
CEAZ: Accelerating Parallel I/O via Hardware-Algorithm Co-
Designed Adaptive Lossy Compression

Chengming Zhang (Washington State University)
Sian Jin (Washington State University)
Tong Geng (Pacific Northwest National Laboratory)
Jiannan Tian (Washington State University)
Ang Li (Pacific Northwest National Laboratory)
Dingwen Tao (Washington State University)

2

Background: Storage and I/O Issues

Introduction: Supercomputing Systems

The compute capability is developed much faster than storage and bandwidth: a widening gap
I between compute unit and storage bandwidth (PF–SB), or
I between main memory size and storage bandwidth (MS–SB)

supercomputer year class PF MS SB MS/SB PF/SB
Cray Jaguar 2008 1 ������ 1.75 ������ 360 �� 240 ��/� 1.5� 7.3�
Cray Blue Waters 2012 10 ������ 13.3 ������ 1.5 �� 1.1 ��/� 1.3� 13�
Cray CORI 2017 10 ������ 30 ������ 1.4 �� 1.7 ��/�• 0.8� 17�
IBM Summit 2018 100 ������ 200 ������ >10 ��•• 2.5 ��/� >4� 80�

PF: peak FLOPS MS: memory size SB: storage bandwidth
• when using burst bu�er •• counting only DDR4 Source: F. Cappello (ANL)

supercomputer year class PF MS SB MS/SB PF/SB
Fujitsu Fugaku 2020 “E��S����” 537 ������• 4.85 �� �1.5 ��/�•• �3.2� 358�
Intel Aurora••• ������ E��S���� �2 ������ >10 �� �25 ��/� �0.4� 80�
• Rpeak, TOP 500 for November 2020 •• DDN Newsroom ••• as of October 2021

Table 3: Classes of supercomputers showing their performance, MS and SB.

Thursday, Sept. 9, 2021 · CLUSTER ’21, Portland, Oregon, USA · ��SZ+ · 1 / 1

The compute capability is ever
growing, but storage capacity
and bandwidth are developing
much more slowly

ALCF: Intel Aurora

3

Background: Why Lossy Compression

Ø Lossy compression on scientific data
• Offers much higher compression ratios than lossless compression by trading a little bit of accuracy

Ø Data is extremely large
• One Nyx cosmological simulation with a resolution of 4096! cells can generate up to 2.8 TB
• Such a large amount of data is generated in a parallel in many nodes and use collective

communication to dump the entire snapshot to the file system
• This process takes an unprecedented challenge to I/O bandwidths and storage systems

4

Background: Dual-quantization
Ø Dual-quantization algorithm
• Dual-quant consists of two steps: prequantization and postquantization
• Quantize a float point data based on the user-set error bound and convert it to an integer data then calculate

its predicted value
• Difference between the predicted value and the prequantized value will be compressed by Huffman

compression

5

Background: FPGA-based Compressor

Ø FPGA-based lossy compressor
• waveSZ adopts a wavefront memory layout to to alleviate the data dependency, but

(1) just alleviates the data dependency
(2)wavefront memory layout involves rearranging data

• BurstZ can provide a high throughput (8 GB/s), but
(1) suffers from a significantly higher compression ratio drop compared with the original ZFP algorithm
(2) 8GB throughput is much smaller than current PCIe3/4 and InfiniBand

• ZFP is NOT error-bounded

6

Motivation and Challenge
Ø High Overhead of Huffman Coding

• Huffman coding has high overhead in terms of latency, area, and power
• Hard to build a Huffman tree and generate codewords within limited hardware

clock cycles to meet high-throughput requirements

Ø Challenge of Predefined Codewords

• We use predefined codewords at the beginning and update the codewords during the runtime
• How to generate suitable codewords?

7

Overview of CEAZ

Ø FPGA-based lossy compressor CEAZ

• Top dataflow path, we preprocess float-point data using a dual
quantization algorithm

• Middle dataflow path, we directly encode symbols using existing
codewords for seeking high throughput

• Bottom dataflow path, we feed back total bits of encoded symbols
to estimate compression ratio, and then adjust the error bound

8

Design Methodology
Ø Fast approximate sort
• Frequencies of symbols that are generated by Lorenzo predictor and linear-scaling quantization are symmetric
• our approximate sort saves the sort time by 7.5X on average over the merge sort

9

Ø Offline Huffman codewords generation

• To make offline codewords representative, we generate corresponding offline codewords for various types
(Climate, Cosmology, Molecular, and Physics) of datasets

• When encounter a new type of dataset:
(1) first use the average offline codewords
(2) add the offline codewords of this new type into our offline codewords repository for future uses

• Steps for offline codewords:
(1) let our compressor have a similar compression ratio on different datasets under the same type
(2) collect symbol frequencies on different datasets under the same type
(3) calculate the average symbol frequencies from collected frequencies
(4) use average symbol frequencies to generate offline codewords

Design Methodology

10

Ø Fixed compression ratio mode
• Assume bit-rate of symbol after Huffman encoding. 𝑃 is the probability of given code 𝑠𝑖, 𝐿 is the

length of given code 𝑠𝑖

• Doubling the error bound to 2𝑒𝑏, total number of symbols is reduced by 2x and the possibility
of each symbol is increased by 2X

• New bit-rate should be:

Ø Observation
• Doubling the error bound, the bit-rate should increase by 1.

