
Software-Hardware Co-design of Heterogeneous SmartNIC
System for Recommendation Model Inference and Training

Anqi Guo
Boston University

University of Rochester
anqiguo@bu.edu

Yuchen Hao
Meta Platforms

haoyc@meta.com

Chunshu Wu
Boston University
happycwu@bu.edu

Pouya Haghi
Boston University
haghi@bu.edu

Zhenyu Pan
University of Rochester

zhenyupan@rochester.edu

Min Si
Meta Platforms
msi@meta.com

Dingwen Tao
Indiana University

ditao@iu.edu

Ang Li
Pacific Northwest National

Laboratory
ang.li@pnnl.gov

Martin Herbordt
Boston University
herbordt@bu.edu

Tong Geng
University of Rochester
tong.geng@rochester.edu

ABSTRACT
Deep Learning Recommendation Models (DLRMs) are important
applications in various domains and have evolved into one of the
largest and most important machine learning applications. With
their trillions of parameters necessarily exceeding the high band-
width memory (HBM) capacity of GPUs, ever more massive DLRMs
require large-scale multi-node systems for distributed training and
inference. However, these all suffer from the all-to-all communica-
tion bottleneck, which limits scalability.

SmartNICs couple computation and communication capabilities
to provide powerful network-facing heterogeneous devices that
reduce communication overhead. There has not, however, been a
distributed system design that fully leverages SmartNIC resources
to address scalability of DLRMs.

We propose a software-hardware co-design of a heterogeneous
SmartNIC system that overcomes the communication bottleneck of
distributed DLRMs, mitigates the pressure on memory bandwidth,
and improves computation efficiency. We provide a set of SmartNIC
designs of cache systems (including local cache and remote cache)
and SmartNIC computation kernels that reduce data movement,
relieve memory lookup intensity, and improve the GPU’s compu-
tation efficiency. In addition, we propose a graph algorithm that
improves the data locality of queries within batches and optimizes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICS ’23, June 21–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0056-9/23/06. . . $15.00
https://doi.org/10.1145/3577193.3593724

the overall system performance with higher data reuse. Our eval-
uation shows that the system achieves 2.1× latency speedup for
inference and 1.6× throughput speedup for training.

CCS CONCEPTS
• Computer systems organization→ Heterogeneous (hybrid)
systems; Neural networks.

KEYWORDS
Recommendation System, SmartNIC, Heterogeneous System

ACM Reference Format:
Anqi Guo, Yuchen Hao, Chunshu Wu, Pouya Haghi, Zhenyu Pan, Min Si,
Dingwen Tao, Ang Li, Martin Herbordt, and Tong Geng. 2023. Software-
Hardware Co-design of Heterogeneous SmartNIC System for Recommen-
dation Model Inference and Training. In 2023 International Conference on
Supercomputing (ICS ’23), June 21–23, 2023, Orlando, FL, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3577193.3593724

1 INTRODUCTION
Personalized Recommendation systems (Resys) are a widely used in
applications providing online services such as product recommen-
dations, video and music recommendations, and search services
[5, 8, 11, 14, 27, 30, 36]. As recommendation prediction require-
ments and datasets have grown, deep learning recommendation
models (DLRMs) [28] have shown substantial advantages in pro-
viding ranking and click through rate (CTR) predictions.

The size of DLRMs is significantly larger than traditional deep
neural networks due to their data-intensive embedding operators
that require hundreds of Gigabytes or even Terabytes of storage.
Themodel size far surpasses the likely HBM capacity of accelerators.
Moreover, the growth of the accelerators’ HBM is not keeping up
with the ever-growing DLRM size, as shown in Figure 4 [26, 33].
Therefore, high performance DLRM inference and training require

https://doi.org/10.1145/3577193.3593724
https://doi.org/10.1145/3577193.3593724

ICS ’23, June 21–23, 2023, Orlando, FL, USA Anqi Guo, Yuchen Hao, Chunshu Wu, Pouya Haghi, Zhenyu Pan, Min Si, Dingwen Tao, Ang Li, Martin Herbordt, and Tong Geng

large-scale, multi-node systems. As a result, the scalability issue
caused by the communication bottleneck fundamentally hinders
DLRM advances.

