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Introduction (1)
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u Extremely large amount of data are produced 
by scientific simulations and instruments
Ø HACC (Cosmology Simulation)

² 20 PB data: a single 1-trillion-particle 
simulation

² Mira at ANL: 26 PB file system storage
² 20 PB / 26 PB ~ 80%

Ø CESM/CMIP5 (Climate Simulation)
² 2.5 PB raw data produced
² 170 TB post-processed data

Two partial visualizations of HACC 
simulation data: coarse grain on full 
volume or full resolution on small 
sub-volumes



Introduction (2)
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u APS-U: next-generation APS 
(Advanced Photon Source) 
project at ANL
Ø 15 PB data for storage
Ø 35 TB post-processed floating-

point data
Ø 100 GB/s bandwidth between 

APS and Mira 
Ø 15 PB / 100 GB/s ~ 105 seconds 

(42 hours)
Ø Data compression provides a 

promising way to relieve I/O and 
storage pressure!!



Motivation – Limitations of 
Existing Lossless Compressors
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u Existing lossless compressors work not efficiently on large-scale 
scientific data (compression ratio up to 2)
Table 1: Compression ratios for lossless compressors on large-scale simulations

Compression ratio = Original data size / Compressed data size
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Existing Lossy Compressors
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u Existing state-of-the-art lossy compressors
Ø ISABELA (NCSU)

² Sorting preconditioner
² B-Spline interpolation

Ø ZFP (LLNL)
² Customized orthogonal block transform
² Exponent alignment
² Block-wise bit-stream truncation

Ø SZ-1.1 (ANL)
² Linear and quadratic 1D curve fitting for prediction
² Binary representation analysis for unpredictable data

² Others: non-competitive (as shown in SZ-1.1 paper – IPDPS’16)



Limitations of Existing Lossy
Compressor
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u ISABELA
² Sorting is very time-consuming
² Storing initial index extremely limits compression ratio

u ZFP
² Over-preserves errors in decompressed data with respect to 

user-set error bound
² Might not respect strictly error bounds in some extreme cases 

due to exponent alignment step (see details in the paper)
² Not effective on low dimensional data sets (e.g., 1D and 2D)

u SZ-1.1
² Prediction: only adopts 1D prediction model, i.e., linear / 

quadratic curve fitting
² Quantization: prediction-hitting rate drops quickly when data are 

not smooth or high-accuracy requirement
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SZ-1.4: Significantly Improving 
Error-bounded Lossy Compressor
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u The whole compression procedure
1. Point-wise multidimensional / 

multilayer data prediction
2. Error-bounded quantization 

(linear-scaling quantization)
3. Variable-length encoding 

(customized Huffman encoding)
4. Unpredictable data compression 

(similar to SZ-1.1)
5. Dictionary-based encoding 

(customized LZ77) (optional)



Our Designs – Multidimensional / 
Multilayer Prediction Model (1)
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u Use 2D data set as an example
u Suppose purple star is data point 

to be predicted
u SZ-1.1’s prediction model

Ø Only use 1D information in 
prediction

SZ-1.1



Our Designs – Multidimensional / 
Multilayer Prediction Model (1)
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u Use 2D data set as an example
u Suppose purple star is data point 

to be predicted
u SZ-1.1’s prediction model

Ø Only use 1D information in 
prediction

u SZ-1.4’s prediction model
Ø Multidimensional prediction –

use adjacent data points 
along multiple directions

Ø Multilayer prediction –
use adjacent data points in 
multiple layers (e.g., 2-layer 
includes red + blue points)

SZ-1.4



Our Designs – Multidimensional / 
Multilayer Prediction Model (2)
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u Target: use n-layer prediction
u Point to be predicted: (i0, j0)
u Construct a fitting surface f(x, y)

based (i0, j0) ’s adjacent points

Ø n(2n+1) unknown coefficients
u Straightforward idea to get f(x, y)

