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ABSTRACT

Collaborative filtering (CF) has been proven to be one of the most ef-

fective techniques for recommendation. Among all CF approaches,

SimpleX is the state-of-the-art method that adopts a novel loss

function and a proper number of negative samples. However, there

is no work that optimizes SimpleX on multi-core CPUs, leading to

limited performance. To this end, we perform an in-depth profiling

and analysis of existing SimpleX implementations and identify their

performance bottlenecks including (1) irregular memory accesses,

(2) unnecessary memory copies, and (3) redundant computations.

To address these issues, we propose an efficient CF training sys-

tem (called HEAT) that fully enables the multi-level caching and

multi-threading capabilities of modern CPUs. Specifically, the opti-

mization of HEAT is threefold: (1) It tiles the embedding matrix to

increase data locality and reduce cache misses (thus reduces read

latency); (2) It optimizes stochastic gradient descent (SGD) with

sampling by parallelizing vector products instead of matrix-matrix

multiplications, in particular the similarity computation therein, to

avoid memory copies for matrix data preparation; and (3) It aggres-

sively reuses intermediate results from the forward phase in the

backward phase to alleviate redundant computation. Evaluation

on five widely used datasets with both x86- and ARM-architecture

processors shows that HEAT achieves up to 45.2× speedup over

existing CPU solution and 4.5× speedup and 7.9× cost reduction in

Cloud over existing GPU solution with NVIDIA V100 GPU.

CCS CONCEPTS

· Information systems→ Collaborative filtering; · Comput-

ing methodologies→ Shared memory algorithms.
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1 INTRODUCTION

With the development and popularization of the Internet and smart

devices, these platforms have become ideal tools for collecting vari-

ous data/information that can be used to identify user preferences

[27]. However, the exponential growth in the amount of digital

information and the explosion in the number of Internet users can

lead to the problem of information overload that prevents timely

access to things of interest on the Internet [23]. As a result, recom-

mender systems (a.k.a recommendation systems) that use a user’s

choices, interests, or observed behavior to filter out key information

from a massive amount of dynamically collected information are

more in demand than ever [32].

Collaborative filtering (CF) has been proven to be one of the

most effective techniques for building recommender systems due

to its ability to recommend completely dissimilar content. Learning

effective latent factors directly from the user-item rating matrix

through matrix factorization (MF) is the most effective method

among CF-based approaches [29] (will be discussed in ğ2.2). De-

spite the effectiveness of MF-based CF, training MF-based CF is

challenging due to two reasons: (1) Performance: Irregular mem-

ory access causes a significant performance degradationwhen using

sparse real-world user-item rating matrices [14]. (2) Cost: Weekly

or monthly updates on large training datasets (millions of users

and items) causes a drastic cost increase. Recommendation tasks in

the industry are time-sensitive and profit-oriented, which means

that training time and cost are critical for entrepreneurs.

Although today’s various accelerators such as graphics process-

ing units (GPUs) are widely used to train machine learning models

today, in this work we focus on using multi-core CPUs for training

recommendation models due to the following three main reasons.
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CF training with GPUs is expensive. Nowadays, users typi-

cally accelerate machine learning applications [43] using GPUs that

are capable of performing floating-point operations in a massively

parallel fashion. However, CF training on large datasets using GPUs

is expensive. For example, training an MF-based CF model for 3,000

epochs on a dataset with 200 million users and 200 million items

takes about 297.7 hours using 100 16 GB V100 GPUs. Assuming this

training service is deployed on an AWS p3.2xlarge instance [3] at an

hourly cost of around 3 dollars, the total cost for one-time training

is approximately 91,081 dollars. Furthermore, the model needs to

be retrained every month or week due to the dataset update.

GPU memory is limited. Besides the user-item rating matrix

as input, training MF-based CF also requires holding two large

embedding matrices in memory, i.e., a user embedding matrix 𝑆 ∈
R
|𝑈 |×𝐾 and an item embedding matrix 𝑇 ∈ R |𝐼 |×𝐾 . Here |𝑈 | is the

number of users, |𝐼 | is the number of items, and𝐾 is usually between

64 and 128. For instance, the Amazon Product Reviews dataset

[18, 19] contains 21 million users and 9 million items. However,

currently the most powerful GPUs have only 80 GB of memory [11],

which can only accommodate embedding matrices of up to 4 million

users/items when 𝐾 is 128 and the data type is float32. For larger

datasets, we need to split embedding matrices and rating matrix

across different GPUs, which introduces high global communication

overhead. In comparison, the popular CPU nodes in HPC systems

typically have 512 GB or even 1-2 TB of memory.

MF-based CF is not suitable for GPUs. An MF-based CF

features low computation intensity and highly irregular memory

accesses. For MF-based CF training, we need to maximize the simi-

larity of a positive user-item pair while minimizing the similarity

of a negative user-item pair. This procedure requires fetching (1) a

𝐾-dimensional user embedding (vector) from the user embedding

matrix, (2) one 𝐾-dimensional positive item embedding from the

item embedding matrix, and (3) random 𝑛 𝐾-dimensional nega-

tive item embeddings from the item embedding matrix. Based on

these sampled vectors, we need to compute the similarity of the

user-item pairs using vector-dot product operations. These compu-

tation patterns (i.e., embeddings are first accessed in an irregular

fashion and then used in a regular way with spatial locality for

low computation-intensive vector products) make MF-based CF

training more suitable for CPUs than GPUs.

Prior works have focused on optimizing the performance of

MF-based CF training. For example, MSGD [30] improves training

performance on GPUs by removing dependencies on user and item

pairs. However, MSGD does not support sampling multiple negative

terms, which leads to inferior training results (i.e., low accuracy).

Recently, Mao et al. proposed SimpleX [31], a state-of-the-art CF

method, that has a novel loss function and a large negative sam-

pling rate, greatly outperforming other existing methods. However,

SimpleX only uses PyTorch to implement its approach without con-

sidering the computational efficiency. Specifically, (1) training on

sparse user-item rating matrices and random sampling for multiple

negative items lead to irregular memory accesses to embedding

matrices. (2) The similarity computation before the loss compu-

tation is usually based on parallel matrix-matrix multiplication,

which introduces expensive memory copies to concatenate sam-

pled vectors into matrices. (3) Automatic differentiation engines

in machine learning frameworks (such as autograd in PyTorch)

ignore potential data reuse in the backward phase (see ğ4.4).

To this end, we propose a Highly Efficient and Affordable Traini-

ng system (called HEAT1) for collaborative filter based recommen-

dation on multi-core CPUs based on the SimpleX approach. First,

we propose to take advantage of modern CPUs’ memory hierar-

chies to reduce embedding read latencies. Specifically, we propose

an effective tiling method that partitions item embedding matrices

to fit into multi-level caches according to their sizes. Second, we

adopt a multi-threaded training method [36], where each thread

independently and parallelly reads its corresponding user and item

embeddings, calculates their gradients, and updates them rather

than all embeddings, and fuse forward and backward phases to re-

duce the size of the per-thread memory footprint. Third, we identify

reuse opportunities for intermediate results during the backward

pass of training. This reuse is missed in automatic differentiation

systems that work at a more fine-grained operator level. To the best

of knowledge, this is the first work that enables high-performance

and low-cost CF training for recommendation based on the SimpleX

approach on multi-core CPUs.

The main contributions of this paper are summarized as follows:

• We deeply analyze the performance of two state-of-the-art MF-

based CF solutions and identify their performance bottlenecks.

