GPULZ Optimizing LZSS Lossless Compression for Multi-byte Data on Modern GPUs

Boyuan Zhang Jiannan Tian Sheng Di Xiaodong Yu Martin Swany Dingwen Tao Franck Cappello Indiana University Indiana University Argonne National Laboratory Argonne National Laboratory Indiana University Indiana University Argonne National Laboratory

The 2023 International Conference on Supercomputing Orlando, Florida, United States, June 21, 2023

Big Data Problem for HPC Applications

application

data scale

HACC cosmology simulation

bottleneck

use up filesystem (26 PB in total) Mira@ANL

CESM climate simulation 50% vs 20% storage in hardware budget, 2017 vs 2013 5h30m to store NSF Blue Waters 1-TBps I/O

Argonne

INDIANA UNIVERSITY BLOOMINGTON

Compressions in Need on GPUs

INDIANA UNIVERSITY Argonne

Applications are ever-increasingly accelerated on GPUs, e.g.,

- Large-scale scientific simulation applications
- Large deep learning models

To optimize, we need to

- Reduce GPU memory footprint
- Speed up **CPU-GPU data transfers**

Jin, Sian, et al. "Comet: a novel memory-efficient deep learning training framework by using error-bounded lossy compression." arXiv preprint arXiv:2111.09562 (2021).

ICS '23 June 23, 2023 gpuLZ

Data Compression: Lossy

- Not suitable for **communication** because of the error accumulation
- Application specific, error needs to be tuned by user

 Most lossy compressors integrate one or two lossless compressors in their pipeline to achieve higher compression ratio (CR)

INDIANA UNIVERSITY

Argon

JPEG image compression. Quality low to high from left to right.

ICS '23 June 23, 2023 GPULZ

Data Compression: Lossless

- Lossless compressors have two main kinds: entropy encoder and dictionary-based encoder
- LZ family compressors are dictionary-based encoders
- Widely seen in industry compressors ,e.g., GIF, PNG, gzip, 7zip, and Zstandard.
- **LZSS** is a variation of the very first LZ family compressor, the LZ77 compressor. It generally has higher compression ratio.

ICS '23 June 23, 2023 GPULZ

LZSS Algorithm

INDIANA UNIVERSITY Argonne

Sliding window is a buffer (of size *W*. The window is empty at the beginning, then grows to size *W* as the input stream is processed, and "slides" along with the coding position. **Pointer** contains two numbers: the first one is the starting offset, and the second one is the length of the match.

Literal represents the current byte if there is no match.

Figure 1: An example of LZSS algorithm. The left is original data, and the right is compressed data. Two numbers in brackets denote length and offset.

ICS '23 June 23, 2023 GPULZ

Issues of SOTA GPU Based LZSS

INDIANA UNIVERSITY Argonne

- CULZSS has a few performance-impacting issues
 - No support of **multi-byte data**
 - Fixed data chunk size
 - Fixed sliding window size
 - Under-utilization of **shared memory**
 - CPU encoding

- 17.04 milliseconds for GPU kernels time
- 387.62 **milli**seconds for endto-end time
- The Kernel time is only 4.4% of the end-to-end time.

ICS '23 June 23, 2023 GPULZ

GPULZ: Redesigned LZSS on GPUs

GPULZ has 3 algorithm level optimizations

- Explore **optimal workflow**.
- **Two-pass prefix-sum** with kernel fusion.
- **Multi-byte** matching approach.

Three main kernels in gpulz

Two-level data partition:

- Partition dataset into **blocks** to fit the GPU global memory
- Partition blocks into chunks to fit the GPU shared memory

INDIANA UNIVERSITY

Figure 6: Data partition strategy

ICS '23 June 23, 2023 GPULZ

INDIANA UNIVERSITY Argonne

Optimal Workflow

- Redesign the pipeline to be **fully** operated on GPU to save CPU-GPU data transfer time
- Integrate matching kernel and encoding kernel to reuse the shared memory hence reducing the global memory access overhead
- Propose **deflate kernel** to solve the discontinuous memory address

Figure 4: Three workflows of GPU LZSS.

