

SZ-1.4: Significantly Improving Lossy Compression for Scientific Data Sets Based on Multidimensional Prediction and Error-Controlled Quantization

Dingwen Tao (University of California, Riverside)

Sheng Di (Argonne National Laboratory)
Zizhong Chen (University of California, Riverside)
Franck Cappello (Argonne National Laboratory & UIUC)

Introduction (1)

- Extremely large amount of data are produced by scientific simulations and instruments
 - HACC (Cosmology Simulation)
 - 20 PB data: a single 1-trillion-particle simulation
 - Mira at ANL: 26 PB file system storage
 - ♦ 20 PB / 26 PB ~ 80%
 - CESM/CMIP5 (Climate Simulation)
 - 2.5 PB raw data produced
 - 170 TB post-processed data

Two partial visualizations of HACC simulation data: coarse grain on full volume or full resolution on small sub-volumes

Introduction (2)

- APS-U: next-generation APS (Advanced Photon Source) project at ANL
 - 15 PB data for storage
 - 35 TB post-processed floatingpoint data
 - 100 GB/s bandwidth between APS and Mira
 - 15 PB / 100 GB/s ~ 10⁵ seconds (42 hours)
- Data compression provides a promising way to relieve I/O and storage pressure!!

Motivation – Limitations of Existing Lossless Compressors

 Existing lossless compressors work not efficiently on large-scale scientific data (compression ratio up to 2)

Table 1: Compression ratios for lossless compressors on large-scale simulations

	bzip2	dfcm	fsd	gzip	Izpx	p7zip	rar	zzip
aztec	1.15	1.69	1.42	1.22	1.15	1.39	1.26	1.15
bt	1.10	1.36	1.02	1.13	1.10	1.32	1.15	1.10
eulag	1.04	1.23	1.06	1.06	1.05	1.15	1.07	1.09
lu	1.02	1.23	0.99	1.05	1.03	1.22	1.07	1.03
sp	1.08	1.25	0.95	1.11	1.07	1.31	1.14	1.07
sppm	6.78	4.16	2.14	6.31	7.94	8.31	7.68	
sweep3d	1.06	1.49	1.20	1.09	1.19	1.26	1.30	1.35
geo_mean	1.40	1.60	1.20	1.42	1.46	1.66	1.52	1.13

Compression ratio = Original data size / Compressed data size

- Introduction
 - Large amount of scientific data
 - Limitations of lossless compression
- Existing lossy compressors and limitations

- Introduction
 - Large amount of scientific data
 - Limitations of lossless compression
- Existing lossy compressors and limitations
- Our Designs
 - Multidimensional / Multilayer Prediction Model
 - Adaptive Error-Controlled Quantization

- Introduction
 - Large amount of scientific data
 - Limitations of lossless compression
- Existing lossy compressors and limitations
- Our Designs
 - Multidimensional / Multilayer Prediction Model
 - Adaptive Error-Controlled Quantization
- Metrics and Measurements

- Introduction
 - Large amount of scientific data
 - Limitations of lossless compression
- Existing lossy compressors and limitations
- Our Designs
 - Multidimensional / Multilayer Prediction Model
 - Adaptive Error-Controlled Quantization
- Metrics and Measurements
- Empirical Evaluation
 - Compression performance & Parallel evaluation
- Conclusion

- Introduction
 - Large amount of scientific data
 - Limitations of lossless compression
- Existing lossy compressors and limitations
- Our Designs
 - Multidimensional / Multilayer Prediction Model
 - Adaptive Error-Controlled Quantization
- Metrics and Measurements
- Empirical Evaluation
 - > Compression performance & Parallel evaluation
- Conclusion

Existing Lossy Compressors

- Existing state-of-the-art lossy compressors
 - ISABELA (NCSU)
 - Sorting preconditioner
 - B-Spline interpolation
 - > **ZFP** (LLNL)
 - Customized orthogonal block transform
 - Exponent alignment
 - Block-wise bit-stream truncation
 - > **SZ-1.1** (ANL)
 - Linear and quadratic 1D curve fitting for prediction
 - Binary representation analysis for unpredictable data
 - ♦ Others: non-competitive (as shown in SZ-1.1 paper IPDPS'16)