• We propose to tile the item embedding matrix according to

multi-level cache sizes to reduce read latency. Furthermore, we

propose a light-weight algorithm to find the optimal tiling size

and cache eviction policy (e.g., refresh interval).

• We develop a parallel method for similarity computation based

on vector products rather than matrix-matrix multiplication to

avoid matrix data preparation (i.e., memory copies).

• We propose to save the result of the partial derivative of em-

beddings in the forward computation and reuse them in the

backward computation to avoid redundant calculations.

• We propose two implementation optimizations to improve the

performance of weight updates by alleviating read/write con-

flicts in shared memory and reducing the amount of updates.

• Evaluation on three real-world datasets with AMD 7742 CPUs

and Fujitsu A64FX CPUs shows that HEAT achieves up to 45.2×
and 4.5× speedups over state-of-the-art CPU and GPU solutions,

respectively. We also derive some takeaways for CF training on

different CPU architectures.

The remaining of the paper is organized as follows. In ğ2, we

present the background about recommender systems and matrix

factorization based collaborative filtering. In ğ3, we present our

profiling and analysis of existing solutions. In ğ4, we describe the

design of our HEAT. In ğ5, we evaluate HEAT on different datasets

and compare it with other works. In ğ6, we discuss related work.

In ğ7, we conclude our work and discuss future work.

2 BACKGROUND

In this section, we present the background information about rec-

ommender systems and collaborative filtering techniques for rec-

ommendation.

1The code is available at https://github.com/hipdac-lab/HEAT.
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2.1 Basics of Recommender Systems

Input Data. There are two main types of collected feedback (i.e.,

rating matrix): (1) explicit feedback [28] that is directly provided by

users, such as likes and ratings, and (2) implicit feedback [6] that

is obtained from users’ interactions, such as click data, purchases,

and implicit visit information. Recent research on recommender

systems has shifted from explicit feedback to implicit feedback [13]

because the majority of a user’s preference-related signal is implicit.

Thus, we focus on implicit feedback in this work.

Filtering Techniques. Recommender systems mainly include

content-based [8] filtering and collaborative filtering (CF) [21] tech-

niques. Content-based filtering is based on the items’ information

and recommends items that have attributes similar to those that

users like. However, the technique is notorious for its inability to

recommend dissimilar items [39]. To address this issue, collabora-

tive filtering makes recommendations by learning preferences or

taste information from many other users’ interactions [21] and is

able to provide diverse recommendations. CF techniques can be

further classified into userśuser CF [38], item-item CF [40], dimen-

sionality reduction [7], and probabilistic methods [26]. Specifically,

userśuser and itemśitem CF techniques directly use feedback to

calculate similarities between users or items. But vectors in feed-

back are highly sparse and have extremely large dimensions. For

example, an item is a |𝑈 |-dimensional vector and a user is a |𝐼 |-
dimensional vector, where 𝑈 is the set of all users and 𝐼 is the set

of all items. This causes high overhead of computing resources

and memory space. To address this issue, dimensionality reduction

techniques such as matrix factorization (MF) reduce the dimension

of the rating space to a constant number 𝐾 [41] thereby reducing

computational complexity and memory requirements (will be de-

tailed in the next section). Other techniques such as probabilistic

methods seek to create probabilistic models of users’ behaviors and

employ those models to predict users’ future behaviors.

Software Frameworks. There are two popular training frame-

works to implement recommender systems: (1) PyTorch provides

a lookup table (torch.nn.Embedding) to store embeddings of a

fixed dictionary and size. Users can build a complete model us-

ing necessary modules (e.g., loss function, optimizer) provided by

PyTorch. Besides, users can utilize the autograd module to com-

pute gradients and then update the embeddings. However, on the

one hand, using torch.nn.Embedding with dense gradient would

directly update all embeddings, which leads to unnecessary op-

erations since only part of the embeddings are involved in one

training iteration; on the other hand, using torch.nn.Embedding

with sparse gradient causes worse performance (detailed in Section

ğ3.1). (2) TorchRec [24] is a production-quality recommender sys-

tems package in the open-source PyTorch ecosystem. It provides

model and data parallelism and represents sparse inputs by jagged

tensors. Moreover, TorchRec supports computations on sparse data

through FBGEMM [25] and overlaps communication and computa-

tion through train_pipeline. However, similar to PyTorch, TorchRec

also suffers from the above dense/sparse embedding update issue.

2.2 MF-based Collaborative Filtering

The purpose of MF-based CF training is to maximize the similarity

of embeddings of a positive user-item pair while minimizing the

Figure 1: Basic concept of MF-based CF.

similarity of embeddings of a negative user-item pair. We can use

dot product similarity or cosine similarity as expressed in Equation

2. Assume𝑈 is the set of all users and 𝐼 is the set of all items. The

implicit feedback can be expressed as 𝑋 ⊆ 𝑈 × 𝐼 as depicted in

Figure 1. Particularly, ł+ž indicates a user’s preference for an item.

Such corresponding items are called positive items. ł?ž represents

either negative (not interested) or missing (not interacted) values.

The items corresponding to the negative values are called negative

items. MF-based techniques train two low-dimensional matrices,

i.e., a user embedding matrix 𝑆 ∈ R |𝑈 |×𝐾 and an item embedding

matrix 𝑇 ∈ R |𝐼 |×𝐾 , to approximate 𝑋 as expressed in Equation (1).

Then, the main task is to predict missing ratings in 𝑋 using the

corresponding embeddings.

𝑋 ≈ 𝑋̂ = 𝑆𝑇 𝑡 (1)

𝑥𝑢,𝑖 =




𝑆𝑢 · 𝑇𝑖 =
𝐾∑︁

𝑘=0

𝑆𝑢,𝑘𝑇𝑖,𝑘 (dot)

𝑆𝑢 · 𝑇𝑖
∥𝑆𝑢 ∥2 ∥𝑇𝑖 ∥2

=

∑𝐾
𝑘=0 𝑆𝑢,𝑘𝑇𝑖,𝑘√︃∑𝐾

𝑘=0 𝑆
2

𝑢,𝑘

√︃∑𝐾
𝑘=0𝑇

2

𝑖,𝑘

(cosine)

(2)

L(𝑢, 𝑖 ) = (1 − 𝑥𝑢,𝑖 ) +
𝜇

|N |
∑︁

𝑗 ∈N
max(0, 𝑥𝑢,𝑗 − 𝜃 ) (3)

Prior MF-based CF works can be generally classified into two

directions. The first direction only targets recall (i.e., accuracy) and

adopts simple similarity functions (e.g., dot product) and point-wise

loss functions (e.g., mean square error, binary cross entropy) for

user-item pairs without using negative items. For example, rep-

resentative works such as CuMF_ALS [44], CuMF_SGD [48], and

MSGD [30] focus more on the computational efficiency of matrix

factorization than on recall. The second direction brings higher

accuracy and creates a user-specific item ranking by using the

concept of positive/negative items, novel loss functions, and more

sophisticated similarity functions (e.g., cosine similarity) with sam-

pling methods. For example, [37] proposed Bayesian personalized

ranking (BPR) loss function, while [17, 46] proposed a contrastive

loss (i.e., a Euclidean distance-based loss). More recently, SimpleX

[31] proposes a cosine contrastive loss (CCL) and utilizes multiple

negative samples, which outperforms other approaches regarding

accuracy. Equation (3) is the CCL, where (𝑢, 𝑖) is a positive user-item
pair, N is the number of randomly sampled negative samples, 𝜇 is

a hyperparameter, and 𝜃 is the threshold to filter negative samples.