Ø Choose n(2n+1) data points 
Ø Assume fitting surface go 

through all n(2n+1) points
Ø Solve unknown coefficients

u Problem: not any n(2n+1) points 
can be on f(x, y) at the same time



Our Designs – Multidimensional / 
Multilayer Prediction Model (3)
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u Theorem
Ø The n(2n+1) points – {(k1,k2) | 0 ≤ k1+k2 ≤ 2n-1, k1, k2 ≥ 0} – can be used 

for solving the n(2n+1) unknown coefficients in f(x, y)
Ø Fitting surface’s value on point (i0, j0), f(i0, j0), can be expressed explicitly 

by the n(2n+1) points’ values

u f(i0, j0) serves as the prediction value for point (i0, j0) , i.e., Equation (10)
Ø Note V(i, j) is the decompressed value of point (i, j)

u Our model can utilize different number of layers (i.e., n) in prediction –
multidimensional / multilayer prediction model

u Default setting in SZ-1.4
Ø Using 1-layer prediction (n = 1)
Ø f(i0, j0) = V(i0, j0-1) + V(i0-1, j0) – V(i0-1, j0-1)
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Our Designs – Multidimensional / 
Multilayer Prediction Model (4)
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u Prediction of each data point is 
same

u Coefficients are computed 
before whole compression

u Computation complexity of 
prediction is O(1) for each point

u Relation with Lorenzo predictor
Ø Equivalent to Lorenzo 

predictor when using 1-layer 
prediction (n = 1)

Ø Our model is the generic 
expression
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SZ-1.1 à SZ-1.4 
(i) Expand quantization intervals from 
predicted value (made by previous 
prediction model) by linear scaling of 
the error bound
(ii) Encode the real value using the 
quantization interval number 
(quantization code)

Quantization with multiple intervals 
(linear scaling) in SZ-1.4

Quantization with one
interval in SZ-1.1
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Our Designs – Adaptive Error-
Controlled Quantization (1)
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u Figure: distribution of quantization codes produced by error-
controlled quantization encoder on climate simulation data (ATM) 
with two different error bounds and 255 quantization intervals (1 byte)

u Distribution: FAIRLY UNEVEN
u We can further reduce the size of quantization codes by using 

variable-length encoding (e.g., Huffman encoding, arithmetic 
encoding)

Our Designs – Adaptive Error-
Controlled Quantization (2)
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u How many quantization intervals?
Ø Excess: wasteful bits for 

quantization code
Ø Insufficient: unable to cover 

irregular/spiky data
Ø Unpredictable data: hard-to-

compress, relatively larger than 
quantization code

u Adaptive # of quantization intervals 
to assure prediction-hitting rate >  θ 
(θ is a threshold)

1. Sampling on initial data
2. Estimate quantization interval # for each 

sampling point
3. Count how many sampling points for fixed 

interval #
4. Sum numbers with increasing interval # until 

ratio of #covered_points / #total_points > θ
5. Take power of 2 for # of quantization intervals

Our Designs – Adaptive Error-
Controlled Quantization (3)
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Measurements and Metrics (1)
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u Point-wise Compression Error
Ø Point-wise error ei = | decompressed data – initial data | for data point i
Ø User-set error bound eb
Ø Error bounded: ei < eb for each point i

u Compression ratio (CR)

Ø CR = Initial data size / compressed data size

u Bit-rate (BR)
Ø Number of amortized bits per value
Ø BR of initial floating-point data = 32 or 64
Ø BR of compressed data = 32 (64) / CR

u Compression / decompression speed
Ø B, MB, GB / Seconds



Measurements and Metrics (2)
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u Distortion
Ø Statistical error between initial and decompressed data
Ø Commonly used metrics (based on L2 norm)

v Root mean squared error (RMSE)
v Normalized root mean squared error (NRMSE)
v Peak signal-to-noise ratio (PSNR)