Two-Pass Prefix-Sum

- **Local prefix sum**: enable the integration of matching and encoding
- **Global prefix sum**: add an implicit global synchronization

Step 3

Step 2

XØ

5(X0..X1)

Σ(X0..X1)

X2

X2

INDIANA UNIVERSITY

X4

X4

Σ(X4..X5)

Σ(X4..X5)

BLOOMINGTON

Σ(X0..X3)

Σ(X0..X3)

Argo

X6

X6

Σ(X0..X7)

Σ(X4..X7)

Multi-byte Matching

INDIANA UNIVERSITY Argonne

Redesign the matching strategy

- Find matches for multi-byte symbols instead of single bytes
- To gain potential compression ratio improvement
- To gain compression throughput increase

Dynamically apply multi/single-byte approach

- Multi-byte approach to low-CR dataset may cause decrease in compression ratio
- When the **actual match length is longer than window size**, the compression ratio will increase

Evaluation: Setup

IU BigRed 200 HPC Cluster node

- 2x 64-core AMD EPYC 7742 CPUs at 2.25GHz .
- 4 NVIDIA Ampere A100 GPUs (108 SMs, 40GB), CUDA 11.4.120.

Workstation

- 2x 28-core Intel Xeon Gold 6238R CPUs at 2.20GHz.
- 2x NVIDIA GTX A4000 GPUs (40 SMs, 16 GB), CUDA 11.7.99.

Metrics

- Compression ratio (CR)
- Compression throughput ("throughput")

Datasets

- TPC-H benchmark
- SDRBench

Baselines

- CULZSS
- nvCOMP's LZ4

ICS '23 June 23, 2023 GPULZ

Evaluation: Impacts on CR

June 23, 2023

ICS '23

		chunk size: 2048			chunk size: 4096			chu	ınk size: 8	3192	chunk size: 16384			
window	size ↓	1 byte	2 bytes	4 bytes	1 byte	2 bytes	4 bytes	1 byte	2 bytes	4 bytes	1 byte	2 bytes	4 bytes	
hurr	32	3.14	3.77	3.58	3.18	3.84	3.66	n/a	3.88	3.70	n/a	n/a	3.72	
quant	64	3.79	4.39	4.05	3.86	4.50	4.18	n/a	4.56	4.25	n/a	n/a	4.28	
	128	4.39	4.91	4.44	4.51	5.09	4.64	n/a	5.18	4.75	n/a	n/a	4.81	
	255	4.89	5.32	4.78	5.07	5.59	5.15	n/a	5.73	5.36	n/a	n/a	5.47	
hacc	32	1.55	1.67	1.59	1.55	1.68	1.60	n/a	1.68	1.61	n/a	n/a	1.61	
quant	64	1.71	1.82	1.71	1.72	1.84	1.73	n/a	1.85	1.74	n/a	n/a	1.75	
	128	1.87	1.97	1.83	1.88	2.00	1.86	n/a	2.02	1.88	n/a	n/a	1.89	
	255	2.01	2.12	1.92	2.03	2.18	1.99	n/a	2.20	2.03	n/a	n/a	2.05	
nyx	32	3.97	5.07	4.80	4.04	5.20	4.95	n/a	5.27	5.02	n/a	n/a	5.06	
quant	64	5.06	6.18	5.73	5.19	6.42	6.00	n/a	6.54	6.14	n/a	n/a	6.21	
	128	6.14	7.19	6.52	6.36	7.57	6.99	n/a	7.79	7.25	n/a	n/a	7.38	
	255	7.08	8.03	7.11	7.46	8.65	7.94	n/a	9.01	8.42	n/a	n/a	8.64	
tpch	32	1.31	1.25	1.29	1.32	1.26	1.30	n/a	1.26	1.30	n/a	n/a	1.30	
int32	64	1.37	1.30	1.34	1.38	1.31	1.35	n/a	1.31	1.35	n/a	n/a	1.36	
	128	1.43	1.34	1.38	1.44	1.35	1.39	n/a	1.36	1.40	n/a	n/a	1.41	
	255	1.50	1.38	1.41	1.51	1.39	1.43	n/a	1.40	1.44	n/a	n/a	1.45	
tpch	32	1.55	1.58	1.46	1.56	1.59	1.47	n/a	1.60	1.48	n/a	n/a	1.48	
string	64	2.02	1.96	1.72	2.04	1.99	1.76	n/a	2.01	1.78	n/a	n/a	1.79	
	128	2.57	2.43	2.03	2.62	2.50	2.12	n/a	2.54	2.17	n/a	n/a	2.20	
	255	3.08	2.84	2.27	3.19	3.00	2.47	n/a	3.09	2.58	n/a	n/a	2.64	
rtm	32	2.45	2.72	2.88	2.47	2.75	2.91	n/a	2.77	2.93	n/a	n/a	2.94	
float32	64	2.59	2.80	2.92	2.61	2.83	2.96	n/a	2.85	2.98	n/a	n/a	2.99	
	128	2.66	2.84	2.94	2.69	2.88	2.99	n/a	2.89	3.01	n/a	n/a	3.02	
	255	2.69	2.85	2.97	2.72	2.90	3.02	n/a	2.92	3.05	n/a	n/a	3.07	