3 PERFORMANCE PROFILING AND ANALYSIS

In this section, we characterize the performance of SimpleX on

both CPU and GPU. Note that we focus on the PyTorch implemen-

tation rather than the TorchRec implementation since TorchRec

optimizes sparse computation and communication/computation
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Figure 2: Overview of SimpleX. ł+ž/ł-ž denote positive/negative embedding.

Table 1: Profiling of embedding update in SimpleX. łETž, łFPž, łBPž are short
for epoch time, forward percentage, backward percentage, respectively.

Dataset Method ET FP BP

AmazonBooks
dense 257.4 19.9% 67.0%

sparse 946.6 6.2% 92.8%

Yelp18
dense 129 21.2% 65.1%

sparse 386.3 9.1% 89.3%

Gowalla
dense 94.9 20.7% 66.8%

sparse 251.8 9.2% 89.2%

overlap, which does not address the performance bottleneck of

MF-based CF training methods. Thus, for simplicity, we only show

the performance breakdown of the PyTorch implementation to

motivate the design of our HEAT.

We set the embedding dimension to 128 and the number of

negatives to 64, and the batch size to 1024. We use PyTorch 1.10.0

and CUDA 10.2. We use the PyTorch profiler [35] to perform the

breakdown.We use three real-world large datasets (containingmore

than millions of users and items) for profiling, i.e., Goodreads Book

Reviews (Goodreads) [45], Google Local Reviews (2018) (Google)

[33], and Amazon Product Reviews (Amazon) [19].

3.1 Embedding Update in SimpleX

The core component in the PyTorch implementation of SimpleX [31]

is torch.nn.Embedding, a simple lookup table storing embeddings.

SimpleX fetches a batch of embeddings from torch.nn.Embedding

to perform one training iteration. Logically, we only need to gen-

erate the gradients of the involved embeddings and update those

embeddings. Thus, we can leverage torch.nn.Embedding’s capa-

bility which allows users to enable sparse gradient computation

and embedding update (by setting the parameter sparse to True).

Table 1 shows the profiling results of the embedding update in

SimpleX with dense or sparse gradients. In the case of dense gra-

dient, the backward phase takes more than 60% of the epoch time.

We observe that torch.nn.Embedding updates all embeddings in

every iteration. In the case of sparse gradient, although we theo-

retically reduce the computation complexity, the actual epoch time

of training with sparse gradient is almost 3× higher than that of

dense gradient, where the backward phase takes more than 90% of

the epoch time. This motivates us to design a training method that

supports updating embedding sparsely and efficiently in parallel.

3.2 Computation Efficiency of SimpleX

SimpleX utilizes torch.bmm, a batch matrix-matrix product for sim-

ilarity computation. Before that, it needs to concatenate and then re-

shape embeddings. Specifically, as shown in Figure 2, SimpleX reads

a batch of user embeddings and item embeddings, and reshapes

them to let batch dimension be the first dimension. After reshaping,

SimpleX performs normalization and matrix-matrix multiplication.

torch.bmm can fully enable the underlying high-performance BLAS

library on multi-core CPUs.

Table 2 shows the breakdown of the forward phase of SimpleX.

The forward phase includes reading user embeddings (u_emb), read-

ing item embeddings (i_emb), normalization of user embeddings

(u_norm), normalization of item embeddings (i_norm), concatena-

tion and reshaping of embeddings (mem_cp), a batch matrix-matrix

product (bmm), and a loss function (loss). We observe that the time

of mem_cp and the time of bmm are comparable. This inspires us

to avoid explicit concatenation and reshaping. To normalize the

embedding tensor 𝐸, it needs to sum the square of 𝐸 along the di-

mension of the embedding dimension, and then calculate the square

root of the summation, and then reverse values of the square root,

i.e., the norm 𝑅 =

(√︁
𝐸2 .𝑠𝑢𝑚(𝑑𝑖𝑚 = 1)

)−1
. We observe that this

normalization takes more than 20% of the forward time because of

two main reasons: (1) The underlying library does not have good

support for the above operations. (2) Reading the entire matrix dur-

ing the computation and the writing of the generated intermediate

tensor 𝑅 back to the memory cause additional memory access time.

In addition, the time of reading item embeddings takes around 30%

of the forward time, which is caused by irregular memory accesses.

3.3 Memory Usage of SimpleX

The sizes of user and item embedding matrices in MF-based CF are

linearly scaled to the size of training dataset (i.e., item-user rating

matrix). Table 3 shows the memory usage of SimpleX on both CPU

and GPU. The total memory capacity of GPU and CPU is 32 GB

and 256 GB, respectively. We observe that SimpleX almost runs out

of the GPU memory when the numbers of users and items are over

3 millions. This is because it needs to save not only the embedding

matrices, but also the gradient matrices (scaled with user/item sizes)

and optimizer states (scaled with batch size). The out of memory

happens when training on the Amazon dataset due to the limited

GPU memory. This observation further strengthens our motivation

to use multi-core CPUs with larger memory as our target platform.

Table 2: Breakdown of the forward phase of SimpleX. The ratio of each com-
ponent’s time to the forward time. Amazon is short for AmazonBooks.

Dataset u_emb i_emb u_norm i_norm mem_cp bmm loss

AmazonBooks 9.6% 39.8% 5.9% 22.3% 5.0% 7.1% 9.7%

Yelp18 9.1% 35.3% 5.1% 28.3% 4.8% 7.2% 9.6%

Gowalla 8.3% 33.2% 5.6% 31.1% 4.8% 7.3% 9.1%
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Figure 3: Overview of our proposed HEAT’s workflow/dataflow. HEAT has four main optimizations: łrandom tilingž (ğ4.2), łparallelizationž (ğ4.3), łdata reusež
(ğ4.4) and łparallel gradient updatež (ğ4.5).

Table 3: Memory usage of SimpleX. OoM is short for out of memory.

Dataset users items CPU GPU

Goodreads 0.81M 1.56M 4.2% 30.1%

Google 4.57M 3.12M 11.3% 80.2%

Amazon 20.98M 9.35M 38.4% OoM

4 DESIGN METHODOLOGY

In this section, we propose our multi-threading MF-based CF train-

ing system with optimizations to improve the training performance.

4.1 Overview of HEAT

Figure 3 shows the key components of HEAT: (1) It initializes

user/item embedding matrices with values either drawn from the

normal distribution N(𝑚𝑒𝑎𝑛, 𝑠𝑡𝑑2) or initialized by Xavier [16]. (2)

It chooses either the original random sampler or our proposed ran-

dom tiling sampler that increases the cache hit ratio (see in ğ4.2) to

sample one user, one positive item, and 𝑛 negative items. Then, it

reads the user’s corresponding embeddings and these positive/neg-

ative items’ embeddings. (3) The behavior aggregation layer with

our proposed optimization of gradient update (see ğ4.5) generates a

new user embedding via aggregating embeddings of historically in-

teracted items of the user when enabling behavior aggregation. (4)

It calculates similarities in parallel (see ğ4.3) of user-item pairs and

calculate the loss. (5) It calculates gradients through an optimized

gradient computation kernel (see ğ4.4). (6) It updates and writes

back corresponding embeddings.