Limitations of Existing Lossy Compressor

ISABELA

- Sorting is very time-consuming
- Storing initial index extremely limits compression ratio

♦ ZFP

- Over-preserves errors in decompressed data with respect to user-set error bound
- Might not respect strictly error bounds in some extreme cases due to exponent alignment step (see details in the paper)
- Not effective on low dimensional data sets (e.g., 1D and 2D)

SZ-1.1

- Prediction: only adopts 1D prediction model, i.e., linear / quadratic curve fitting
- Quantization: prediction-hitting rate drops quickly when data are not smooth or high-accuracy requirement

- Introduction
 - Large amount of scientific data
 - Limitations of lossless compression
- Existing lossy compressors and limitations
- Our Designs
 - Multidimensional / Multilayer Prediction Model
 - Adaptive Error-Controlled Quantization
- Metrics and Measurements
- Empirical Evaluation
 - Compression performance & Parallel evaluation
- Conclusion

SZ-1.4: Significantly Improving Error-bounded Lossy Compressor

- The whole compression procedure
 - Point-wise multidimensional / multilayer data prediction
 - 2. Error-bounded quantization (linear-scaling quantization)
 - Variable-length encoding (customized Huffman encoding)
 - Unpredictable data compression (similar to SZ-1.1)
 - 5. Dictionary-based encoding (customized LZ77) (optional)

Algorithm 1 Proposed Lossy Compression Algorithm Using Multi-layer Prediction and AEQVE Model

Input: d-dimensional array data set X of the size $n^{(1)} \times n^{(2)} \times \cdots \times n^{(d)}$, error bound mode (absolute and/or value-range-based relative error bound), user-set error bound eb_{abs}/eb_{rel} .

Output: Compressed byte data C_{quan} , D_{unpred}

```
1: Set eb = eb_{abs}, or eb_{rel} \cdot R_X, or min\{eb_{abs}, eb_{rel} \cdot R_X\}
 2: Set \theta and m
 3: Compute (n+1)^d-1 coefficients of n-layer prediction
                                                                         0(1)
 4: for i^{(d)} = 1 \cdots n^{(d)} do
       for i^{(d-1)} = 1 \cdots n^{(d-1)} do
         for i^{(1)} = 1 \cdots n^{(1)} do
7:
            /* Process data point X_{i(1)...i(d)} */
 8:
            Compute predicted value V_{nred} using n-layer
9:
                                                                         0(1)
            prediction model for X_{i^{(1)}...i^{(d)}}
            Compute Diff = V_{pred} - V_{i^{(1)}...i^{(d)}}, where
10:
                                                                         0(1)
            V_{i(1)...i(d)} is the original value of X_{i(1)...i(d)}
            Encode X_{i^{(1)}...i^{(d)}} using 2^m quantization codes
11:
                                                                         0(1)
            and store the quantization code to C_{quan}
            if (|Diff|/eb > 2^m - 1) then
12:
13:
               /* Process unpredictable data */
14:
               Compress
                               V_{i^{(1)}\dots i^{(d)}}
                                                          binary-
                                               using
                                                                         0(1)
               representation analysis and store to D_{unpred}
15:
            Compute and record decompressed value of
16:
                                                                         0(1)
            X_{i^{(1)}\dots i^{(d)}}
17:
         end for
18:
       end for
19:
20: end for
21: Compress C_{quan} using variable-length encoding
                                                                         O(N)
22: Count number of predictable data points and compute
                                                                         O(N)
    prediction hitting rate R_{PH}
23: if (R_{PH} < \theta) then
    Give the user a suggestion: increasing # of quantiza-
       tion intervals
25: end if
```

Our Designs – Multidimensional / Multilayer Prediction Model (1)

- Use 2D data set as an example
- Suppose purple star is data point to be predicted
- ◆ SZ-1.1's prediction model
 - Only use 1D information in prediction

