HEAT

A Highly **Efficient** and **Affordable** Training System for Collaborative Filtering-Based **Recommendation** on **CPUs**

Chengming Zhang
Shaden Smith
Baixi Sun
Jiannan Tian
Jonathan Soifer
Xiaodong Yu
Shuaiwen Leon Song
Yuxiong He
Dingwen Tao

Indiana University Bloomington
Microsoft
Indiana University Bloomington
Microsoft
Indiana University Bloomington
Microsoft
Argonne National Laboratory
Microsoft
Microsoft
Indiana University Bloomington

ICS 2023: International Conference on Supercomputing (In Conjunction with the Federated Computing Research Conference)
Orlando, Florida, United States, June 22, 2023
Introduction

- Recommendation systems overview
 - Candidate generation. Generate potential recommendations (embeddings) for a user. (focus on)
 - Scoring. Scores and ranks the candidates.
 - Users' application.

- Example: Bing image feed is personalized with our collaborative filtering as a recall path.
BACKGROUND
Background: Basics of Recommender Systems

- **Input data**
 - Explicit feedback: likes and ratings.
 - Implicit feedback: users' interactions, e.g. click data, purchases, and implicit visit information.

- **Filtering techniques**
 - Content-based: notorious for its inability to recommend dissimilar items
 - Collaborative filtering (CF): provide diverse recommendations.
CF techniques
• User-user CF, item-item CF, dimensionality reduction, and probabilistic methods.
• Dimensionality reduction uses matrix factorization (MF) reduce rating space to K.
• MF reduces computational complexity and memory requirements.

Implicit feedback $X \subseteq U \times I$. A user embedding matrix $S \in \mathcal{R}^{U \times K}$ and an item embedding matrix $T \in \mathcal{R}^{I \times K}$.

$$X \approx \hat{X} = ST^t$$

Software Frameworks
• PyTorch provides a lookup table (torch.nn.Embedding) to store embeddings.
• TorchRec is a production-quality recommender systems package.
Training purpose

- Maximize the similarity of a positive user-item pair while minimizing the similarity of a negative user-item pair.

SOTA CF method - SimpleX

- Adopt a novel loss function: cosine contrastive loss (CCL).
- A large negative sampling rate.
- Greatly outperforming other existing methods.

<table>
<thead>
<tr>
<th>Loss</th>
<th>AmazonBooks</th>
<th>Yelp18</th>
<th>Gowalla</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Recall@20</td>
<td>NDCG@20</td>
<td>Recall@20</td>
</tr>
<tr>
<td>BPR Loss</td>
<td>0.0338</td>
<td>0.0261</td>
<td>0.0549</td>
</tr>
<tr>
<td>Pairwise Hinge Loss</td>
<td>0.0352</td>
<td>0.0267</td>
<td>0.0562</td>
</tr>
<tr>
<td>Binary Cross-Entropy</td>
<td>0.0479</td>
<td>0.0371</td>
<td>0.0617</td>
</tr>
<tr>
<td>Softmax Cross-Entropy</td>
<td>0.0478</td>
<td>0.0367</td>
<td>0.0639</td>
</tr>
<tr>
<td>Mean Square Error</td>
<td>0.0337</td>
<td>0.0267</td>
<td>0.0624</td>
</tr>
<tr>
<td>Cosine Contrastive Loss</td>
<td>0.0559</td>
<td>0.0447</td>
<td>0.0698</td>
</tr>
</tbody>
</table>

Performance of MF under different loss functions.
PROFILING
Characterize the performance of SimpleX on both CPU and GPU