DLRMs pose three challenges to large-scale distributed systems:
(1) Communication bottleneck. Strategies like data-parallelism are
infeasible because the replications of the model are too large to fit
into the accelerator’s HBM. A hybrid model and data parallelism is
often used to deal separately with massive embedding tables and
smaller MLPs (Figure 1). The embedding operators are partitioned
and distributed to each node and use all-to-all communication to
exchange each share of the embedding tables (EMT). The all-to-all
communication incurs a massive amount of data exchange result-
ing in communication as the bottleneck of the entire application.
The exponential growth of communication volume indicates that
this critical path will worsen. (2) Memory bandwidth challenge.
DLRMs contain up to trillions of parameters and consume up to
terabytes of memory. The embedding operators require high mem-
ory bandwidth and frequent access to the embedding tables. (3)
Computation efficiency challenge. Compared with other machine
learning models, DLRMs exhibit lower arithmetic intensity with
irregular computations like data reshaping, flattening, and trans-
posing. These irregular operations are primarily memory copies
and make GPU’s computation less efficient.

Advanced network interface cards known as SmartNICs have
emerged to mitigate network communication challenges in scale-
out data centers. Moreover, SmartNICs with computation support
are particularly useful for domain-specific computation such as
machine learning and streaming data analytics [3, 16, 17, 29, 39, 40].
As SmartNICs continue to advance in power, the combination of
compute and communication support, together with their place-
ment in the node (network facing), point to their use in overcoming
the scalability challenges in DLRM training and inference.

Simply adding SmartNICs to a distributed system, however, only
addresses point-to-point communication latency. Currently there is
no distributed system design that leverages SmartNIC resources to
overcome the other challenges: communication bottleneck, memory
bandwidth pressure, improving computational efficiency. Existing
work [20, 33, 35] uses software solutions targeting the communica-
tion bottleneck by reducing the embedding table size, or the com-
munication volume of all-to-all and all-reduce collection. However,
these approaches have limited benefit, and the software solution
can not fundamentally resolve the performance bottleneck. Others
[6, 38] introduce storage technologies to optimize the embedding
operator’s performance. But memory bandwidth and latency can’t
catch up with GPU’s HBM, and, as the model size grows, memory
bandwidth could become another bottleneck. Current GPU clusters
used for DLRM [1, 26, 32] suffer from large communication volumes
and frequent communication bottlenecks.

In this paper, we introduce a software-hardware co-design of
a heterogeneous SmartNIC system for scalable DLRM inference
and training that overcomes communication bottlenecks, mitigates
memory bandwidth pressure, and improves computation efficiency.
A set of SmartNIC designs of cache systems (including local cache
and remote cache) and SmartNIC computation kernels exploits the
locality of DLRMs to reduce data movement, relieve memory access
intensity, and improve GPUs’ computation efficiency.

Figure 2 illustrates the techniques used. (1) Remote Cache.
The large volume and intense all-to-all communication primarily
contribute to the communication bottleneck of distributed DLRM
systems. The remote cache on the SmartNIC buffers frequently
used remote embedding lookup results, reducing communication
workloads and alleviating both networking and memory bandwidth
pressure. (2) Local Cache. The local cache on the SmartNIC caches
the popular local embedding tables allowing direct retrieval of em-
bedding lookup results from the SmartNIC instead of interrupting
the GPU. This vastly reduces the memory bandwidth burden on
the GPUs’ HBMs, improving overall node memory bandwidth. (3)
SmartNIC computation. The SmartNIC’s kernels for irregular
computation complement the system nodes’ computation resources,
improving GPU efficiency by offloading irregular computations,
and minimizing GPU kernel launch overhead and hardware usage.
In additional, the computation kernels reduce gradient updates
in backward propagation and decrease the workload of backward
all-to-all communication.

We also introduce a graph algorithm that enhances the data
locality of DLRM batches by clustering similar samples. More data
reuse reduces embedding lookup requests and communication vol-
ume, increases cache hit rate, and eases system memory bandwidth
pressure. High data locality batches also benefit GPU computation
efficiency. This set of techniques works together to produce a syn-
ergistic effect, resulting in an outcome greater than the sum of their
individual contributions.