4.2 Random Tiling

Cache size oriented tiling. The original method randomly sam-

ples 𝑛 negative items following a uniform distribution and reads

their embeddings. As shown in Table 4, the time of reading item

embeddings exceeds 60% of the total forward time. This is due to

two reasons: (1) randomly sampled negative items lead to irregular

memory accesses, which causes poor data locality, low cache hit

rate, and high latency. (2) Each embedding consists of 𝐾 (𝐾 ≥ 64)
floating-point numbers, which will further exacerbate this problem

when 𝐾 is relatively large. Meanwhile, reading user embeddings

takes less than 5% of the total forward time because we only sample

one user in each iteration.

To utilize modern CPU’s memory hierarchy, especially multi-

level caches, we propose to tile the item embedding matrix ac-

cording to the cache size and make sure a tile of items and their

Table 4: Breakdown of the forward phase of HEAT with random sampling.

Dataset u_emb i_emb compute loss

Amazon 5.1% 63.2% 25.9% 4.3%

Yelp18 5.3% 62.4% 26.6% 4.6%

Gowalla 5.5% 61.4% 26.4% 4.5%

embeddings can be fitted into the cache. Then, we randomly sam-

ple negative items directly from the cached tile of items, which

increases the cache hit rate and thus reduces the latency of reading

embeddings. Assume 𝑁1 and 𝑁2 are tiling size and refresh interval,

respectively. The sampling space of the original strategy is whole

items. However, the sampling space is shrunk to the tiling size 𝑁1

after applying the tiling strategy. To reduce the impact of the tiling

strategy on training results as much as possible, we hope to have

as large a sampling space as possible while ensuring acceleration.

Thus, we will refresh the cached tile every 𝑁2 iterations to enlarge

the sampling space. The sampling space becomes 𝑀
𝑁2
× 𝑁1, where

𝑀 is the number of total iterations.

Figure 4 illustrates the proposed random tiling strategy in each

thread. Specifically, each thread preallocates a suitable cache space

to buffer randomly sampled 𝑁1 embeddings. In each iteration, each

thread also randomly samples 𝑛 negative embeddings from the

cached tile to compute the gradients and update corresponding

embeddings. After 𝑁2 iterations, each thread randomly samples 𝑁1

embeddings again to refresh the cache space. Since the behavior

aggregation layer aggregates embeddings of a user’s historical in-

teraction items (i.e., positive items) and one user’s negative items

may be transformed into another user’s positive items, the tiling

method can also benefit the behavior aggregation layer.

Tiling size and refresh interval tuning. In order to avoid man-

ually tuning 𝑁1 and 𝑁2 by trial and error, we propose Algorithm 1

to systematically determine 𝑁1 and 𝑁2 given an expected speedup

𝑃 . Specifically, (1) the negative sampling space of random tiling is

Figure 4: Random tiling strategy in each thread.
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Algorithm 1: Proposed tuning method for tiling size & refresh interval.

Inputs : 𝐼 : # of items,𝑀 : total iterations; 𝑁1 : tile size; 𝑁2 : refresh interval; 𝑛𝑛 : number
of negatives; 𝑛𝑝 : number of positives; 𝑟 : average positive hit ratio; 𝑠𝑙2, 𝑠𝑙3 : L2,
L3 cache size; 𝑡𝑚 , 𝑡𝑙2, 𝑡𝑙3 : latency of reading data from memory, L2 cache, and
L3 cache; 𝑃 : expected speedup; 𝛼, 𝛽 : percentage of positive, negative speedup

Outputs :𝑁1 : optimized tile size; 𝑁2 : optimized refresh interval

1 // Negative sampling space of tiling

2 𝑛𝑒𝑔_𝑠𝑝𝑎𝑐𝑒 ← 𝑀
𝑁2
× 𝑁1 = 𝑀 × 𝑁1

𝑁2

3 // Time of reading negatives using random sampling

4 𝑛𝑒𝑔_𝑡𝑖𝑚𝑒_𝑟𝑎𝑛𝑑𝑜𝑚 ← 𝑀 × 𝑛𝑛 × 𝑡𝑚
5 // Estimate latency of reading cache

6 𝑠𝑡 ← 𝑁1 × 𝑠𝑖𝑧𝑒𝑜 𝑓 (𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑟𝑜𝑤 ) × 𝑛𝑢𝑚_𝑡ℎ𝑟𝑒𝑎𝑑𝑠

7 if 𝑠𝑡 < 𝑠𝑙2 then
8 𝑡𝑐 ← 𝑡𝑙2
9 else if 𝑠𝑡 ≥ 𝑠𝑙2 and st < sl3 then
10 𝑡𝑐 ← 𝑡𝑙3
11 else
12 𝑡𝑐 ← 𝑡𝑚
13 end

14 // Time of reading negatives using tiling

15 𝑛𝑒𝑔_𝑡𝑖𝑚𝑒_𝑡𝑖𝑙𝑖𝑛𝑔← 𝑛𝑛 × 𝑀
𝑁2
× ( (𝑁2 − 𝑁1 ) × 𝑡𝑐 + 𝑁1 × 𝑡𝑚 )

16 𝑛𝑒𝑔_𝑠𝑝𝑒𝑒𝑑𝑢𝑝 ← 𝑛𝑒𝑔_𝑡𝑖𝑚𝑒_𝑟𝑎𝑛𝑑𝑜𝑚
𝑛𝑒𝑔_𝑡𝑖𝑚𝑒_𝑡𝑖𝑙𝑖𝑛𝑔 =

𝑡𝑚

𝑡𝑐 +(𝑡𝑚−1)×
𝑁1
𝑁2

≈ 𝑁2
𝑁1

17 𝑝𝑜𝑠_𝑠𝑝𝑒𝑒𝑑𝑢𝑝 ← 𝑛𝑝 ×𝑡𝑚
𝑛𝑝 ×𝑟×𝑡𝑐 +𝑛𝑝 ×(1−𝑟 )×𝑡𝑚

18 // Percentage of speedup

19 𝛼 ← 𝑝𝑜𝑠_𝑠𝑝𝑒𝑒𝑑𝑢𝑝
𝑃 𝛽 ← 𝑛𝑒𝑔_𝑠𝑝𝑒𝑒𝑑𝑢𝑝

𝑃
20 // Calculate 𝑁1 𝑁2

21 𝑁1 ← 𝑓0 (𝑠𝑙2, 𝑠𝑙3, 𝑛𝑢𝑚_𝑡ℎ𝑟𝑒𝑎𝑑𝑠, 𝑒𝑚𝑏_𝑑𝑖𝑚)
22 𝑁20 ←

𝑀×𝑁1
𝐼

23 𝑁21 ←
𝑁1
𝛽×𝑃

24 if 𝑁20 < 𝑁21 then

25 𝑁2 ← 𝑁20

26 else

27 𝑁2 ← 𝑁21

28 end

29 𝑁1 ← 𝑁1

determined by 𝑁1

𝑁2
(Line 2) and affects the training results. Thus, 𝑁1

𝑁2

affects the training results. (2) We determine the latency of reading

negative embeddings by estimating which level of cache can buffer

a tile of embeddings (Lines 5-13). (3) We calculate the total time

of reading negative embeddings and speedup after using random

tiling, and the speedup can be approximated as 𝑁2

𝑁1
(Lines 15-16).

