
HEAT
Chengming Zhang
Shaden Smith
Baixi Sun
Jiannan Tian
Jonathan Soifer
Xiaodong Yu
Shuaiwen Leon Song
Yuxiong He
Dingwen Tao

ICS 2023: International Conference on Supercomputing (In Conjunction with the Federated Computing Research Conference)
Orlando, Florida, United States, June 22, 2023

Indiana University Bloomington
Microsoft
Indiana University Bloomington
Indiana University Bloomington
Microsoft
Argonne National Laboratory
Microsoft
Microsoft
Indiana University Bloomington

A Highly Efficient and Affordable
Training System for Collaborative Filtering-
Based Recommendation on CPUs

2

Introduction

• Candidate generation. Generate potential recommendations (embeddings) for a user. (focus on)
• Scoring. Scores and ranks the candidates.
• Users' application.

Ø Example: Bing image feed is personalized with our collaborative filtering as a recall path.

Ø Recommendation systems overview

BACKGROUND

4

Ø Input data
• Explicit feedback: likes and ratings.
• Implicit feedback: users'

interactions, e.g. click data,
purchases, and implicit visit
information.

Ø Filtering techniques
• Content-based: notorious for its inability

to recommend dissimilar items
• Collaborative filtering (CF): provide

diverse recommendations.

Background: Basics of Recommender Systems

5

Ø CF techniques
• User-user CF, item-item CF, dimensionality

reduction, and probabilistic methods.
• Dimensionality reduction uses matrix factorization

(MF) reduce rating space to K.
• MF reduces computational complexity and

memory requirements.

Implicit feedback	𝑋 ⊆ 𝑈×𝐼. A user embedding
matrix 𝑆 ∈ ℛ ! ×# and an item embedding matrix
𝑇 ∈ ℛ $ ×#.

𝑋 ≈ ,𝑋 = 𝑆𝑇%

Ø Software Frameworks
• PyTorch provides a lookup table (torch.nn.Embedding) to store embeddings.
• TorchRec is a production-quality recommender systems package.

Background: Basics of Recommender Systems

6

Ø Training purpose
• Maximize the similarity of a positive

user-item pair while minimizing the
similarity of a negative user-item pair.

Ø SOTA CF method - SimpleX
• Adopt a novel loss function: cosine contrastive loss (CCL).
• A large negative sampling rate.
• Greatly outperforming other existing methods.

Performance of MF under different loss functions.

Background: MF-based Collaborative Filtering

PROFILING

8

Ø Characterize the performance of
SimpleX on both CPU and GPU

Ø Embedding update in SimpleX
• SimpleX randomly fetches a batch of embeddings

to perform one training iteration.
• Logically, only need to update involved

embeddings.
• Actual epoch time of training with sparse gradient

is almost 3x higher than that of dense gradient.
Profiling of embedding update in SimpleX. ET, FP, BP are
short for epoch time, forward percentage, backward
percentage, respectively.

Profiling and Analysis (1/4)

9

Ø Computation efficiency of SimpleX
• SimpleX needs to concatenate and then reshape

embeddings to utilizes torch.bmm.
• Time of mem_cp and the time of bmm are

comparable.
• Normalization takes more than 20% of the forward

time.

←Overview of SimpleX.
+/- denote
positive/negative
embedding.

Breakdown of the forward phase of SimpleX.

Profiling and Analysis (2/4)

10

Ø Memory usage of SimpleX

• Sizes of user and item embedding matrices in
MF-based CF are linearly scaled to the size of
training dataset.

• Runs out of the GPU memory when the numbers
of users and items are over 3 millions. Memory usage of SimpleX. OoM is short for out of memory.

Profiling and Analysis (3/4)

11

Ø Summarization of SimpleX limitations.
1) Irregular memory accesses: training on sparse user-item rating matrices and random sampling

for multiple negative items.
2) Extra memory copies: similarity computation needs to concatenate sampled vectors into

matrices.
3) Out of memory: limited GPU memory causes error.
4) Ignore potential data reuse: automatic differentiation engines in backward phase.

Profiling and Analysis (4/4)

DESIGN

13

Ø Overview of HEAT
• (1) Initializes user/item embedding matrices on CPU ⟹ limitation (3)
• (2) Chooses either the original random sampler or proposed random tiling sampler ⟹ limitation (1)
• (3) Behavior aggregation layer generates a new user embedding
• (4) Calculates similarities in parallel ⟹ limitation (2)
• (5) Calculates gradients through an optimized gradient computation kernel ⟹ limitation (4)

Overview of our proposed HEAT workflow/dataflow.

Overview of HEAT

14

Ø Cache size oriented tiling • Each thread buffers randomly sampled 𝑁!embeddings.
• Each thread then randomly samples 𝑛 negative embeddings from

buffer to compute.
• After 𝑁"	iterations, each thread randomly samples 𝑁! embeddings

again to refresh the cache space.

Random tiling strategy in each thread.

Design Methodology

15

Ø Tiling size and refresh interval tuning
• Negative sampling space of random tiling is determined by #!

#"
.

• Using random tiling, and the speedup can be approximated as #"
#!

.
• First obtain 𝑁! according to L2 cache.
• Using negative sampling space or the negative speedup to calculate 𝑁".

Design Methodology

16

Ø Parallelization of similarity computation

• Each thread fetches one user embedding, one positive
embedding, and 𝑛 negative embeddings.

• Each thread then directly performs the dot product of user
embedding and positive/negative embeddings.

• Updating embedding matrices in a sparse fashion
independently and in parallel.

Overview of our training workload partition strategy. Different colored
circles represent the embeddings sampled for different threads. + and -
denote positive and negative embeddings, respectively.

