Software-Hardware Co-design of Heterogeneous SmartNIC System for Recommendation Model Inference and Training

Anqi Guo (University of Rochester, Boston University)

Yuchen Hao (Meta Platforms) Chunshu Wu (Boston University) Pouya Haghi (Boston University) Zhenyu Pan (University of Rochester) Min Si (Meta Platforms) Dingwen Tao (Indiana University) Ang Li (Pacific Northwest National Laboratory) Martin Herbordt (Boston University) Tong Geng (University of Rochester)

Personalized recommendation is everywhere

"35% of purchases on Amazon and 75% of videos on Netflix are powered by recommendation algorithms"

— McKinsey & Co

Al inference cycles in Facebook's datacenter

Recommendation service account for over 80% of all AI inference cycles in Meta's datacenter.

Meta's datacenters perform 200+ trillion inferences every day.

Deep learning based recommendation model has evolved as single largest AI application in Meta.

Deep Learning Recommendation Model (DLRM)

Large-scale distributed system for DLRM

Embedding tables can be Gigabytes to Terabytes

Exceed GPU's HBM size

Requires large distributed system

Data parallel + Model parallel

Scalability Issue

Scalability Limits the development of DLRM

The growth of GPU's HBM **cannot** keep up with the evergrowing DLRM size

System grows even larger

Even Worse Scalability Issue!

Communication Bottleneck:

- All-to-All communication
- Memory Bandwidth Challenge:
- Large amount and frequent embedding access in GPU's HBM Computation Efficiency Challenge:
 - DLRM's Irregular computation and data reformatting

SmartNIC offers an opportunity

Regular Network Interface Card (NIC)

NIC in distributed system for communication as device

Any packet from the end host to the network and vice versa goes through the NIC

- The host CPU generates, processes and delivers packets based on application request
- Packets are sent or received to the NIC over PCIe
- NIC transforms packets to bits and send them over the link

However, only communication devices

Smart Network Interface Card (SmartNIC)

SmartNIC = Regular NIC (Communication) + Computation Capability

SmartNICs are evolving with powerful valuable computation resources and heterogeneity

SmartNIC offers an opportunity

mitigate network communication challenges in scale out data centers

However, Simply adding SmartNICs to a distributed system only addresses point-to-point communication latency.

How to leverages SmartNIC resources ? overcome the critical challenges: communication bottleneck, memory bandwidth pressure, improving computational efficiency.

A software-hardware co-design of a heterogeneous SmartNIC system for Deep Learning Recommendation Model (DLRM)

A set of SmartNIC designs:

- 1. Cache systems: local cache remote cache
- 2. SmartNIC computation kernels
- 3. Graph Algorithm

Compute

- Relieve memory access intensity
- Improve GPUs' computation efficiency.

DLRM Challenge	Cache System			
	Local Cache	Remote Cache	SmartNIC Computation	Graph Algorithm
Communication		+++	++	+
Memory	++	++		+
Computation			+	+
GPU Efficiency	+	+	+	+

1+1 > 2

A software-hardware co-design of a heterogeneous SmartNIC system for Deep Learning Recommendation Model (DLRM)

DLRM Data Power Law Distribution

A small fraction of embeddings results in most of the access

SmartNIC Design:

- Cache System (Buffer Local, Remote embedding)
 - Reduce communication workload
 - Relief memory bandwidth pressure
- Graph Algorithm
 - Clustering similar samples

Outline

- Graph Algorithm
- SmartNIC Cache System
 - Local Cache
 - Remote Cache
- Computation Kernels on SmartNIC

Graph Algorithm:

Grouping similar samples exploring data locality

improve the overall system performance further.

Incidence Matrix

Hyper Graph

A Mini Batch of Similar Samples

Refresh Batch:

Issue: Samples with less common sparse features will always left

Solution:

- Downgrade factor
 - Track similarity of generated mini baches
- Timing counter:

Tack samples waited too long for service

Batch Refresh with

Outline

- Graph Algorithm
- SmartNIC Cache System
 - Local Cache
 - Remote Cache
- Computation Kernels on SmartNIC

Deduplication **Batch Size** (Node, Sample) N1T1 IDX Lookup idx Lookup idx (0,1) (1,0) (2,1) (3,3) 0 3 N2T1 IDX • • • Node Dedupe (1,2) 4 1 Node 1 ••• N3T1 IDX (0,1) (0,2) (1,3) (3,4) 3 ---Miss ••• Node 2 n N4T1 IDX ••• Node 3 n (3,7) **Embedding Table** Lookup Request Local Cache Dest: Node O EMT Lookup EMILIUX EMILVECTOR EMT Vector EMT idx 0 0 EMT idx EMT Vector 3 ocal Cache 8 8 Ра Lookup Embedding Pa ... All-to-All Ret Dest: Node 3 LRU Update GPU EMT idx EMT Vector Lookup idx 0 3 6 SmartNIC GPU HBM

Local Cache on SmartNIC

Local Cache buffers local node embedding tables' popular embedding vectors

Save local GPU HBM Bandwidth

Outline

- Graph Algorithm
- SmartNIC Cache System
 - Local Cache
 - Remote Cache
- Computation Kernels on SmartNIC

Remote Cache on SmartNIC

Remote Cache buffers embedding tables' popular embedding vectors from remote node

Save Communications Workloads

Outline

- Graph Algorithm
- SmartNIC Cache System
 - Local Cache
 - Remote Cache
- Computation Kernels on SmartNIC

Computation Kernel on SmartNIC

Switch

Irregular computation:

- Data reshape
- Matrix flattening
- Matrix transposing

Gradients reduction:

- Local gradients reduction
- global gradients reduction

Improves GPU computation efficiency

Evaluation

Forward Propagation

Time Breakdown of Inference and Training

Backward Propagation

2X speedup on inference and 1.5X speedup on training.

System Scalability Evaluation

Our Heterogeneous smartNIC system improves DLRM system scalability with higher training throughput and lower inference latency over GPU cluster.

Thank you! Any questions and ideas are welcomed!

Contact: Anqi Guo anqiguo@bu.edu