(4) We calculate the speedup of reading positive embeddings after

using random tiling (Line 17). (5) Negative and positive speedups

for 𝛼, 𝛽 (in percentile) of the total speedup (Line 19). In our design,

we set 𝛼, 𝛽 to 0.15 and 0.85, respectively. (6) We first obtain 𝑁1

via function 𝑓0. The main idea of 𝑓0 is to determine a suitable 𝑁1

through the number of threads and the embedding size to ensure

that 𝑛𝑢𝑚_𝑡ℎ𝑟𝑒𝑎𝑑𝑠 × 𝑁1 embeddings can be held in the L2 cache

(Line 21). (7) We can either choose the negative sampling space

𝐼 = 𝑀 × 𝑁1

𝑁2
or the negative speedup 𝑛𝑒𝑔_𝑠𝑝𝑒𝑒𝑑𝑢𝑝 ≈ 𝑁2

𝑁1
to calculate

𝑁2 (Lines 22-23). (8) We select a smaller 𝑁2 to ensure high accuracy

since smaller 𝑁2 larger negative sampling space (Lines 24-28).

4.3 Parallelization of Similarity Computation

Modern CPUs are usually multi-core architectures and support

the multi-threading paradigm to further exploit instruction-level

parallelism. A multi-core processor typically uses a single thread

in a single physical core. In order to utilize hardware parallelism

(e.g., multiple cores in CPUs, CUDA threads in GPUs) and high-

performance libraries (e.g., BLAS, LAPACK), PyTorch abstracts

input data into tensors (i.e., multi-dimensional matrix) and calcula-

tions into tensor operations. PyTorch-based SimpleX follows the

Figure 5: Overview of our training workload partition strategy. Different
colored circles represent the embeddings sampled for different threads. ł+ž
and ł-ž denote positive and negative embeddings, respectively.

same design philosophy. As discussed in ğ3.2, SimpleX first concate-

nates embeddings, then reshapes them and adopts matrix-matrix

multiplication to calculate the similarity.

However, directly adopting such a parallel computing design

in CF training introduces two severe performance problems: (1)

concatenating sampled embeddings into matrices and reshaping

introduce expensive memory copies; and (2) normalization of em-

bedding tensor needs writing of the generated intermediate tensor

𝑅 back to the memory, which causes additional memory access time.

To conquer the above limitations and make full use of the multi-

core architecture and the multi-threading paradigm in CF training,

we propose a new parallel method in that different threads directly

perform dot products after reading sampled user/item embeddings

without concatenation and reshaping.

Figure 5 depicts our proposed parallelization of similarity com-

putation strategy. Specifically, for each iteration, each thread first

fetches one user embedding 𝑆𝑢 , one positive embedding𝑇𝑝𝑜𝑠 , and 𝑛

negative embeddings𝑇𝑛𝑒𝑔 . Then, each thread performs the dot prod-

uct of user embedding and positive/negative embeddings 𝑆𝑢 ·𝑇𝑝𝑜𝑠
or 𝑆𝑢 ·𝑇𝑛𝑒𝑔 . Meanwhile, to facilitate calculations of cosine similar-

ities and reuse these embeddings, each thread also does the dot

product of each embedding with itself, since | |𝑆𝑢 | |2 =

√
𝑆𝑢 · 𝑆𝑢 ,

| |𝑇𝑝𝑜𝑠 | |2 =

√︁
𝑇𝑝𝑜𝑠 ·𝑇𝑝𝑜𝑠 and | |𝑇𝑛𝑒𝑔 | |2 =

√︁
𝑇𝑛𝑒𝑔 ·𝑇𝑛𝑒𝑔 . Each thread

finally generates gradients using the optimized similarity and gra-

dient computation and then updates corresponding embeddings.

This strategy also facilitates updating embedding matrices in a

sparse fashion. Theoretically, we only need to generate the gradi-

ents of involved embeddings and update them. Note that although

PyTorch allows users to set the parameter łsparsež to True to en-

able sparse gradients so as to update embeddings sparsely, it leads

to worse performance as demonstrated in ğ3.1. By comparison,

in our proposed method, different threads independently and in

parallel are responsible for gradient calculations of involved em-

beddings. Besides, different threads can write embeddings matrices



HEAT ICS ’23, June 21ś23, 2023, Orlando, FL, USA

independently. Therefore, different threads are able to update these

embeddings instead of updating all embeddings.

4.4 Aggressive Data Reuse
With matrix factorization, the rating matrix 𝑋 is approximated

by the matrix product of two low-rank matrices 𝑆 ∈ R |𝑈 |×𝐾 and

𝑇 ∈ R |𝐼 |×𝐾 . Each row 𝑆𝑢 in 𝑆 can be seen as a feature vector
describing a user 𝑢 and similarly each row 𝑇𝑖 of 𝑇 describes an
item 𝑖 . We need to use the feedback 𝑋 and a suitable loss function
to train 𝑆 and 𝑇 . The training procedure is (1) pick a user-item
pair (𝑢, 𝑖) from 𝑋 . (2) calculate the similarity 𝑥𝑢,𝑖 of the user-item
pair, we can use dot product similarity or cosine similarity. We
focus on cosine similarity since it delivers better training results as
demonstrated in SimpleX. (3) generate loss and loss gradient using
the suitable loss function. (4) do gradient backpropagation to obtain
partial derivatives (gradients) of involved embeddings. (5) utilize
the obtained gradients to update engaged embeddings.

𝜕𝑥𝑢,𝑖

𝜕𝑆𝑢
=

𝑇𝑖 ·
√︁∑

𝑆2𝑢

√︃∑
𝑇 2

𝑖 −
1

2

(∑
𝑆2𝑢

)− 1
2 · 2𝑆𝑢 ·

√︃∑
𝑇 2

𝑖

∑
𝑆𝑢𝑇𝑖

(√︁∑
𝑆2𝑢

√︃∑
𝑇 2

𝑖

)2

=

𝑇𝑖 ·
∑
𝑆2𝑢 −

∑
𝑆𝑢𝑇𝑖 · 𝑆𝑢

∑
𝑆2𝑢

√︁∑
𝑆2𝑢

√︃∑
𝑇 2

𝑖

(4)

𝜕𝑥𝑢,𝑖

𝜕𝑇𝑖
=

𝑆𝑢 ·
∑
𝑇 2

𝑖 −
∑
𝑆𝑢𝑇𝑖 · 𝑇𝑖

∑
𝑇 2

𝑖

√︃∑
𝑇 2

𝑖

√︁∑
𝑆2𝑢

(5)

The partial derivative of 𝑥𝑢,𝑖 with respect to the variable 𝑆𝑢 is

defined in Equation (4).
𝜕𝑥𝑢,𝑖
𝜕𝑆𝑢

mainly consists of
∑
𝑆2𝑢 the sum of

squares of 𝑆𝑢 ,
∑
𝑇 2

𝑖 the sum of squares of 𝑇𝑖 , and
∑
𝑆𝑢𝑇𝑖 the dot

product of 𝑆𝑢 and 𝑇𝑖 .

We also need to calculate
∑
𝑆2𝑢 ,

∑
𝑇 2

𝑖 , and
∑
𝑆𝑢 when calculat-

ing the cosine similarity 𝑥𝑢,𝑖 of the user-item pair in the forward

phase. Thus, to avoid redundant calculation of the values of
∑
𝑆2𝑢 ,∑

𝑇 2

𝑖 , and
∑
𝑆𝑢𝑇𝑖 , we will cache the values of these variables in the

forward phase to achieve data reuse.

Similarly, the partial derivative of 𝑥𝑢,𝑖 with respect to the variable

𝑇𝑖 is defined in Equation (5).
𝜕𝑥𝑢,𝑖
𝜕𝑇𝑖

is also related to
∑
𝑆2𝑢 ,

∑
𝑇 2

𝑖 , and∑
𝑆𝑢𝑇𝑖 . Thus, we can reuse

∑
𝑇 2

𝑖 ,
∑
𝑆2𝑢 , and

∑
𝑆𝑢𝑇𝑖 in the calculation

of
𝜕𝑥𝑢,𝑖
𝜕𝑇𝑖

in the backward computation.

