ).

4 EXPERIMENTAL EVALUATION

4.1 Experiments setup
We evaluate our optimized TSM2 on our heterogeneous testbed clus-
ter: Darwin.We run each test on a single GPU node with single GPU
card. We conduct our tests on three diferent commonly used mod-
ern Nvidia GPUs with three diferent micro-architectures: Kepler,
Maxwell, and Pascal. For Kepler GPU, we use Tesla K40c, which
has 1430 GFLOPS peak double loating point performance and 288
GB/s memory bandwidth. For Maxwell GPU, we use Tesla M40,
which has 213 GFLOPS peak double loating point performance and
288 GB/s memory bandwidth. For Pascal GPU, we use Tesla P100,
which has 4600 GFLOPS peak double loating point performance
and 720 GB/s memory bandwidth.

We implemented our TSM2 using CUDA C for both single and
double loating point input. We disabled compiler auto unrolling
for better control on register allocation. For comparison, we com-
pare our TSM2 with GEMM in the current latest cuBLAS 9.0 li-
brary and latest BLASX library [26]. Also, we try to compare our
work with KBLAS [8], however since its GEMM kernel is based
on cuBLAS, its performance is identical to cuBLAS, so we omit-
ted its results. Each test is repeated multiple times to reduce noise
and timed using CUDA Events API. We measure performance by
calculating the performance of FAMD instructions. We also mea-
sure the global memory throughput using nvprof on the command
line with --metrics gld_throughput option. In addition, we use
--metrics gld_efficiency option to verify 100% global memory
access eiciency is achieved in our optimization during develop-
ment (we omit the presentation of result for eiciency veriication
due to page limit).
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Figure 5: Memory throughput utilization comparison on K40c

Our input matrix is initialized with random loating point num-
bers (0 to 1). We test the multiplication between a large square sized
matrix multiplies a tall-and-skinny matrix. The size of the large
input matrix is from 10240 ∗ 10240 to 30720 ∗ 30720. The tall-and-
skinny input matrix has size ranges from 10240 ∗ k to 30730 ∗ k
with k equals 2, 4, 8, and 16.

4.2 Tests with diferent combinations of
optimization

We use the GEMM in cuBLAS 9.0 as comparison baseline. We apply
diferent combinations of optimization in TSM2 and compare them
with GEMM in cuBLAS and BLASX. We have totally four versions
of TSM2:

• V0: the most straightforward inner product version as de-
scribed in Alg. 1;
• V1: the outer production version as in Alg. 2. This version
reduces the total number of global memory accesses from
algorithm level;
• V2: based on outer production version as in Alg. 2, we add
the use of shared memory, which leads to more eicient
global memory access to matrix B;
• V3: based on the outer production version as in Alg. 2 and
the use of shared memory, we add data prefetch. This is
the best version of our optimized implementation, which is
described in Alg. 4.

Limited by the page space, we only show the result on K40c
GPU. Our optimization behaves similar on other GPUs. To evaluate
our optimization, we need to determine by which resource our

program is bounded. Since, t threshold
2(k40c)

≈ 40, the computation is

always memory bound for the given k values. The optimized pa-
rameters are: t2 = k , t3 = 4, and t1 = 128. The parameters are only
applied to the last to versions of TSM2. Fig. 4 shows the speedup of
diferent versions in single and double precision. From the results,
we can see that the TSM2-V0 sufers from really poor performance

due to the requirement of much higher number of global mem-
ory accesses in the inner product version. The TSM2-V1, on the
other hand, signiicantly improve the performance compared to
TSM2-V0 (2.2x - 4.7x faster), since it requires much lower number of
global memory accesses. TSM2-V2 further improves the eiciency
of global memory access to matrix B, which plays a vital role in the
overall performance. In addition, the shared memory shares tiles
of matrix B between threads within a thread block also reduced
the total number of memory accesses to matrix B. This leads to
additional 1.1x to 2.1x speedup. Finally, the data prefetch introduced
in TSM2-V3 further mitigate the memory access bottleneck, which
brings additional 1.3x - 3.5x speedup.

4.3 Memory throughput analysis
Fig. 5 shows the memory throughput of TSM2-V3, cuBLAS and
BLASX in both single and double precision on K40c GPU. Result
show that TSM2 brings 12.5% - 26.6% (avg. 17.6%) improvement on
GPU memory bandwidth utilization compare with cuBLAS and
20.1% - 38.8% (avg. 24.3%) improvement compare with BLASX.