GPULZ

Compression ratio (**CR**) of gpuLZ. Note that some fields are noted as "n/a" due to out of the limited shared memory.

INDIANA UNIVERSITY

BLOOMINGTON

Argo

Evaluation: Impacts on CR

		ch	chunk size: 2048			chunk size: 4096			chunk size: 8192			chunk size: 16384		
window size \downarrow		↓ 1 byte	e 2 bytes	s 4 bytes	1 byte	e 2 byte	s 4 byte	s 1 byt	e 2 byte	s 4 bytes	s 1 byte	e 2 byte	s 4 bytes	;
hurr	32	2 3.14	3.77	7 3.58	3.18	3.8	4 3.60	5 n/	a 3.8	8 3.70) n/a	a n/a	a 3.72	
quant	64	4 3.79	9 4.39	9 4.05	3.86	6 4.5	0 4.18	3 n/	a 4.5	6 4.25	5 n/a	a n/a	a 4.28	5
	128	4.39	4.91	4.44	4.51	5.0 [°]	9 4.64	1 n/	a 5.1	8 4.75	5 n/a	a n/a	a 4.81	
	255	5 4.89	5.32	2 4.78	5.07	7 5.5	9 5.15	5 n/	a 5.7	3 5.36	5 n/a	a n/a	a 5.47	/
hacc	32	2 1.55	5 1.67	7 1.59	1.55	5 1.6	8 1.60) n/	a 1.6	8 1.61	n/a	a n/a	a 1.61	
quant	64	1.71	1.82	2 1.71	1.72	2 1.8	4 1.73	3 n/	a 1.8	5 1.74	l n/a	a n/a	a 1.75	,
	128	3 1.87	7 1.97	7 1.83	1.88	3 2.0	0 1.80	5 n/	a 2.0	2 1.88	3 n/a	a n/a	a 1.89	1
		chu	nk size: 2	048	chu	nk size: 4	1096	chu	nk size: 8	8192	chun	k size: 1	6384	
windows	size↓	1 byte	2 bytes	4 bytes	1 byte	2 bytes	4 bytes	1 byte	2 bytes	4 bytes	1 byte	2 bytes	4 bytes	
hurr	32	3.14	3.77	3.58	3.18	3.84	3.66	n/a	3.88	3.70	n/a	n/a	3.72	
quant	64	3.79	4.39	4.05	3.86	4.50	4.18	n/a	4.56	4.25	n/a	n/a	4.28	
	128	4.39	4.91	4.44	4.51	5.09	4.64	n/a	5.18	4.75	n/a	n/a	4.81	
	255	4.89	5.32	4.78	5.07	5.59	5.15	n/a	5.73	5.36	n/a	n/a	5.47	
hacc	32	1.55	1.67	1.59	1.55	1.68	1.60	n/a	1.68	1.61	n/a	n/a	1.61	
quant	64	1.71	1.82	1.71	1.72	1.84	1.73	n/a	1.85	1.74	n/a	n/a	1.75	
	128	1.87	1.97	1.83	1.88	2.00	1.86	n/a	2.02	1.88	n/a	n/a	1.89	
	255	2.01	2.12	1.92	2.03	2.18	1.99	n/a	2.20	2.03	n/a	n/a	2.05	
nyx	32	3.97	5.07	4.80	4.04	5.20	4.95	n/a	5.27	5.02	n/a	n/a	5.06	
quant	64	5.06	6.18	5.73	5.19	6.42	6.00	n/a	6.54	6.14	n/a	n/a	6.21	
	128	6.14	7.19	6.52	6.36	7.57	6.99	n/a	7.79	7.25	n/a	n/a	7.38	
	255	7.08	8.03	7.11	7.46	8.65	7.94	n/a	9.01	8.42	n/a	n/a	8.64	
tpch	32	1.31	1.25	1.29	1.32	1.26	1.30	n/a	1.26	1.30	n/a	n/a	1.30	
int32	64	1.37	1.30	1.34	1.38	1.31	1.35	n/a	1.31	1.35	n/a	n/a	1.36	
	128	1.43	1.34	1.38	1.44	1.35	1.39	n/a	1.36	1.40	n/a	n/a	1.41	
	255	1.50	1.38	1.41	1.51	1.39	1.43	n/a	1.40	1.44	n/a	n/a	1.45	
tpch	32	1.55	1.58	1.46	1.56	1.59	1.47	n/a	1.60	1.48	n/a	n/a	1.48	
string	64	2.02	1.96	1.72	2.04	1.99	1.76	n/a	2.01	1.78	n/a	n/a	1.79	
-	128	2.57	2.43	2.03	2.62	2.50	2.12	n/a	2.54	2.17	n/a	n/a	2.20	