Ø PSNR = - 20*log10(NRMSE)

u Rate-distortion
Ø For a fair comparison across fixed-rate (e.g., ZFP) and fixed-accuracy 

compressors (e.g., SZ-1.1/SZ-1.4)
Ø Quality (distortion) per bit of compressed storage
Ø e.g., PSNR / BR (dB/bit)

u Autocorrelation of Compression Errors



Outline

27

u Introduction

Ø Large amount of scientific data

Ø Limitations of lossless compression

u Existing lossy compressors and limitations

u Our Designs

Ø Multidimensional / Multilayer Prediction Model

Ø Adaptive Error-Controlled Quantization

u Metrics and Measurements

u Empirical Evaluation

Ø Compression performance & Parallel evaluation

u Conclusion



Empirical Evaluation
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u Experimental platforms
Ø Serial: iMac with 2.3 GHz Intel Core i7 + 32 GB DDR3 Memory
Ø Parallel: Blues cluster at ANL – each node with 2 Intel Xeon E5-

2670 processors + 64 GB DDR3 Memory
u Experimental data (single-floating point)

Ø ATM: 2D data sets from climate/atmosphere simulations
Ø APS: 2D data sets from X-ray scientific research
Ø Hurricane: 3D data sets from hurricane Isabel simulation



Empirical Evaluation –
Compression Ratio (1)
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u Value-range-based (VRB) relative error
bound = absolute error bound / data
value range

u E.g., VRB relative error bound = 1E-4

ATM APS

Hurricane

1.9x ~ ZFP
2.2x ~ SZ-1.1



Empirical Evaluation –
Compression Ratio (2)
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ATM

Hurricane
VRB relative eb around 1E-4
Ø 2.6x of ZFP on ATM
Ø 1.7x of ZFP on Hurricane



Empirical Evaluation – Rate-
Distortion

31

u ZFP: Best mode “fixed-accuracy“ 
u e.g., bit-rate = 8 bits/value (CR = 4)

Ø 14 dB higher than ZFP on ATM
Ø 9 dB higher than ZFP on APS
Ø 11 dB higher than ZFP on Hurricane

u NRMSE: 25% ~ ZFP on average

ATM APS

Hurricane

25% ~ ZFP
(NRMSE)



Empirical Evaluation –
Comp/Decomp Speed
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Empirical Evaluation –
Autocorrelation of Errors
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FREQSH 

SNOWHLND 



Empirical Evaluation – Parallel 
Compression (1)
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u Parallel compression
Ø In-situ: embedded in a parallel 

application
Ø Off-line: MPI load data into 

multiple processes, run 
compression separately

u Experimental configurations
Ø 2.6 TB ATM data sets with 11400 

files
Ø Blues cluster at ANL
Ø Up to 1024 cores (64 nodes)

u 1 ~ 128 processes: parallel efficiency 
stay 100% - linear speedup

u > 128 processes (> 2 processes/node): 
parallel efficiency is decreased to 90% 

u This performance degradation is due to 
node internal limitations



Empirical Evaluation – Parallel 
Compression (2)
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Number of Processes / Nodes > 32:
Time (writing compressed data + compression) < Time (writing initial data)

Time (reading compressed data + decompression) < Time (reading inital data)
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Conclusions
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u We derive a generic model for the multidimensional prediction to 
further use data’s multidimensional information

u We propose an adaptive error-controlled quantization to deal with 
irregular and spiky data

u Our designs improve prediction-hitting rate significantly
u Compression ratio, rate-distortion better than second-best solution
u Save large amount of I/O time in parallel
u Furture work

Ø Optimize SZ code to accelerate speed, especailly on high 
dimensional datasets

Ø Develope SZ compressor for different architectures
Ø Further reduce autocorrelation of compression errors
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Thank you !

Welcome to use our SZ lossy compressor! 
https://github.com/disheng222/SZ

Any questions are welcome!

Contact:
Dingwen Tao (dtao001@cs.ucr.edu)
Sheng Di (sdi1@anl.gov)
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