Our Designs – Multidimensional / Multilayer Prediction Model (1)

- Use 2D data set as an example
- Suppose purple star is data point to be predicted
- **SZ-1.1**'s prediction model
 - Only use 1D information in prediction
- ◆ SZ-1.4's prediction model
 - Multidimensional prediction use adjacent data points along multiple directions
 - Multilayer prediction use adjacent data points in multiple layers (e.g., 2-layer includes red + blue points)

Our Designs – Multidimensional / Multilayer Prediction Model (2)

- ◆ Target: use *n*-layer prediction
- Point to be predicted: (i₀, j₀)
- Construct a fitting surface f(x, y)
 based (i₀, j₀) 's adjacent points

$$f(x,y) = \sum_{0 \le i+j \le 2n-1}^{i,j \ge 0} a_{i,j} x^i y^j$$

- > n(2n+1) unknown coefficients
- Straightforward idea to get f(x, y)
 - Choose n(2n+1) data points
 - Assume fitting surface go through all n(2n+1) points
 - Solve unknown coefficients
- Problem: not any n(2n+1) points
 can be on f(x, y) at the same time

Our Designs – Multidimensional / Multilayer Prediction Model (3)

♦ Theorem

- The n(2n+1) points $\{(k_1,k_2) \mid 0 \le k_1+k_2 \le 2n-1, k_1, k_2 \ge 0\}$ can be used for solving the n(2n+1) unknown coefficients in f(x, y)
- Fitting surface's value on point (i_0, j_0) , $f(i_0, j_0)$, can be expressed explicitly by the n(2n+1) points' values

$$f(i_0, j_0) = \sum_{0 \le k_1, k_2 \le n}^{(k_1, k_2) \ne (0, 0)} (-1)^{k_1 + k_2 + 1} \binom{n}{k_1} \binom{n}{k_2} V(i_0 - k_1, j_0 - k_2)$$
(10)

- $f(i_0, j_0)$ serves as the prediction value for point (i_0, j_0) , i.e., Equation (10)
 - Note V(i, j) is the decompressed value of point (i, j)
- Our model can utilize different number of layers (i.e., n) in prediction –
 multidimensional / multilayer prediction model
- Default setting in SZ-1.4
 - Using 1-layer prediction (n = 1)
 - $f(i_0, j_0) = V(i_0, j_0-1) + V(i_0-1, j_0) V(i_0-1, j_0-1)$

Our Designs – Multidimensional / Multilayer Prediction Model (3)

Theorem

- ► The n(2n+1) points $-\{(k_1,k_2) \mid 0 \le k_1+k_2 \le 2n-1, k_1, k_2 \ge 0\}$ can be used for solving the n(2n+1) unknown coefficients in f(x, y)
- Fitting surface's value on point (i_0, j_0) , $f(i_0, j_0)$, can be expressed explicitly by the n(2n+1) points' values

$$f(i_0, j_0) = \sum_{0 \le k_1, k_2 \le n}^{(k_1, k_2) \ne (0, 0)} (-1)^{k_1 + k_2 + 1} \binom{n}{k_1} \binom{n}{k_2} V(i_0 - k_1, j_0 - k_2)$$
(10)

- $f(i_0, j_0)$ serves as the prediction value for point (i_0, j_0) , i.e., Equation (10)
 - Note V(i, j) is the decompressed value of point (i, j)
- Our model can utilize different number of layers (i.e., n) in prediction –
 multidimensional / multilayer prediction model
- Default setting in SZ-1.4
 - Using 1-layer prediction (n = 1)
 - $f(i_0, j_0) = V(i_0, j_0-1) + V(i_0-1, j_0) V(i_0-1, j_0-1)$

Our Designs – Multidimensional / Multilayer Prediction Model (4)

- Prediction of each data point is same
- Coefficients are computed before whole compression
- Computation complexity of prediction is O(1) for each point
- Relation with Lorenzo predictor
 - Equivalent to Lorenzo
 predictor when using 1-layer
 prediction (n = 1)
 - Our model is the generic expression