Compression ratio (**CR**) of gpuLZ. Note that some fields are noted as "n/a" due to out of the limited shared memory.

INDIANA UNIVERSITY

BLOOMINGTON

Πī

Page number

Argonne

Evaluation: Impacts on CR

INDIANA UNIVERSITY Argonne

Table 1: Compression ratio of GPULZ. Note that some fields are noted as "n/a" due to out of the limited shared memory.

		chu	ınk size: 2	048	chu	unk size: 4	096	chu	ınk size: 8	192	chu	nk size: 1	6384
window	size ↓	1 byte	2 bytes	4 bytes	1 byte	2 bytes	4 bytes	1 byte	2 bytes	4 bytes	1 byte	2 bytes	4 bytes
hurr	32	3.14	3.77	3.58	3.18	3.84	3.66	n/a	3.88	3.70	n/a	n/a	3.72
quant	64	3.79	4.39	4.05	3.86	4.50	4.18	n/a	4.56	4.25	n/a	n/a	4.28
	128	4.39	4.91	4.44	4.51	5.09	4.64	n/a	5.18	4.75	n/a	n/a	4.81
	255	4.89	5.32	4.78	5.07	5.59	5.15	n/a	5.73	5.36	n/a	n/a	5.47
hacc	32	1.55	1.67	1.59	1.55	1.68	1.60	n/a	1.68	1.61	n/a	n/a	1.61
quant	64	1.71	1.82	1.71	1.72	1.84	1.73	n/a	1.85	1.74	n/a	n/a	1.75
	128	1.87	1.97	1.83	1.88	2.00	1.86	n/a	2.02	1.88	n/a	n/a	1.89
	255	2.01	2.12	1.92	2.03	2.18	1.99	n/a	2.20	2.03	n/a	n/a	2.05
nyx	32	3.97	5.07	4.80	4.04	5.20	4.95	n/a	5.27	5.02	n/a	n/a	5.06
quant	64	5.06	6.18	5.73	5.19	6.42	6.00	n/a	6.54	6.14	n/a	n/a	6.21
	128	6.14	7.19	6.52	6.36	7.57	6.99	n/a	7.79	7.25	n/a	n/a	7.38
	255	7.08	8.03	7.11	7.46	8.65	7.94	n/a	9.01	8.42	n/a	n/a	8.64
tpch	32	1.31	1.25	1.29	1.32	1.26	1.30	n/a	1.26	1.30	n/a	n/a	1.30
int32	64	1.37	1.30	1.34	1.38	1.31	1.35	n/a	1.31	1.35	n/a	n/a	1.36
	128	1.43	1.34	1.38	1.44	1.35	1.39	n/a	1.36	1.40	n/a	n/a	1.41
	255	1.50	1.38	1.41	1.51	1.39	1.43	n/a	1.40	1.44	n/a	n/a	1.45
tpch	32	1.55	1.58	1.46	1.56	1.59	1.47	n/a	1.60	1.48	n/a	n/a	1.48
string	64	2.02	1.96	1.72	2.04	1.99	1.76	n/a	2.01	1.78	n/a	n/a	1.79
	128	2.57	2.43	2.03	2.62	2.50	2.12	n/a	2.54	2.17	n/a	n/a	2.20
	255	3.08	2.84	2.27	3.19	3.00	2.47	n/a	3.09	2.58	n/a	n/a	2.64
rtm	32	2.45	2.72	2.88	2.47	2.75	2.91	n/a	2.77	2.93	n/a	n/a	2.94
float32	64	2.59	2.80	2.92	2.61	2.83	2.96	n/a	2.85	2.98	n/a	n/a	2.99
	128	2.66	2.84	2.94	2.69	2.88	2.99	n/a	2.89	3.01	n/a	n/a	3.02
	255	2.69	2.85	2.97	2.72	2.90	3.02	n/a	2.92	3.05	n/a	n/a	3.07