4.5 Optimized Parallel Gradient Update

To parallelize similarity computation (in ğ4.3), different threads

independently and in parallel are responsible for similarity compu-

tation, gradient calculations, and embedding updates of involved

embeddings. This parallelization strategy brings another challenge

when enabling the behavior aggregation layer.

As aforementioned, the traditional MFmethods only need to read

one user embedding, one positive embedding, and multiple negative

embeddings in each iteration, and then feed these embeddings into

the model to calculate gradients and then update the corresponding

embeddings. But SimpleX uses an extra behavior aggregation layer

to process interacted item sequence of each user to better model

user behaviors. The essence of the behavior aggregation layer is a

small fully connected layer, its input/output dimension is the same

as the embedding dimension.

This layer aggregates the user’s embedding and embeddings of

the user’s historical interaction items to generate a new embed-

ding. Then, we feed the new embedding, a positive embedding,

and multiple negative embeddings, into the model to update the

corresponding embeddings. The effectiveness of the behavior ag-

gregation layer has been proven in many previous works, such as

YouTubeNet [12] and ACF [9]. It has three common aggregation

choices, i.e., average pooling, self-attention, and user-attention

In HEAT, each thread performs the training procedure indepen-

dently to avoid synchronization among threads, which will degrade

the overall performance. Each thread reads the weight matrix of

the behavior aggregation layer to perform forward and backward

computations using different training data. This training mode is

similar to data parallel distributed training. We can follow asyn-

chronous distributed stochastic gradient descent (SGD) and specify

one thread as the parameter server for the global weights of the

behavior aggregation layer, other threads request weights replicas

from the parameter server to process a mini batch to calculate gra-

dients and send them back to the parameter server which updates

the global weights accordingly. However, this method causes high

overheads of memory and synchronization among threads due to

multiple weights replicas and gradients exchange.

To solve this issue, inspired by a prior work (called Hogwild!)

[36] that uses shared memory to hold global weights, which enables

processes to access global weights without lock mechanism, we also

let all threads access global weights without lock mechanism. How-

ever, Hogwild! cannot be directly applied to HEAT since Hogwild!

targets to the sparse optimization problem but the optimization of

the behavior aggregation layer is a dense optimization problem.

In our HEAT design, we let all threads share one weight matrix,

thus each thread just holds a pointer to the weight matrix, and

then generates gradients to update the weight matrix directly. The

conflict will happen when one thread tries to update the weight

matrix while other threads try to read/write the weight matrix since

there is only one copy of the data in the memory. To alleviate the

conflict, we let each thread first accumulate the gradients locally,

and update the global weight matrix every𝑚 iterations.

Listing 1 describes the simplified training workflow of the behav-

ior aggregation layer. Specifically, (1) we enable multi-threading

processing and let aggregator_weights be shared by all threads (Line

7). (2) We calculate weight gradients (weights_grad) locally and ac-

cumulate gradients to the accu_weights_grad (Lines 13-16). (3) We

update the global weight matrix every mini_batch_size (Lines 17-

21). According to our experimental results, we set mini_batch_size

to 32 to avoid accuracy drop.

1 / / I npu t : t o t a l i t e r a t i o n I , i n i t _we i g h t s 0 ,

2 / / a c t i v a t i o n da t a a c t _da t a , ou t pu t s g r a d i e n t ou t s _g r ad

3 / / m i n i _ b a t c h _ s i z e

4 / / Output : updated agg r e g a t o r _we i gh t s

5 typedef Array < f loat , Dynamic , Dynamic> XMatrix

6 XMatrix a gg r e g a t o r _we i gh t s ( emb_dim , i n i t _w e i g h t s 0 )

7 #pragma omp para l l e l shared ( a g g r e g a t o r _we i gh t s ) {

8 in t i _ c o un t s = 0 ; / / i t e r a t i o n coun t s

9 XMatrix we igh t s_g rad = Zero ( emb_dim , emb_dim ) ;

10 XMatrix a c cu_we igh t s_g rad = Zero ( emb_dim , emb_dim ) ;

11 #pragma omp for

12 for ( in t i = 0 ; i < I ; ++ i ) {

13 for ( in t k =0 ; k<emb_dim ; ++k ) {

14 weigh t s_g rad . row ( k ) = a c t _ d a t a ( 0 , k ) ∗ ou t s _g r ad ;

15 }

16 accu_we igh t s_g rad += we igh t s_g rad ;
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17 i f ( i _ coun t s >0 && i _ c oun t s % m in i _ b a t c h _ s i z e ==0) {

18 weigh t s_g rad = accu_we igh t s_g rad / m i n i _ b a t c h _ s i z e ;

19 agg r e g a t o r _we i gh t s −= l _ r ∗ weigh t s_g rad ;

20 accu_we igh t s_g rad = Zero ( emb_dim , emb_dim ) ;

21 } } }

Listing 1: Psuedocode of our behavior aggregator design.

5 PERFORMANCE EVALUATION

In this section, we present our experimental setup and demonstrate

the effectiveness of HEAT compared with other solutions.

5.1 Experimental Setup

Datasets. We evaluate HEAT on five real-world datasets as they

have been preprocessed for fairness and ease of comparison. Specif-

ically, (1) we perform most of our experiments on three datasets,

Amazon-Books, Yelp2018, and Gowalla, which are commonly used

in recent CF works [10, 20]. Amazon-Books, Yelp2018, Gowalla have

52643, 31668, 29858 users, and 91599, 38048, 40981 items, respec-

tively. (2) To demonstrate that HEAT is affordable, we further eval-

uate on two larger datasets, Goodreads Book Reviews (Goodreads)

and Google Local Reviews (2018).

Platforms. We perform our experiments on three types of plat-

forms: (1) a regular memory (RM) node from the Bridges-2 super-

computer [34] equipped with x86-architecture processors. Each RM

node has two 64-core AMD EPYC 7742 CPUs with 32 MB L2 cache

and 256 MB L3 cache; (2) a compute node from the Ookami [5]

cluster equipped with Fujitsu ARM A64FX processors. Each A64FX

processor features 48 cores, 512-bit wide SIMD, 32 MB L2 cache,

and 32 GB HBM2 memory with 1024 GB/s bandwidth; and (3) a

GPU node from the Bridges-2 supercomputer equipped with one

NVIDIA Tesla 32 GB V100 GPU to perform GPU experiments.

Baselines. SimpleX mainly consists of MF, behavior aggregation

layer, and cosine contrastive loss (CCL). Note that Simplex without

aggregation layer degenerates to an MF-based model. We compare

HEAT with five baselines: PyTorch-implemented MF with CCL

(T-MF-CCL), TorchRec-implemented MF with CCL (R-MF-CCL),

PyTorch-implemented SimpleX (T-S), TorchRec-implemented Sim-

pleX (R-S), and CuMF_SGD.

Implementation details. We implement HEAT using C++. Specif-

ically, we implement computation kernels using Eigen [15] for

vector-dot product, and vector-matrix product. Eigen is a C++ tem-

plate library for linear algebra. We use OpenMP to support our

shared-memory multi-threading computation. We use Intel oneAPI

C++ compiler [22] to compile C++ source code. We also use the

Intel MKL library for BLAS operations and LAPACK operations. We

use ARM C/C++ compiler [1] which provides armclang and arm-

clang++. We link HEATto ARM performance library (ARMPL) to

enable BLAS or LAPACK as Eigen’s backend for dense matrix prod-

ucts. ARMPL [2] provides optimized standard core math libraries

such as BLAS, LAPACK, FFT, and sparse routines with OpenMP.