Design Methodology

11

Ø Adaptive online codewords updates:
• Frequently update the codewords

Benefit: May obtain high compression ratio
Drawback: decrease throughput, overhead of codewords

• Symbols generated present a centralized and
symmetric distribution

• Use STD to evaluate the similarity of two sets of
symbol frequencies

• 𝜎0 is the STD of previous data chunk, 𝜎1 is the STD
of data chunk, and χ = 𝜎0 − 𝜎1

• Not generate new codewords if χ ≤ 𝜏0 (two frequencies
with similar distributions generate almost identical
codewords)

• Generate new codewords if 𝜏0 < χ ≤ 𝜏1
• Use the offline Huffman codewords if 𝜒 ≥ 𝜏1 χ ≥ 𝜏1

Ø Updates strategy.

Design Methodology

12

Ø Integrate CEAZ into system.
• Many scientific applications need dump a huge amount of raw simulation data to the storage
• Even though using InifniBand interconnect (e.g., 200 Gb/s), it can take hours to complete

Parallel I/O Accelerator

13

Evaluation

Ø Experimental Setup

• Datasets: Six real-world datasets from the Scientific Data Reduction Benchmarks
• Platforms: (1) Xilinx Alveo U280 Data Center accelerator card

(2) Summit supercomputer for I/O simulation
(3) NVIDIA Tesla V100 GPU for comparison with cuZFP/cuSZ

Our tested datasets

14

Evaluation
Ø Compression Ratio

• Compared to the BurstZ, CEAZ provides
1.2X∼16.4X higher ratio

• Compared to the CPU-SZ, the degradation of ratio is
within 23.3%

Ø Distortion (PSNR)

• Compared to CPU-SZ, the degradation of PSNR is
within 4 dB

• all PSNRs are higher than 60 dB
Compression ratio

PNSR

15

Evaluation

Ø Compression ratio and throughput
• Compared to lossless compressors, CEAZ can obviously increase compression ratio and throughput

Compression ratio and throughput

16

Evaluation

Ø Comparation with GPU compressors
• The throughput of CEAZ is 2.3x higher than BurstZ on average
• The throughput of CEAZ is about 56%∼78% of cuSZ/cuZFP’s throughputs

Throughput comparison among BurstZ, CEAZ, CPU-SZ

17

Evaluation

Ø Comparation with GPU compressors
• V100 provides up to 900 GB/s bandwidth (1.96x higher than U280) and 1.25 GHz frequency (4.2x

higher than U280)
• A similar FPGA, Intel S10 NX, has the peak performance of 3.96 TF/s (4.0X lower than V100)
• FPGA-based CEAZ is more efficient in resource utilization than GPU-based cuSZ/cuZFP

18

Evaluation

Ø Robustness
• Codewords change drastically

(1) offline codewords may be largely different from the actual codewords
(2) the statistics of input data chunk suddenly change

• Evaluate response time by concatenating two different datasets with different types

19

Evaluation

Ø Fixed-ratio mode
• We set the target compression ratios of 10.5 and 21 for single and double floating-point data, respectively
• Difference is within 7.5%, which is acceptable in our use case

20

Evaluation
Ø Scalability with multi-pipeline
• Increase the compression pipelines from 1 to 64
• Throughput (in log-scale) increases linearly as the number of pipelines increases

(1) HMB2 with a very high bandwidth of 460 GB/s
(2) Adopts dual-quant to remove the data dependency

Compression throughputs with multiple pipelines.

21

Evaluation

Ø Scalability with multi-node

• CEAZ-supported MPI_File_write can improve
the overall throughput (including compression
time andtime to write compressed data) by 18.0X
and 28.9X on NYX and S3D, respectively

• CEAZ-supported MPI_Gather can improve the
overall throughput by 21.0X and 37.8X on NYX
and S3D

22

Conclusion & Future Work

Ø Conclusion

• CEAZ is a hardware-algorithm co-design of efficient and adaptive lossy compressor for scientific data
• It adaptively updates Huffman codewords online based on our offline generated Huffman codewords
• It can accurately control compression ratio
• It outperforms the second-best FPGA-based error-bounded lossy compressor by 2.3X of throughput and 3.0X of

compression ratio

Ø Future work
• Deploy our system to FPGA-based clusters, like PNNL’s “Junction” cluster
• Extend CEAZ to DPU-based systems

23

Thank you!
All questions and ideas are welcomed

Dingwen Tao: dingwen.tao@wsu.edu
Chengming Zhang: chengming.zhang@wsu.edu

Contact:

mailto:dingwen.tao@wsu.edu
mailto:chengming.zhang@wsu.edu