Chunk size **C**

- 1.02x compression ratio
- 1.33× throughput with smaller C.

Window size W

- 1.4x compression ratio
- 3.9× throughput with smaller W

Symbol length S

- Compression ratio improvement varies
- 4.5× throughput with larger S

Evaluation: Impacts on Throughput

Table 2: Compression throughput of GPULZ on both A100 (blue) and A4000 (gray) GPUs. The red bars show the performance gain when scaling from A4000 to A100.

		chunk size: 204	18	chu	nk size: 4096			chunk size: 8	192	ch	unk si	ize: 16384
window	size ↓	1 byte <u>2 bytes</u>	4 bytes	1 byte	2 bytes	4 bytes	1 byte	2 bytes	4 bytes	1 byte 2	bytes	4 byte
hurr	32	8.1 4.9 14.9 9.6 1.7× 1.6×	29.0 18.1	6.9 3.1	14.8 8.4 1.8×	28.0 17.4	n/a	2.6× 11.3 4.4	26.6 13.3	n/a	n/a	2.1× 16.0 7.
quant	64	4.6 2.9 8.9 5.6 1.6×	17.5 11.2	2.0× 4.5 2.2	8.0 5.3 1.6×	17.2 11.0	n/a	2.4× 7.4 3.1	16.6 9.2 1.8×	n/a	n/a	2.1× 11.8 5.
	128	2.5 1.6 4.9 3.1 1.6× 1.6×	11.0 6.7	1.8× 2.4 1.3	4.7 2.9	10.1 6.3	n/a	4.3 2.0	9.5 5.7	n/a	n/a	2.0× 7.4 3.
	255	1.4 0.9 2.8 1.8 1.6×	7.0 4.4	1.7× 1.3 0.8	2.6 1.6	5.7 3.6	n/a	2.1× 2.3 1.1	5.3 3.3	n/a	n/a	4.3 2.
hacc	32	7.4 4.2 13.8 8.5	29.0 18.1 1.6×	5.8 2.6	13.1 7.5	27.5 15.5 1.8×	n/a	9.3 3.4	24.6 10.6	n/a	n/a	2.4× 14.5 6.
quant	64	4.5 2.8 8.2 5.3	19.2 11.4 1.7×	4.1 2.1	8.2 5.1	19.1 11.4	n/a	6.6 2.7	2.1× 17.4 8.4	n/a	n/a	2.1× 11.1 5.
	128	2.6 1.7 4.8 3.1 1.5× 1.6×	12.4 6.3	1.9× 2.6 1.4	4.7 3.0	11.1 6.7	n/a	4.2 2.0	11.1 6.0	n/a	n/a	2.2× 7.9 3.
	255	1.5 1.0 2.7 1.8 $1.6 \times$ 1.5 $1.5 \times$ 1.5	7.4 4.4	1.5 0.8	2.7 1.7	1.7× 6.7 3.9	n/a	2.1× 2.5 1.2	1.7× 6.0 3.5	n/a	n/a	2.0× 4.9 2.
nyx	32	9.5 6.0 15.7 10.1 1.6× 1.5×	30.1 19.1 1.6×	1.9× 7.5 4.0	15.8 9.1	30.3 18.8	n/a	2.2× 12.4 5.6	29.2 14.7	n/a	n/a	2.2× 18.1 8.
quant	64	5.7 3.6 9.4 6.2 1.6× 1.5×	19.8 11.6	1.9× 5.4 2.8	9.3 6.2	18.0 11.4 1.6×	n/a	8.1 3.8	17.9 10.8	n/a	n/a	2.0× 12.9 6.