Embedding update in SimpleX
- SimpleX randomly fetches a batch of embeddings to perform one training iteration.
- Logically, only need to update involved embeddings.
- Actual epoch time of training with sparse gradient is almost 3x higher than that of dense gradient.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Method</th>
<th>ET</th>
<th>FP</th>
<th>BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>AmazonBooks</td>
<td>dense</td>
<td>257.4</td>
<td>19.9%</td>
<td>67.0%</td>
</tr>
<tr>
<td></td>
<td>sparse</td>
<td>946.6</td>
<td>6.2%</td>
<td>92.8%</td>
</tr>
<tr>
<td>Yelp18</td>
<td>dense</td>
<td>129</td>
<td>21.2%</td>
<td>65.1%</td>
</tr>
<tr>
<td></td>
<td>sparse</td>
<td>386.3</td>
<td>9.1%</td>
<td>89.3%</td>
</tr>
<tr>
<td>Gowalla</td>
<td>dense</td>
<td>94.9</td>
<td>20.7%</td>
<td>66.8%</td>
</tr>
<tr>
<td></td>
<td>sparse</td>
<td>251.8</td>
<td>9.2%</td>
<td>89.2%</td>
</tr>
</tbody>
</table>

Profiling of embedding update in SimpleX. ET, FP, BP are short for epoch time, forward percentage, backward percentage, respectively.
Computation efficiency of SimpleX

- SimpleX needs to concatenate and then reshape embeddings to utilizes torch.bmm.
- Time of mem_cp and the time of bmm are comparable.
- Normalization takes more than 20% of the forward time.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>u_emb</th>
<th>i_emb</th>
<th>u_norm</th>
<th>i_norm</th>
<th>mem_cp</th>
<th>bmm</th>
<th>loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>AmazonBooks</td>
<td>9.6%</td>
<td>39.8%</td>
<td>5.9%</td>
<td>22.3%</td>
<td>5.0%</td>
<td>7.1%</td>
<td>9.7%</td>
</tr>
<tr>
<td>Yelp18</td>
<td>9.1%</td>
<td>35.3%</td>
<td>5.1%</td>
<td>28.3%</td>
<td>4.8%</td>
<td>7.2%</td>
<td>9.6%</td>
</tr>
<tr>
<td>Gowalla</td>
<td>8.3%</td>
<td>33.2%</td>
<td>5.6%</td>
<td>31.1%</td>
<td>4.8%</td>
<td>7.3%</td>
<td>9.1%</td>
</tr>
</tbody>
</table>

Breakdown of the forward phase of SimpleX.
Memory usage of SimpleX

- Sizes of user and item embedding matrices in MF-based CF are linearly scaled to the size of training dataset.
- Runs out of the GPU memory when the numbers of users and items are over 3 millions.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>users</th>
<th>items</th>
<th>CPU</th>
<th>GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goodreads</td>
<td>0.81M</td>
<td>1.56M</td>
<td>4.2%</td>
<td>30.1%</td>
</tr>
<tr>
<td>Google</td>
<td>4.57M</td>
<td>3.12M</td>
<td>11.3%</td>
<td>80.2%</td>
</tr>
<tr>
<td>Amazon</td>
<td>20.98M</td>
<td>9.35M</td>
<td>38.4%</td>
<td>OoM</td>
</tr>
</tbody>
</table>

Memory usage of SimpleX. OoM is short for out of memory.
Summarization of SimpleX limitations.

1) Irregular memory accesses: training on sparse user-item rating matrices and random sampling for multiple negative items.
2) Extra memory copies: similarity computation needs to concatenate sampled vectors into matrices.
3) Out of memory: limited GPU memory causes error.
4) Ignore potential data reuse: automatic differentiation engines in backward phase.
DESIGN
Overview of HEAT

- (1) **Initializes** user/item embedding matrices on CPU \(\Rightarrow\) **limitation** (3)
- (2) Chooses either the original random sampler or proposed random tiling sampler \(\Rightarrow\) **limitation** (1)
- (3) Behavior aggregation layer generates a new user embedding
- (4) Calculates similarities **in parallel** \(\Rightarrow\) **limitation** (2)
- (5) Calculates gradients through an optimized gradient computation kernel \(\Rightarrow\) **limitation** (4)
Cache size oriented tiling

- Each thread buffers randomly sampled N_1 embeddings.
- Each thread then randomly samples n negative embeddings from buffer to compute.
- After N_2 iterations, each thread randomly samples N_1 embeddings again to refresh the cache space.