Design Methodology

17

Ø Aggressive data reuse

• 𝑆 ∈ 𝑅 $ ×&, 𝑇 ∈ 𝑅 $ ×&; 𝑆' describing a user 𝑢,
𝑇(describes an item 𝑖.

• The training procedure is (1) pick a user-item pair (𝑢, 𝑖).
(2) Calculate the similarity .𝑥',(of the user-item pair.

 (3) Generate loss and gradient using the suitable loss
function.
 (4) do gradient backpropagation to obtain partial
derivatives (gradients) of involved embeddings.
• * +,#,%

*-#
 mainly consists of ∑𝑠'" , ∑𝑇(" , and ∑𝑆'𝑇(

• Cache the values of ∑𝑠'" , ∑𝑇(" , and ∑𝑆'𝑇(in the
forward when calculating the cosine similarity.

Design Methodology

18

Ø Optimized parallel gradient update

• Let aggregator_weights be shared by all threads.
• Calculate weight gradients locally and accumulate it.
• Update the global weight matrix every 𝑥 steps.

Design Methodology

EVALUATION

20

Ø Experimental setup
• Five real-world datasets:

• Amazon-Books
• Yelp2018
• Gowalla
• Goodreads
• Google Local Reviews

• Platforms:
• Bridges-2: 64-core, AMD EPYC 7742 CPU;
 NVIDIA Tesla 32 GB V100 GPU
• Ookami: 48 cores, ARM A64FX.

Evaluation

• Baselines:
• T-MF-CCL: PyTorch-implemented MF with CCL.
• R-MF-CCL: TorchRec-implemented MF with CCL.
• T-S: PyTorch-implemented SimpleX.
• R-S: TorchRec-implemented SimpleX.
• CuMF_SGD: SOTA GPU-based MF solution.

21

Ø Compared with the CPU baselines
• H-CCL achieves 33.5x on average over T-MF-CCL.
• H-ACCL achieves 29.8x speedup on average over T-S.

Ø Compared with the GPU baselines
• H-CCL achieves 3.7x on average over T-MF-CCL.
• H-ACCL achieves 2.9x speedup on average over T-S.

Evaluation

Ø Comparison of training time

22

Ø Compression CuMF_SGD and TorchRec

• HEAT achieves 2.6x speedup on average over TorchRec-based MF.
• Performance of HEAT and CuMF is comparable.

Comparison of epoch time among CuMF_SGD (GPU), TorchRec (GPU), and HEAT (CPU)

Evaluation

23

Ø Performance break down

• In HEAT-CCL time of reading embeddings takes 40.4%.
• Similarity computation including dot product and normalization only takes up 3.4%.

Performance breakdown of HEAT on CPU. Note that sim and aggr are short for similarity
computation and aggregation.

Evaluation

24

Comparison of total training cost ($) for 100 epochs.

Evaluation

Ø Training cost
• AWS p3.2xlarge (1 16 GB V100 GPU): $3.06/hour.
• AWS c5a.16xlarge (CPU): $2.46/hour.
• Compared with SimpleX on the GPU, HEAT can

reduce the cost by 7.9x.

25

Ø Training accuracy • 𝑅𝑒𝑐𝑎𝑙𝑙 = &'
&'()*

, where true positive (𝑇𝑃), false negative (𝐹𝑁)
from confusion matrix (the larger the better).

• NDCG normalized discounted cumulative gain (the larger the
better).

• Recall@ difference is within 0.01.

Comparison of training results under different frameworks and datasets.

Evaluation

26

Ø Impacts of Tiling Sizes and
Refresh Intervals on
Performance and Accuracy

• Speedup exceeds 2x when tiling size is less than 128.
• Recall gradually increase as tiling size increases.
• Speedup gradually increases with increasing refresh

interval. But recall will gradually decrease.

Speedup & recall with different tiling sizes. Speedup & recall with different refresh intervals.

Evaluation

27

Ø Impacts of tiling sizes and refresh intervals on performance and accuracy

• Random tiling sampler delivers a 1.6x speedup on average.
• Recall drop is within 0.003.

Tiling size and refresh interval for optimal training accuracy and speedup. ``R'' and ``T'' represent random tiling sampler and
random sampler, respectively.

Evaluation

28

Ø Scalability evaluation
• Increase the number of threads/cores from 1 to 64.
• HEAT achieves the parallel efficiency of 63.7%.

Scalability of HEAT with original random sampler
(random) and our random tiling sampler (tiling).

Evaluation

29

Ø Fujistu A64FX (ARM)

• H-CCL achieves 45.7x on average over T-MF-CCL.
• H-ACCL achieves 39.8x on average over SimpleX.

Comparison of training epoch time on ARM CPUs.

Evaluation

BACK MATTER

31

Ø Conclusion
• Propose an efficient and affordable collaborative filtering-based recommendation training system.
• We propose to tile the item embedding matrix cache sizes to reduce read latency. Propose a light-

weight algorithm to find the optimal tiling size and cache eviction policy.
• Save the result of the partial derivative of and reuse them.
• On AMD and ARM CPUs. HEAT achieves up to 45.2x and 4.5x speedups over existing CPU and

GPU solutions, respectively, with 7.9x cost reduction.

Ø Future work
• Deploy support distributed training with rating matrix partitioning and efficient communication.
• Apply our random tiling strategy to more recommendation models.

Conclusion & Future Work

Chengming Zhang czh5@iu.edu
Dr. Dingwen Tao ditao@iu.edu

github.com/hipdac-lab/ICS23-HEAT

Contact

All questions and ideas are welcomed.

Thank you!