Table I
FORMULAS OF 1, 2, 3, 4-LAYER PREDICTION FOR TWO-DIMENSIONAL DATA SETS

	Prediction Formula
1-Layer	$f(i_0,j_0) = V(i_0,j_0-1) + V(i_0-1,j_0) - V(i_0-1,j_0-1)$
	$f(i_0,j_0)=2V(i_0-1,j_0)+2V(i_0,j_0-1)$
2-Layer	$-4V(i_0-1,j_0-1)-V(i_0-2,j_0)-V(i_0,j_0-2)$
	$+2V(i_0-2,j_0-1)+2V(i_0-1,j_0-2)-V(i_0-2,j_0-2)$
	$f(i_0, j_0) = 3V(i_0 - 1, j_0) + 3V(i_0, j_0 - 1)$
	$-9V(i_0-1,j_0-1)-3V(i_0-2,j_0)-3V(i_0,j_0-2)$
3-Layer	$+9V(i_0-2,j_0-1)+9V(i_0-1,j_0-2)-9V(i_0-2,j_0-2)$
3-Layer	$+V(i_0-3,j_0)+V(i_0,j_0-3)$
	$-3V(i_0-3,j_0-1)-3V(i_0-1,j_0-3)$
	$+3V(i_0-3,j_0-2)+3V(i_0-2,j_0-3)-V(i_0-3,j_0-3)$
	$f(i_0,j_0) = 4V(i_0-1,j_0) + 4V(i_0,j_0-1)$
	$-16V(i_0-1,j_0-1)-6V(i_0-2,j_0)-6V(i_0,j_0-2)$
	$+24V(i_0-2,j_0-1)+24V(i_0-1,j_0-2)$
	$-36V(i_0-2,j_0-2)+4V(i_0-3,j_0)+4V(i_0,j_0-3)$
4-Layer	$-16V(i_0-3,j_0-1)-16V(i_0-1,j_0-3)+24V(i_0-3,j_0-2)$
	$+24V(i_0-2,j_0-3)-16V(i_0-3,j_0-3)$
	$-V(i_0-4,j_0)-V(i_0,j_0-4)+4V(i_0-4,j_0-1)$
	$+4V(i_0-1,j_0-4)-6V(i_0-4,j_0-2)-6V(i_0-2,j_0-4)$
	$+4V(i_0-4,j_0-3)+4V(i_0-3,j_0-4)-V(i_0-4,j_0-4)$

- Introduction
 - Large amount of scientific data
 - Limitations of lossless compression
- Existing lossy compressors and limitations
- Our Designs
 - Multidimensional / Multilayer Prediction Model
 - Adaptive Error-Controlled Quantization
- Metrics and Measurements
- Empirical Evaluation
 - Compression performance & Parallel evaluation
- Conclusion

Our Designs – Adaptive Error-Controlled Quantization (1)

SZ-1.1 → SZ-1.4

- (i) Expand quantization intervals from predicted value (made by previous prediction model) by *linear scaling of the error bound*
- (ii) Encode the real value using the quantization interval number (quantization code)

Quantization with **one** interval in SZ-1.1

Quantization with multiple intervals (linear scaling) in SZ-1.4

Our Designs – Adaptive Error-Controlled Quantization (2)

- Figure: distribution of quantization codes produced by errorcontrolled quantization encoder on climate simulation data (ATM) with two different error bounds and 255 quantization intervals (1 byte)
- Distribution: FAIRLY UNEVEN
- We can further reduce the size of quantization codes by using variable-length encoding (e.g., Huffman encoding, arithmetic encoding)

Our Designs – Adaptive Error-Controlled Quantization (3)