	128	3.1 1.9 5.5 3.6 1.6× 1.5×	11.3 7.1	3.1 1.7	1.7× 5.9 3.4	10.3 6.8	n/a	2.0× 5.0 2.5	10.2 6.5	n/a	n/a	1.9× 8.7 4.
	255	1.7× 1.8 1.0 1.7× 3.6 2.1	6.9 4.9 1.4×	1.8× 1.7 0.9	1.7× 1.9	6.6 4.1	n/a	2.2× 3.1 1.4	6.3 3.9	n/a	n/a	1.9× 5.3 2.
tpch	32	7.1 3.9 12.1 8.3	25.4 14.9	2.3× 5.2 2.3	11.7 6.2	21.4 13.5 1.6×	n/a	2.5× 7.7 3.1	2.1× 19.4 9.3	n/a	n/a	2.1× 10.5 5.
int32	64	4.4 2.7 7.9 5.1 1.6× 1.5×	16.3 10.2 1.6×	3.8 1.7	7.5 4.5	14.6 9.8 1.5×	n/a	2.5× 5.9 2.4	2.0× 14.2 7.1	n/a	n/a	2.0× 8.2 4.
	128	2.4 1.6 4.8 3.0 1.5× 1.6×	10.2 6.3	2.2 1.1	4.5 2.8 1.6×	9.2 5.6	n/a	2.3× 3.8 1.7	8.4 5.0	n/a	n/a	6.4 3.
	255	1.3 0.9 2.8 1.7 1.6× 1.6×	6.7 4.0	1.8× 1.2 0.7	2.4 1.6	1.7× 5.8 3.5	n/a	2.1× 2.1 1.0	5.0 3.1	n/a	n/a	1.9× 3.8 2.
tpch	32	7.1 4.2 12.5 8.0 1.7× 1.6×	22.9 13.8 1.7×	5.3 2.5	11.4 6.2	21.1 12.6 1.7×	n/a	2.3× 8.0 3.5	2.3× 19.0 8.4	n/a	n/a	2.1× 10.0 4.
string	64	4.7 3.1 8.4 5.2 1.5× 1.6×	15.2 9.5 1.6×	4.2 2.0	7.6 5.1 1.5×	15.6 9.2 1.7×	n/a	6.3 2.9	2.0× 14.0 6.8	n/a	n/a	2.0× 8.2 4.
	128	2.4 1.7 4.8 3.3 1.4× 1.5×	10.7 6.0	2.0× 2.6 1.3	4.7 3.1 1.5×	9.4 5.7	n/a	2.0× 4.0 2.0	1.7× 4.8	n/a	n/a	5.7 3.
	255	1.4 0.9 2.6 1.8 1.5× 1.4×	1.8× 6.9 3.7	1.8× 1.4 0.8	2.6 1.7 1.5×	1.8× 6.1 3.3	n/a	1.9× 2.3 1.2	4.7 3.3 1.4×	n/a	n/a	3.7 2. 1.6×
rtm	32	1.7× 7.3 4.2 14.3 9.0	28.4 17.6	6.1 2.8	13.9 7.5	28.6 17.2	n/a	2.9× 3.9	2.0× 26.6 13.1	n/a	n/a	2.2× 16.2 7.
float32	64	4.5 2.9 9.3 5.5 1.6× 1.7×	17.7 11.2 1.6×	1.8× 3.9 2.2	8.3 5.1 1.6×	17.4 10.9 1.6×	n/a	2.3× 3.0	16.8 9.1 1.8×	n/a	n/a	2.2× 12.4 5.
	128	2.5 1.8 4.9 3.4 1.4×	10.8 6.8	1.7× 2.4 1.4	4.7 3.1 1.5×	10.0 6.4	n/a	4.2 1.9	9.6 5.6	n/a	n/a	2.1× 7.5 3.
	255	1.4 1.0 3.1 2.0 $1.4 \times 1.5 $	8.1 4.8	1.3 0.8	3.1 1.8	6.1 3.8	n/a	2.0× 2.6 1.3	1.8× 5.8 3.3	n/a	n/a	1.7× 4.5 2.