Random tiling strategy in each thread.
Tiling size and refresh interval tuning

- Negative sampling space of random tiling is determined by $\frac{N_1}{N_2}$.
- Using random tiling, and the speedup can be approximated as $\frac{N_2}{N_1}$.
- First obtain N_1 according to L2 cache.
- Using negative sampling space or the negative speedup to calculate N_2.

Algorithm 1: Proposed tuning method for tiling size & refresh interval.

Inputs:
- L: # of items
- M: total iterations
- N_1: tile size
- N_2: refresh interval
- n_π: number of negatives
- n_σ: number of positives
- r: average positive hit ratio
- s_{12}, s_3: L2, L3 cache size
- t_m, t_{12}, t_{13}: latency of reading data from memory, L2 cache, and L3 cache
- P: expected speedup
- α, β: percentage of positive, negative speedup

Outputs:
- \overline{N}_1: optimized tile size
- \overline{N}_2: optimized refresh interval

1. // Negative sampling space of tiling
2. $neg_space \leftarrow \frac{M}{N_2} \times N_1 = M \times \frac{N_1}{N_2}$
3. // Time of reading negatives using random sampling
4. $neg_time_random \leftarrow M \times n_\pi \times t_m$
5. // Estimate latency of reading cache
6. $s_t \leftarrow N_1 \times sizeof(\text{embedding row}) \times \text{num_threads}$
7. if $s_t < s_{t2}$ then
8. \hspace{1em} $t_c \leftarrow t_{t2}$
9. else if $s_t \geq s_{t2}$ and $s_t < s_3$ then
10. \hspace{1em} $t_c \leftarrow t_{t3}$
11. else
12. \hspace{1em} $t_c \leftarrow t_m$
13. end

14. // Time of reading negatives using tiling
15. $neg_time_tiling \leftarrow n_\pi \times M \times \frac{N_1}{N_2} \times ((N_2 - N_1) \times t_c + N_1 \times t_m)$
16. $neg_speedup \leftarrow \frac{neg_time_random}{neg_time_tiling} = \frac{t_m}{t_c + (t_m - 1) \times \frac{N_1}{N_2}} \approx \frac{N_2}{N_1}$
17. $pos_speedup \leftarrow \frac{n_\sigma \times t_m}{n_\pi \times t_c + n_\pi \times (1 - r) \times t_m}$
18. // Percentage of speedup
19. $\alpha \leftarrow \frac{pos_speedup}{P}$
20. // Calculate N_1, N_2
21. $N_1 \leftarrow f_0(s_{t2}, s_3, \text{num_threads}, \text{emb_dim})$
22. $N_20 \leftarrow \frac{M \times N_1}{P}$
23. $N_{21} \leftarrow \frac{N_1}{\alpha \times \beta}$
24. if $N_{20} < N_{21}$ then
25. \hspace{1em} $N_2 \leftarrow N_{20}$
26. else
27. \hspace{1em} $\overline{N}_2 \leftarrow N_{21}$
28. end
29. $\overline{N}_1 \leftarrow N_1$
Parallelization of similarity computation

- Each thread fetches one user embedding, one positive embedding, and \(n \) negative embeddings.
- Each thread then directly performs the dot product of user embedding and positive/negative embeddings.
- Updating embedding matrices in a sparse fashion independently and in parallel.

Overview of our training workload partition strategy. Different colored circles represent the embeddings sampled for different threads. + and - denote positive and negative embeddings, respectively.
Design Methodology

- **Aggressive data reuse**

 - $S \in R^{|U| \times K}$, $T \in R^{|U| \times K}$; S_u describing a user u, T_i describes an item i.
 - The training procedure is (1) pick a user-item pair (u, i).
 (2) Calculate the similarity $\hat{x}_{u,i}$ of the user-item pair.
 (3) Generate loss and gradient using the suitable loss function.
 (4) do gradient backpropagation to obtain partial derivatives (gradients) of involved embeddings.
 - $\frac{\partial \hat{x}_{u,i}}{\partial S_u}$ mainly consists of $\sum S_u^2$, $\sum T_i^2$, and $\sum S_u T_i$.
 - Cache the values of $\sum S_u^2$, $\sum T_i^2$, and $\sum S_u T_i$ in the forward when calculating the cosine similarity.