- How many quantization intervals?
 - Excess: wasteful bits for quantization code
 - Insufficient: unable to cover irregular/spiky data
 - Unpredictable data: hard-tocompress, relatively larger than quantization code
- Adaptive # of quantization intervals to assure prediction-hitting rate > θ (θ is a threshold)
- 1. Sampling on initial data
- Estimate quantization interval # for each sampling point
- Count how many sampling points for fixed interval #
- Sum numbers with increasing interval # until ratio of #covered_points / #total_points > θ
- 5. Take power of 2 for # of quantization intervals

- Introduction
 - Large amount of scientific data
 - Limitations of lossless compression
- Existing lossy compressors and limitations
- Our Designs
 - Multidimensional / Multilayer Prediction Model
 - Adaptive Error-Controlled Quantization
- Metrics and Measurements
- Empirical Evaluation
 - Compression performance & Parallel evaluation
- Conclusion

Measurements and Metrics (1)

Point-wise Compression Error

- \triangleright Point-wise error e_i = | decompressed data initial data | for data point i
- User-set error bound eb
- Error bounded: e_i < eb for each point i</p>

Compression ratio (CR)

CR = Initial data size / compressed data size

Bit-rate (BR)

- Number of amortized bits per value
- BR of initial floating-point data = 32 or 64
- BR of compressed data = 32 (64) / CR

Compression / decompression speed

B, MB, GB / Seconds

Measurements and Metrics (2)

Distortion

- Statistical error between initial and decompressed data
- Commonly used metrics (based on L₂ norm)
 - Root mean squared error (RMSE)
 - Normalized root mean squared error (NRMSE)
 - Peak signal-to-noise ratio (PSNR)
- \triangleright PSNR = 20*log₁₀(NRMSE)

Rate-distortion

- For a fair comparison across fixed-rate (e.g., ZFP) and fixed-accuracy compressors (e.g., SZ-1.1/SZ-1.4)
- Quality (distortion) per bit of compressed storage
- e.g., PSNR / BR (dB/bit)

Autocorrelation of Compression Errors

- Introduction
 - Large amount of scientific data
 - Limitations of lossless compression
- Existing lossy compressors and limitations
- Our Designs
 - Multidimensional / Multilayer Prediction Model
 - Adaptive Error-Controlled Quantization
- Metrics and Measurements
- Empirical Evaluation
 - Compression performance & Parallel evaluation
- Conclusion

Empirical Evaluation

- Experimental platforms
 - Serial: iMac with 2.3 GHz Intel Core i7 + 32 GB DDR3 Memory
 - Parallel: Blues cluster at ANL each node with 2 Intel Xeon E5-2670 processors + 64 GB DDR3 Memory
- Experimental data (single-floating point)
 - ATM: 2D data sets from climate/atmosphere simulations
 - APS: 2D data sets from X-ray scientific research
 - Hurricane: 3D data sets from hurricane Isabel simulation.

Table III
DESCRIPTION OF DATA SETS USED IN EMPIRICAL PERFORMANCE
EVALUATION

	Data Source	Dimension Size	Data Size	File Number
ATM	Climate simulation	1800×3600	2.6 TB	11400
APS	X-ray instrument	2560×2560	40 GB	1518
Hurricane	Hurricane simulation	$100 \times 500 \times 500$	1.2 GB	624

Empirical Evaluation – Compression Ratio (1)

(c)

- Value-range-based (VRB) relative error bound = absolute error bound / data value range
- E.g., VRB relative error bound = 1E-4

Empirical Evaluation – Compression Ratio (2)

Table V
MAXIMUM COMPRESSION ERRORS (NORMALIZED TO VALUE RANGE)
USING SZ-1.4 AND ZFP WITH DIFFERENT USER-SET
VALUE-RANGE-BASED ERROR BOUNDS

User-set eb_{rel}	AT	°M	Hurricane		
	SZ-1.4	ZFP	SZ-1.4	ZFP	
10^{-2}	1.0×10^{-2}	3.3×10^{-3}	1.0×10^{-2}	2.4×10^{-3}	
10^{-3}	1.0×10^{-3}	4.3×10^{-4}	1.0×10^{-3}	1.8×10^{-4}	
10^{-4}	1.0×10^{-4}	2.6×10^{-5}	1.0×10^{-4}	2.5×10^{-5}	
10^{-5}	1.0×10^{-5}	3.4×10^{-6}	1.0×10^{-5}	2.6×10^{-6}	
10^{-6}	1.0×10^{-6}	4.1×10^{-7}	1.0×10^{-6}	2.9×10^{-7}	