Chunk size **C**

INDIANA UNIVERSITY

BI COMINGTON

•

.

•

- 1.02x compression ratio
- 1.33× throughput with smaller C.

Window size W

- 1.4x compression ratio
 - 3.9× throughput with smaller W

Symbol length S

- Compression ratio improvement varies
- 4.5× throughput with larger <mark>S</mark>

ICJ ZJ JUHE ZJ, ZUZJ GFULZ

Evaluation: Comparison with SOTA Works

1.0

0.5

Z4

gpulz

gpulz

gpulz gpulz best

z4

INDIANA UNIVERSITY Argonne

GPULZ throughput speedup on A4000 (best case)

- 272.1× over CULZSS
- 8.7× over nvCOMP-LZ4

GPULZ has an up to

- 1.4× CR compared to CULZSS
- 2.1× CR over nvCOMP's LZ4

Figure 8: Compression ratio of different GPU compressors.

gpulz gpulz best 1.0

0.5

74

spulz best

gpulz

gpulz gpulz best

lzss

ICS '23 June 23, 2023 GPULZ

Page number

spulz best

gpulz

z4

A Use-case of GPULZ

- Applied as a last step lossless encoder in cuSZ
- Improvement of compression ratio of 1.9x ~ 8.7x on average
- CPU SZ on 32 cores has a throughput of 2 ~ 3 GB/s but the overall throughput is limited by CPU GPU data movement

Table 3: Comparison of compression ratio and throughput (GB/s) between
original cuSZ and improved cuSZ (with GPULZ) on A100 platform.

INDIANA UNIVERSITY

Argo

Dataset	cı	ıSZ	cuSZ w	Z w/ gpuLZ		
	CR	THR	CR	THR		
CESM	22.6	12.0	43.2	2.7		
Hurricane	24.3	31.9	29.1	5.9		
Nyx	30.1	87.2	74.8	10.4		
RTM	28.6	49.2	249.8	7.2		

Conclusion & Future Work

In this paper, we propose a series of optimizations on LZSS algorithms for multibyte data on GPUs. Specifically,

- We develop a new strategy for multibyte pattern matching,
- 2. We explore the optimal workflow
- 3. We optimize the prefix-sum operation,
- 4. and fuse multiple GPU kernels to improve both compression ratio and throughput

gpuLZ achieves up to 272.1× speedup and up to 1.4× higher compression ratio over state-of-the-art solutions. In the future, we plan to

- evaluate gpuLZ on more multi-byte datasets. We will attempt to develop an analytical model for searching the optimal parameter combination for different datasets.
- 2. In addition, we will integrate gpuLZ into more data-intensive applications running on different parallel and distributed systems.
- 3. adapt gpuLZ to other GPU platforms by using code translation tools such as HIPFY for AMD GPUs and SYCLomatic for Intel GPUs

ICS '23 June 23, 2023 GPULZ

Acknowledgment

This R&D was supported by the Exascale Computing Project (ECP), Project Number: 17-SC-20-SC, a collaborative effort of two DOE organizations-the Office of Science and the National Nuclear Security Administration, responsible for the planning and preparation of a capable exascale ecosystem. This repository was based upon work supported by the U.S. Department of Energy, Office of Science, under contract DE-AC02-06CH11357, and also supported by the National Science Foundation under Grants SHF-1617488, SHF-1619253, OAC-2003709, OAC-1948447/2034169, and OAC-2003624.

INDIANA UNIVERSITY

ICS '23 June 23, 2023 gpuLZ

Thank you. **Questions?**

github.com/hipdac-lab/ICS23-GPULZ

- Boyuan Zhang us
 - bozhan@iu.edu
- contact Dr. Dingwen Tao
 - ditao@iu.edu