To summarize, the contributions of this work include:
• A scalable software-hardware co-design for heterogeneous
SmartNIC systems for both forward and backward propaga-
tion of DLRMs.
• A set of techniques for SmartNIC design that overcomes the
communication bottleneck of distributed DLRMs, mitigates
memory bandwidth pressure, and improves computation
efficiency. A graph algorithm improves the data locality of
batches and optimizes overall system performance with high
data reuse.
• Evaluation results showing that heterogeneous SmartNIC
systems can achieve 2.1× latency speedup for inference and
1.6× throughput speedup for training.

The remainder of the paper is organized as follows. Section 2
provides DLRM background and the paper’s motivation. Section
3 presents details of the graph algorithm. Section 4 introduces the
cache system and computation kernels for forward and backward
propagation. Results from experiments are presented in Section 5.
Section 6 discusses related work; concluding remarks are given in
Section 7.

2 DLRM BACKGROUND AND MOTIVATION
2.1 Deep Learning Recommendation Model
Figure 5 gives an overview of DLRMs. DLRMs have two types of
inputs, dense features and sparse features, and predict the probabil-
ity that a user would interact with an item; this is referred to as the
Click Through Rate (CTR). Dense features contain continuous data
like a user’s age or the current time. Sparse features are categorical
features such as posts, pages, or items. These categorical features
are represented using IDs, which map to embedding vectors from

So�ware-Hardware Co-design of Heterogeneous SmartNIC System for Recommendation Model Inference and Training ICS ’23, June 21–23, 2023, Orlando, FL, USA

Figure 1: Deep LearningRecommendationModelWorkflowOverview (EMT: Embedding Table,MLP:Multilayer Perceptron, CTR:
Click Through Rate(Prediction), N1T1 Gradients: Computed gradients of Embedding Table 1 from Node 1) The heterogeneous
SmartNIC system targets the memory bottleneck, communication bottleneck, computation bottleneck of forward propagation
and backward propagation (Section 4). A graph algorithm improves the batch data locality (Section 3).

Figure 2: SmartNIC Design and DLRM Challenges

Figure 3: Heteroge-
neous SmartNIC System
Overview

Figure 4: DLRM memory capac-
ity requirements and GPU HBM
growth

their corresponding embedding tables (EMT). Modern DLRMs con-
sume thousands of categorical features with thousands of EMTs;
these are handled by embedding operators. Feature interaction com-
bines the output of the bottom multilayer perception (MLP) and
feeds it into the top MLP for CTR prediction.

Figure 5: Deep Learning Recommendation Model.

2.2 Distributed DLRM System Challenges
The embedding operators are partitioned and distributed to the sys-
tem since their size largely exceeds a single accelerator’s HBM size.
Samples are required to access each partition of embedding param-
eters before performing the next stage, resulting in data-dependent
behavior of the embedding operators. This results in a combination
of model and data parallelism for the distributed DLRMs shown
in Figure 1. In forward propagation, input all-to-all, and embed-
ding all-to-all are required to gather each partition of embedding
parameters for each data-parallel sample group. CTR computation
waits until all embedding operators are gathered for each sample.

ICS '23, June 21�23, 2023, Orlando, FL, USA Anqi Guo, Yuchen Hao, Chunshu Wu, Pouya Haghi, Zhenyu Pan, Min Si, Dingwen Tao, Ang Li, Martin Herbordt, and Tong Geng

These all-to-alls contribute to the major bottleneck during DLRM
inference. In backward propagation, embedding vector gradients
must be redistributed. Another backward all-to-all is therefore used
to update the embeddings before the next batch iteration starts.
These three all-to-alls are the throughput performance killer of
DLRM training. As the prediction demand rises, the number of
embedding operators grows bigger, and more nodes are added to
meet the increasing query requests. Scalability is thus an urgent
issue that hinders the development of DLRMs.

To satisfy a growing demand for �smart� networks, SmartNICs
with substantial and tightly coupled communication and compute
capability are being widely deployed in data centers. Some Smart-
NICs of interest in this work have an ARM processor, FPGA, domain-
speci�c accelerators, and high bandwidth memory [3, 16, 17, 29, 39,
40]. But besides accelerating packet processing, SmartNICs provide
an opportunity for o�oading application workloads. Transparent
use of SmartNICs alone, however, only improves point-to-point
communication. Leveraging SmartNICs' tightly coupled communi-
cation and compute capabilitiesfor applications processingcan be
challenging.