5.2 Training Time

For training epoch time, we first compare HEAT with T-MF-CCL,

R-MF-CCL, T-S, R-S. We run HEAT on the CPU and run T-MF-

CCL, R-MF-CCL, T-S, and R-S on both the CPU and GPU. For this
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Figure 6: Comparison of epoch time between SimpleX and HEAT. Simplex
without aggregation layer degenerates to MF-based model.

comparison, we use the embedding dimension of 128, 64 negative

samples, and 100 historical items for fairness and ease of compari-

son. Moreover, we also compare HEAT with CuMF_SGD (i.e., the

state-of-the-art GPU-based MF solution with high performance)

and TorchRec-based MF (R-MF). For this comparison, we use the

embedding dimension of 128, one negative sample, dot-product

similarity, and mean square error loss because CuMF_SGD only

supports these settings.

Figure 6 shows the training epoch time comparison on the

CPU and GPU among T-MF-CCL, R-MF-CCL, T-S, R-S, HEAT with

CCL (H-CCL), HEAT with behavior aggregation layer and CCL (H-

ACCL). Compared with the CPU baselines, H-CCL achieves 45.2×,
28.3×, and 27.0× speedup over T-MF-CCL on AmazonBooks, Yelp18,

and Gowalla, respectively. H-CCL also achieves 14.9× on average

over R-MF-CCL. H-ACCL achieves 36.8×, 20.6×, and 32.1× speedup
over T-S on AmazonBooks, Yelp18, and Gowalla, respectively. H-

ACCL also achieves 14.3× on average over R-S. Compared with

the GPU baselines, HEAT with CCL achieves 4.5×, 3.4×, and 3.2×
speedup over T-MF-CCL on AmazonBooks, Yelp18, and Gowalla,

respectively. H-CCL also achieves 2.3× on average over R-MF-CCL.

H-ACCL provides 3.2×, 1.9×, and 3.5× speedup over T-S on Ama-

zonBooks, Yelp18, and Gowalla, respectively. H-ACCL achieves 1.7×
speedup on average over R-S. We get such significant speedups

because (1) we let each thread run independently and avoid syn-

chronization between threads, (2) we aggressively reuse data in

forward and backward computation to improve the performance,

and (3) we only update the involved embeddings in each thread.

Figure 7 shows a comparison of training epoch time among

CuMF_SGD on the GPU, TorchRec-based MF on the GPU, and

HEAT on the CPU. The performance of HEAT and CuMF is com-

parable. However, CuMF_SGD implements the most basic CUDA-

based (stochastic gradient descent) SGD solution for MF problems.
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Figure 7: Comparison of epoch time among CuMF_SGD (GPU), TorchRec
(GPU), and HEAT (CPU).
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Figure 8: Performance breakdown of HEAT on CPU. Note that sim and aggr
are short for similarity computation and aggregation.

CuMF_SGD only supports basic mean squared error loss function, 1

negative sample, and sets the embedding dimension to a fixed value

of 128 for performance. HEAT achieves 2.6× speedup on average

over TorchRec-based MF.

In addition, we break down the epoch time into different phases.

Figure 8 shows that in HEAT-CCL the time of reading embeddings

takes 40.4%, which proves the necessity of our tiling strategy. Simi-

larity computation including dot product and normalization only

takes up 3.4%, which shows our similarity computation is very

efficient. Moreover, in HEAT-ACCL, the percentage of reading em-

beddings and aggregation reaches 46.3% and 17.8%, respectively,

which indicates aggregation exacerbates the issue of reading em-

beddings and further optimization on the aggregation computation

in future work.

5.3 Training Cost

Next, to demonstrate that our training system is highly affordable,

we compare the training cost of our HEAT on the CPU and SimpleX

on the GPU on two large datasets, i.e., Goodreads Book Reviews

(Goodreads) and Google Local Reviews (2018) (Google). We use

AWS p3.2xlarge instance as the GPU platform, which is equipped

with one 16 GB V100 GPU. The price of p3.2xlarge is $3.06 per hour.

We need two p3.2xlarge to fit these two large datasets since each

GPU has only 16 GB memory. We use AWS c5a.16xlarge as the CPU

platform, which is equipped with one AMD EPYC 7R32 and 128 GB

memory. The price of c5a.16xlarge is $2.46 per hour [4]. Figure 9

shows the comparison of the total training cost of the two methods

for 100 epochs. Compared with SimpleX on the GPU, HEAT can

reduce the cost by 7.9×.
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Figure 9: Comparison of total training cost ($) for 100 epochs.
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Figure 10: Speedup & recall with different tiling sizes on AmazonBooks.

5.4 Training Accuracy

After that, we report the training results on different datasets using

the same evaluation metrics (e.g., Recall@20 and NDCG@20) and

parameter configuration as SimpleX in Table 5, to demonstrate

that our proposed multi-threading training system does not affect

the training accuracy. Both SimpleX and HEAT’s negative sampler

obey the uniform distribution. We use the metric łrecallž, which is

a widely used indicator to assess the proportion of positive samples

successfully predicted by the CF model to all actually positive sam-

ples. It is calculated as Recall = 𝑇𝑃
𝑇𝑃+𝐹𝑁 , where 𝑇𝑃 and 𝐹𝑁 stand

for true positive and false negative in the confusion matrix, respec-

tively. łNDCGž is short for normalized discounted cumulative gain.

The difference between the Recall@20 of HEAT and the Recall@20

of SimpleX is within 0.01. Therefore, we can conclude that the pro-

posed multi-threading training framework has negligible impact

on training accuracy.

5.5 Impacts of Tiling Sizes and Refresh
Intervals on Performance and Accuracy

Furthermore, we show the effectiveness of our proposed random

tiling strategy and the proposed tuning algorithm for tiling size

and refresh interval. We perform experiments on AmazonBooks

dataset and set the embedding dimension to 128, the number of

negatives to 64, and the number of historical items to 100.

First, we show how the speedup and recall change with different

tiling sizes when the refresh interval is fixed. Figure 10 depicts the

speedup over HEAT with a random negative sampler gradually

decreases with increasing tiling size. In particular, the speedup

exceeds 2×when the tiling size is less than 128 because embeddings

can be fully cached in the L2 cache. Meanwhile, the recall will
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Figure 11: Speedup & recall with different refresh intervals on AmazonBooks.
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Table 5: Comparison of training results under different frameworks and datasets.

Method
AmazonBooks Yelp18 Gowalla

Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

MF-CCL 0.0559 0.0447 0.0698 0.0572 0.1837 0.1493

SimpleX 0.0583 0.0468 0.0701 0.0575 0.1872 0.1557

HEAT-CCL 0.0521 0.0416 0.0651 0.0548 0.1742 0.1413

HEAT-ACCL 0.0541 0.0429 0.0683 0.0561 0.1793 0.1457

Table 6: Tiling size and refresh interval for optimal training accuracy and speedup. łRž and łTž represent random tiling sampler and random sampler, respectively.