4.4 Tests on diferent micro-architectures
In addition to Kepler micro-architecture, we also conduct test on
newer Maxwell and Pascal GPUs. Similar as with Kelper GPU, we

get t threshold
2(m40)

≈ 6 and t threshold
2(p100)

≈ 50

Tesla M40 has slower computing power, so the computation with
input with k = 16 is compute bound. Our parameter optimization
procedure also output parameters in favor of computing optimiza-
tion: t2 = 8, t3 = 4, and t1 = 256. As shown in Fig. 6, our optimized
implementation achieves 1.1x -1.9x (avg. 1.47x) speedup on Tesla
M40 with 7% to 37.3% (avg. 20.5%) computing power utilization
improvement compared to the GEMM function in cuBLAS 9.0.

For P100 has much stronger computing power, as we can see
the computation with input with k = 16 is memory bound. Our
parameter optimization procedure also output parameters in favor
of memory optimization: t2 = 4, t3 = 4, and t1 = 128. As shown
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Figure 6: Comparison on M40 (k = 16, double precision).
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Figure 7: Comparison on P100 (k = 16, double precision).

in Fig. 7, our optimized implementation achieves 1.1x - 3.0x (avg.
2.15x) speedup on Tesla P100 with 17% to 47.6% (avg. 34.7%) mem-
ory bandwidth utilization improvement compared to the GEMM
function in cuBLAS.

5 SHOWCASE
In this section, we use two real world applications to showcase the
performance beneits brings by our TSM2.

5.1 K-means
The classic Lloyd’s K-means algorithm is one of the most commonly
used clustering method used in big data analytics. Its core compu-
tation is calculating the distance between each data point and each
centroid. An optimized way to calculate this distance is follows.
First, calculating the square of distance between a data point x and

a centroid y can be done by | |x − y | |2 = | |x | |2 + | |y | |2 − 2xy. Then,
by aggregating all calculations together, we can use more eicient

vector-vector multiplication (| |x | |2 + | |y | |2) and GEMM (xy). This
optimization is widely adopted in state-of-the-art implementation
of the classic Lloyd’s K-means algorithm on GPUs and CPUs. For
example, the implementation provided by Nvidia [1] uses cuBLAS’
GEMM routine to calculate the distance (i.e., computing xy). When
the number of centroids is small, this calculation becomes tall-and-
skinny (n × d by d × k , n is number of data points, k is number of
centroids, and d is the dimension of each data point and centroid).

Compared to calculating | |x | |2 and | |y | |2, calculating xy takes the
majority of the computation (O(d(n + k)) vs. O(ndk)), so its per-
formance is critical to the overall algorithm. Here we replace the
GEMM routine in [1] with our TSM2. We set the number of centroid
k = 16, the dimension of data point d = 4096, and changes the
number of data points n from 1k to 262k. Each dimension of each
data point is randomly generated double loating point ranges from
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Figure 8: Speedup of 100 iterations of Lloyd’s K-means algo-
rithm on K40c using TSM2-V3
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Figure 9: Speedup ofABFT checksumencoding time onK40c
using TSM2-V3

0 to 1. We compare the execution time of the irst 100 iterations.
The result is shown in Fig. 8. Using our TSM2, we speedup K-means
by 1.06x - 1.89x (avg. 1.53x) on Nvidia Tesla K40c.

5.2 ABFT Matrix Checksum Encoding
Matrix checksum encoding is one of the most important operations
in ABFT [10, 11, 22, 28, 30]. Its calculation involves letting a matrix
(or matrix block for higher encoding density) multiples a series
of predeined vectors to get weighted sum along matrix rows or
columns. A common choice is using two vectors. When grouping
the two vectors together, the calculate becomes tall-and-skinny
matrix-matrix multiplication. The common choice on GPU is using
cuBLAS. Here we compare the checksum encoding performance
by using cuBLAS and our TSM2. The result is shown in Fig. 9. As
we can see, our TSM2 signiicantly improve the checksum encoding
calculation with 1.10x to 1.90x speedup (avg. 1.67x) on Nvidia Tesla
K40c. We notice that the speedup oscillates when the matrix size is
small. This is mainly caused by load balances change as diferent
input matrix sizes are given. We will leave this to be optimized in
our future works.

6 CONCLUSION
In this work, we irst analyzed the performance of current GEMM in
the latest cuBLAS library. We identiied that current implement lack
of full utilization of computing power or memory bandwidth when
the input shape is tall-and-skinny. Then, we discovered the potential
challenges of optimizing tall-and-skinny GEMM since its workload
can varies between compute bound and memory bound. Next, we
redesigned an optimized tall-and-skinny GEMM with several opti-
mization techniques focusing on GPU resource utilization. Finally,
experiment results that our optimized implementation can achieve
1.1x - 3x speedup on three modern GPU micro-architectures.
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