2.3 Characteristics of DLRM Data Power Law
Distribution

Figure 6: Power Law Distribution of Datasets

The frequency distribution of a categorical feature's embedding
follows a power law distribution (as shown in Figure 6). A small
fraction of embeddings results in most of the accesses as, typically,
a large fraction of users is interested in a small number of popular
items, e.g., web pages or movies. This characteristic leads to data
reuse opportunities for the corresponding embedding vectors and
for architectures to exploit the resulting locality to overcome the
DLRM communication bottleneck.

3 GRAPH ALGORITHM
This section discusses a graph algorithm that enhances the data
locality within batches of queries.

3.1 Graph Mini Batch
DLRMs use batches as a processing unit to expose parallelism and
enable high throughput. Although a sample's sparse features follow
a power law distribution, batches of forward and backward propaga-
tion are formed by sequentially fetching independent. Performance
can be improved further by improving data locality within the
batch: Batches with better data locality can enhance every phase
of DLRM processing with reduced embedding lookup, lower mem-
ory bandwidth pressure and communication volume, and higher
compute e�ciency.

Figure 7: Graph Algorithm (T0i0: Embedding Table (EMT) 0,
index 0) Left (blue) table indicates a sample batch that can
be viewed as an incidence matrix. The right (orange) table
indicates the scoreboard ranking popularity of edges in the
hypergraph. A mini batch of samples with high similarity is
generated as input to forward propagation.

Instead of fetching samples sequentially from the dataset, we
perform the graph algorithm to select a mini batch of samples
with high data locality. A larger number of samples is pre-loaded
as the input of the graph batch algorithm to select a group of
closely related samples for the mini batch. In Figure 7, the blue table
indicates the pre-loaded batch of samples that the graph algorithm
uses as input. The table can be viewed as a lookup incidence matrix
with rows of samples and columns of lookup indices.

Based on the lookup incidence matrix, a hypergraph is formed
where samples are nodes and embedding table lookup indices are
edges (see middle graph in Figure 7). Sample nodes are connected
to index edges corresponding to the lookup table. The hyperedges
with higher degrees are formed because DLRM sparse features
follow a power law distribution with a higher chance of multiple
samples looking up the same popular indices. As the lookup table
indicates, embedding table 0 with index 0 (edge T0i0) is requested
by sample nodes 0, 1, 4, 5, 7, and table 1 index 0 (edge T1i0) is
requested by sample nodes 0, 1, 3, 4. The hypergraph is generated
as each of the embedding tables' indices is iterated. Within the
graph, an edge with high degrees means more data reuse as a single
embedding lookup can serve more sample nodes. Samples nodes
that share more overlapped edges have more similarities (share
more sparse features) with better data locality. The graph algorithm
�lters samples that have overlapping embedding lookup indices,
which are indices accessed by a larger number of samples. The graph
algorithm saves lookup requests, reducing all-to-all communication
and reducing memory transfer bandwidth.

The simpli�ed graph algorithm work�ow is shown in Algorithm
1. The embedding lookup incidence matrix is generated along with
pre-loading the batch of samples from the dataset with a counter
attached to each embedding index to register the degree of the index
edges. After loading the batch samples, hyperedge degree is sorted
using the edge degree counter. The table on the right indicates the
popularity of the EMT index from top to bottom. Embedding table
0 index 0 (T0i0) is the most popular index with sample nodes 0, 1,
4, 5, and 7 connected with high similarity.

In the real-world case, however, if the mini batch only chooses
samples based on the top edges' degrees, samples in the mini batch
cannot be closely related as each sample would have more sparse

	Abstract
	1 Introduction
	2 DLRM Background And Motivation
	2.1 Deep Learning Recommendation Model
	2.2 Distributed DLRM System Challenges
	2.3 Characteristics of DLRM Data Power Law Distribution

	3 Graph Algorithm
	3.1 Graph Mini Batch
	3.2 Refresh Batch

	4 System Hardware Architecture
	4.1 Forward Propagation
	4.2 Backward Propagation
	4.3 An Alternate Design

	5 Evaluation
	5.1 Experimental Setup
	5.2 Performance Evaluation
	5.3 System Scalability

	6 Related Work
	7 Conclusion
	8 ACKNOWLEDGEMENTS
	References