Method
AmazonBooks Yelp18 Gowalla

Recall@20 Tile Interval Speedup Recall@20 Tile Interval Speedup Recall@20 Tile Interval Speedup

RCCL 0.0506 N/A N/A N/A 0.0625 N/A N/A N/A 0.1691 0.1495 N/A N/A

RACCL 0.0527 N/A N/A N/A 0.0675 N/A N/A N/A 0.1732 0.1554 N/A N/A

TCCL 0.0498 1024 4096 1.5 0.0608 1024 3072 1.8 0.1663 512 4096 1.7

TACCL 0.0518 1024 3072 1.6 0.0657 1024 4096 1.5 0.1716 1024 4096 1.8

Table 7: Epoch time and recall w/ and w/o local gradient accumulation.

Metrics
AmazonBooks Yelp18 Gowalla

W W/O W W/O W W/O

Epoch 7.17 16.92 5.31 9.45 2.13 4.96

Recall 0.0527 0.0531 0.0675 0.0678 0.1732 0.1741

gradually increase as the tiling size increases because the sampling

space of the negative sampler increases.

Second, we show how the speedup and recall change with differ-

ent refresh intervals when the tiling size is fixed. Figure 11 shows

the speedup over HEAT with a random negative sampler gradually

increases with increasing refresh interval. The reason is that in-

creasing refresh interval raises the probability of data appearing in

the cache, thereby reducing the time to read data. Simultaneously,

the recall will gradually decrease as the refresh interval increases

because the sampling space of the negative sampler decreases. From

these two experiments and the derivation of ğ4.2, we conclude that

we need to adjust tiling size and refresh interval simultaneously to

get the optimal accuracy and performance.

In addition, Table 6 shows the tiling size and refresh interval

corresponding to the optimal training results and speedup obtained

by our Algorithm 1. HEAT with the random tiling sampler delivers

a 1.6× speedup on average over HEAT with the random sampler,

while the recall drop is also negligible (i.e., within 0.003).
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Figure 12: Scalability of HEAT with original random sampler (random) and
our random tiling sampler (tiling).
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Figure 13: Comparison of training epoch time on ARM CPUs.

5.6 Behavior Aggregation Evaluation

To prove the proposed local gradient accumulation benefits the

performance of the behavior aggregation layer, we compare the per-

formance of HEAT with and without local gradient accumulation,

as shown in Table 7. HEAT with our local gradient accumulation

provides a 2.2× speedup on average due to fewer write conflicts.

Moreover, its recall drop is within 0.0009.

5.7 Scalability Evaluation

To demonstrate the scalability of HEAT, we choose the Amazon-

Books dataset and set the embedding dimension to 128 and the

number of negatives to 64. We increase the number of threads/-

cores from 1 to 64 (commonly used in other CF works [42, 47]).

Figure 12 illustrates that the epoch time (in log-scale) decreases

linearly as the number of threads increases (with the parallel effi-

ciency of 63.7%). HEAT can achieve this high scalability because (1)

different threads are responsible independently for the gradient cal-

culation and embedding update in parallel, and (2) there is no need

for communication and synchronization across different threads.

5.8 Discussion of Different CPU Architectures

To explore suitable CPU architectures for CF applications, which

feature highly irregular memory access and low computation in-

tensity, we also evaluate the performance of HEAT on an ARM-

architecture processor, i.e., Fujistu A64FX, since A64FX provides

1024 GB/s bandwidth and 48 compute cores with 512-bit wide SIMD.
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We first compare the overall training performance between Sim-

pleX and HEAT on the ARM CPU. SimpleX is implemented using

ARMPL-optimized PyTorch, while HEAT is compiled by armclang++

and linked to ARMPL. Figure 13 shows the training epoch time

comparison between SimpleX and HEAT on AmazonBooks, Yelp18,

and Gowalla datasets, HEAT with CCL achieves 50.4×, 42.6×, and
44.1× speedup over SimpleX without aggregation layer (degen-

erated to classic matrix factorization), respectively; HEAT with

ACCL provides 41.7×, 37.9×, and 39.9× speedup over SimpleX with

aggregation layer, respectively.

We then show a comparison of tiling speedup on the ARM CPU

and on the AMD CPU in Figure 14. Specifically, our tiling optimiza-

tion only provides up to 1.5 × speedup on the ARM CPU, whereas

it achieves up to 3.1 × speedup on the AMD CPU. This is because

of three reasons: (1) ARM only has two levels of caches (with a

L2 cache of 32 MB), while AMD has three levels of caches (with a

much larger L3 cache of 256 MB); a smaller cache leads to a higher

cache miss rate. (2) Negative sampling following the uniform distri-

bution leads to irregular memory access, which cannot give fully

leverage the high memory bandwidth of HBM2. (3) The ARM CPU

has fewer physical cores (i.e., 48 cores) than the AMD CPU, and the

computation time takes more than 70% of the total time, resulting

in limited optimization space for tiling.

6 RELATED WORK

BPR [37] proposes a generic optimization criterion for personal-

ized ranking via maximizing posterior estimator derived from a

Bayesian analysis of the problem [37]. Its core idea behind is to

find suitable Θ to represent parameters of an arbitrary model via

maximizing posterior estimator 𝑝 (Θ| > 𝑢) ∝ 𝑝 (> 𝑢 |Θ)𝑝 (Θ), where
> 𝑢 represents a user’s preference. BPR concentrates on the most

common scenario with implicit feedback (e.g. clicks, purchases).

However, BPR uses only one negative sample, which causes inferior

results for many CF models [31].

SimpleX [31] investigates the impacts of the loss function, and

negative sampling in CF. It demonstrates the importance of select-

ing an appropriate loss function and a proper number of negative

samples. Inspired by contrastive loss [17] in computer vision, Sim-

pleX proposes a cosine contrastive loss (CCL) tailored for CF. How-

ever, SimpleX implemented its algorithm using PyTorch and did

not consider the computational efficiency on either CPU or GPU.

CuMF_SGD [48] utilizes GPU’s massive threads to update em-

beddings in parallel. CuMF_SGD implemented the basic stochastic

gradient descent (SGD) solution using CUDA for MF problems.

However, it cannot create user-specific item ranking using the

concept of positive/negative items and only supports dot-product

similarity, basic mean squared error loss function and requires a

fixed embedding dimension (i.e., 128) to achieve high performance.

MSGD [30] is an MF approach for large-scale CF based recom-

mender systems on GPUs. To parallelize SGD, MSGD removes

dependencies between user and item pairs. It also splits the MF

optimization objective into many separate sub-objectives. However,

the optimizations of MSGD cannot be applied to multi-core CPUs

because MSGD specially optimizes its parallelization approaches

for coalesced memory access in GPUs. Furthermore, similar to

CuMF_SGD, it does not support sampling multiple negative items,

which is crucial to the final training results. Due to the lack of

source code for MSGD, we compare the performance of HEAT with

SimpleX and CuMF_SGD.

7 CONCLUSION AND FUTUREWORK

In this work, we propose an efficient and affordable collaborative

filtering-based recommendation training system that incorporates

features of the multi-level cache and multi-threading paradigms

of modern CPUs. It has a series of optimizations to address the

performance issues of irregular memory accesses, unnecessary

memory copies, and redundant computations. Evaluation on five

widely used datasets with AMD and ARM CPUs shows that HEAT

achieves up to 45.2× and 4.5× speedups over existing CPU and GPU

solutions, respectively, with 7.9× cost reduction.

In the future, we plan to first extend our work to support dis-

tributed training with rating matrix partitioning and efficient com-

munication. Then, we will apply our random tiling strategy to more

recommendation models such as graph neural network based CF.
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