\[\hat{x}_{u,i} = \begin{pmatrix} S_{u} \cdot T_{i} = \sum_{k=0}^{K} S_{u,k} T_{i,k} \quad \text{(dot)} \\ \|S_u\|_2 \|T_i\|_2 = \frac{\sum_{k=0}^{K} S_{u,k} T_{i,k}}{\sqrt{\sum_{k=0}^{K} S_{u,k}^2} \sqrt{\sum_{k=0}^{K} T_{i,k}^2}} \quad \text{(cosine)} \end{pmatrix} \]

\[\frac{\partial \hat{x}_{u,i}}{\partial S_u} = \frac{T_i \cdot \sqrt{\sum S_u^2} \sqrt{\sum T_i^2} - \frac{1}{2} \left(\sum S_u^2 \right)^{-\frac{1}{2}} \cdot 2 S_u \cdot \sqrt{\sum T_i^2} \sum S_u T_i}{\left(\sqrt{\sum S_u^2} \sqrt{\sum T_i^2} \right)^2} \]

\[\frac{\partial \hat{x}_{u,i}}{\partial T_i} = \frac{S_u \cdot \sum T_i^2 - \sum S_u T_i \cdot T_i}{\sum T_i^2 \sqrt{\sum T_i^2} \sqrt{\sum S_u^2}} \]

\[17 \]
Design Methodology

- **Optimized parallel gradient update**
 - Let aggregator_weights be shared by all threads.
 - Calculate weight gradients locally and accumulate it.
 - Update the global weight matrix every x steps.

```c
// Input: total iteration $I$, init_weights0,
// activation data act_data, outputs gradient outs_grad
// mini_batch_size
// Output: updated aggregator_weights
typedef Array<float, Dynamic, Dynamic> XMatrix
XMatrix aggregator_weights(emb_dim, init_weights0)
#pragma omp parallel shared(aggregator_weights) {
  int i_counts = 0; // iteration counts
  XMatrix weights_grad = Zero(emb_dim, emb_dim);
  XMatrix accu_weights_grad = Zero(emb_dim, emb_dim);
  #pragma omp for
  for (int i=0; i<i_counts; ++i) {
    for (int k=0; k<emb_dim; ++k) {
      weights_grad.row(k) = act_data(0, k) * outs_grad;
    }
    accu_weights_grad += weights_grad;
    if (i_counts > 0 && i_counts % mini_batch_size == 0) {
      weights_grad = accu_weights_grad / mini_batch_size;
      aggregator_weights -= l_r * weights_grad;
      accu_weights_grad = Zero(emb_dim, emb_dim);
    }
  }
}
```
EVALUATION
Evaluation

- **Experimental setup**
 - Five real-world datasets:
 - Amazon-Books
 - Yelp2018
 - Gowalla
 - Goodreads
 - Google Local Reviews
 - Platforms:
 - **Bridges-2**: 64-core, AMD EPYC 7742 CPU; NVIDIA Tesla 32 GB V100 GPU
 - **Ookami**: 48 cores, ARM A64FX.
 - Baselines:
 - T-MF-CCL: PyTorch-implemented MF with CCL.
 - R-MF-CCL: TorchRec-implemented MF with CCL.
 - T-S: PyTorch-implemented SimpleX.
 - R-S: TorchRec-implemented SimpleX.
 - CuMF_SGD: SOTA GPU-based MF solution.
Evaluation

- **Comparison of training time**

 - **Compared with the CPU baselines**
 - H-CCL achieves 33.5x on average over T-MF-CCL.
 - H-ACCL achieves 29.8x speedup on average over T-S.

 - **Compared with the GPU baselines**
 - H-CCL achieves 3.7x on average over T-MF-CCL.
 - H-ACCL achieves 2.9x speedup on average over T-S.
Compression CuMF_SGD and TorchRec

- HEAT achieves 2.6x speedup on average over TorchRec-based MF.
- Performance of HEAT and CuMF is comparable.