VRB relative *eb* around 1E-4

- 2.6x of ZFP on ATM
- > 1.7x of ZFP on Hurricane

Empirical Evaluation – Comp/Decomp Speed

Empirical Evaluation – Autocorrelation of Errors

Empirical Evaluation – Parallel Compression (1)

Table VII

STRONG SCALABILITY OF PARALLEL COMPRESSION USING SZ-1.4 WITH DIFFERENT NUMBER OF PROCESSES ON BLUES

Number of Processes	Number of Nodes	Comp Speed (GB/s)	Speedup	Parallel Efficiency
1	1	0.09	1.00	100.0%
2	2	0.18	2.00	99.8%
4	4	0.35	3.99	99.9%
8	8	0.70	7.99	99.8%
16	16	1.40	15.98	99.9%
32	32	2.79	31.91	99.7%
64	64	5.60	63.97	99.9%
128	64	11.2	127.6	99.7%
256	64	21.5	245.8	96.0%
512	64	40.5	463.0	90.4%
1024	64	81.3	930.7	90.9%

Table VIII STRONG SCALABILITY OF PARALLEL DECOMPRESSION USING SZ-1.4 WITH DIFFERENT NUMBER OF PROCESSES ON BLUES

Number of Processes	Number of Nodes	Decomp Speed (GB/s)	Speedup	Parallel Efficiency
1	1	0.20	1.00	100.0%
2	2	0.40	1.99	99.6%
4	4	0.80	4.00	99.9%
8	8	1.60	7.94	99.2%
16	16	3.20	16.00	99.9%
32	32	6.40	31.91	99.7%
64	64	12.8	64.00	99.9%
128	64	25.6	127.7	99.7%
256	64	49.0	244.5	95.5%
512	64	92.5	461.4	90.1%
1024	64	187.0	932.7	91.1%

- Parallel compression
 - In-situ: embedded in a parallel application
 - Off-line: MPI load data into multiple processes, run compression separately
- Experimental configurations
 - 2.6 TB ATM data sets with 11400 files
 - Blues cluster at ANL
 - Up to 1024 cores (64 nodes)
- ◆ 1 ~ 128 processes: parallel efficiency stay 100% - linear speedup
- → > 128 processes (> 2 processes/node): parallel efficiency is decreased to 90%
- This performance degradation is due to node internal limitations

Empirical Evaluation – Parallel Compression (2)

Number of Processes / Nodes > 32:

Time (writing compressed data + compression) < Time (writing initial data)

Time (reading compressed data + decompression) < Time (reading initial data)

- Introduction
 - Large amount of scientific data
 - Limitations of lossless compression
- Existing lossy compressors and limitations
- Our Designs
 - Multidimensional / Multilayer Prediction Model
 - Adaptive Error-Controlled Quantization
- Metrics and Measurements
- Empirical Evaluation
 - Compression performance & Parallel evaluation
- Conclusion

Conclusions

- We derive a generic model for the multidimensional prediction to further use data's multidimensional information
- We propose an adaptive error-controlled quantization to deal with irregular and spiky data
- Our designs improve prediction-hitting rate significantly
- Compression ratio, rate-distortion better than second-best solution
- Save large amount of I/O time in parallel
- Furture work
 - Optimize SZ code to accelerate speed, especailly on high dimensional datasets
 - Develope SZ compressor for different architectures
 - Further reduce autocorrelation of compression errors

Thank you!

Welcome to use our SZ lossy compressor!

https://github.com/disheng222/SZ

Any questions are welcome!

Contact:

Dingwen Tao (dtao001@cs.ucr.edu)

Sheng Di (sdi1@anl.gov)

Acknowledgement: DOE EZ Project