Comparison of epoch time among CuMF_SGD (GPU), TorchRec (GPU), and HEAT (CPU)
Performance breakdown of HEAT on CPU. Note that sim and aggr are short for similarity computation and aggregation.
Evaluation

- **Training cost**
 - AWS p3.2xlarge (116 GB V100 GPU): $3.06/hour.
 - AWS c5a.16xlarge (CPU): $2.46/hour.
 - Compared with SimpleX on the GPU, HEAT can reduce the cost by 7.9x.

![Comparison of total training cost ($) for 100 epochs.](image)
Evaluation

- **Training accuracy** • \(\text{Recall} = \frac{TP}{TP+FN} \), where true positive (TP), false negative (FN) from confusion matrix (the larger the better).
 - NDCG normalized discounted cumulative gain (the larger the better).
 - Recall@ difference is within 0.01.

<table>
<thead>
<tr>
<th>Method</th>
<th>AmazonBooks</th>
<th>Yelp18</th>
<th>Gowalla</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Recall@20</td>
<td>NDCG@20</td>
<td>Recall@20</td>
</tr>
<tr>
<td>MF-CCL</td>
<td>0.0559</td>
<td>0.0447</td>
<td>0.0698</td>
</tr>
<tr>
<td>SimpleX</td>
<td>0.0583</td>
<td>0.0468</td>
<td>0.0701</td>
</tr>
<tr>
<td>HEAT-CCL</td>
<td>0.0521</td>
<td>0.0416</td>
<td>0.0651</td>
</tr>
<tr>
<td>HEAT-ACCL</td>
<td>0.0541</td>
<td>0.0429</td>
<td>0.0683</td>
</tr>
</tbody>
</table>

Comparison of training results under different frameworks and datasets.
Impacts of Tiling Sizes and Refresh Intervals on Performance and Accuracy

- Speedup exceeds 2x when tiling size is less than 128.
- Recall gradually increases as tiling size increases.
- Speedup gradually increases with increasing refresh interval. But recall will gradually decrease.

Evaluation
Impacts of tiling sizes and refresh intervals on performance and accuracy

- Random tiling sampler delivers a 1.6x speedup on average.
- Recall drop is within 0.003.

<table>
<thead>
<tr>
<th>Method</th>
<th>AmazonBooks</th>
<th>Yelp18</th>
<th>Gowalla</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Recall@20</td>
<td>Tile</td>
<td>Interval</td>
</tr>
<tr>
<td>RCCL</td>
<td>0.0506</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>RACCL</td>
<td>0.0527</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>TCCL</td>
<td>0.0498</td>
<td>1024</td>
<td>4096</td>
</tr>
<tr>
<td>TACCL</td>
<td>0.0518</td>
<td>1024</td>
<td>3072</td>
</tr>
</tbody>
</table>

Tiling size and refresh interval for optimal training accuracy and speedup. "R" and "T" represent random tiling sampler and random sampler, respectively.
Evaluation

➢ Scalability evaluation

• Increase the number of threads/cores from 1 to 64.
• HEAT achieves the parallel efficiency of 63.7%.

Scalability of HEAT with original random sampler (random) and our random tiling sampler (tiling).
Fujitsu A64FX (ARM)

- H-CCL achieves 45.7x on average over T-MF-CCL.
- H-ACCL achieves 39.8x on average over SimpleX.

Comparison of training epoch time on ARM CPUs.
BACK MATTER
Conclusion & Future Work

➢ Conclusion
 • Propose an efficient and affordable collaborative filtering-based recommendation training system.
 • We propose to tile the item embedding matrix cache sizes to reduce read latency. Propose a light-weight algorithm to find the optimal tiling size and cache eviction policy.
 • Save the result of the partial derivative of and reuse them.
 • On AMD and ARM CPUs. HEAT achieves up to 45.2x and 4.5x speedups over existing CPU and GPU solutions, respectively, with 7.9x cost reduction.

➢ Future work
 • Deploy support distributed training with rating matrix partitioning and efficient communication.
 • Apply our random tiling strategy to more recommendation models.
Thank you!

All questions and ideas are welcomed.

Contact

Chengming Zhang czh5@iu.edu
Dr. Dingwen Tao ditao@iu.edu

github.com/hipdac-lab/ICS23-HEAT