Understanding GPU-Based Lossy Compression for Extreme-Scale Cosmological Simulations

Sian Jin (The University of Alabama)
Pascal Grosset (Los Alamos National Laboratory)
Christopher M. Biwer (Los Alamos National Laboratory)
Jesus Pulido (Los Alamos National Laboratory)
Jiannan Tian (The University of Alabama)
Dingwen Tao (The University of Alabama)
James Ahrens (Los Alamos National Laboratory)
Introduction

Understanding GPU-Based Lossy Compression for Extreme-Scale Cosmological Simulations

Why Compress/Lossy Compression?
- Huge amount of data from cosmological simulations.
 - Write speed.
 - Data storage.
- Much higher compression ratio compared to lossless compression.

Why Evaluate On Cosmological Simulations?
- Traditional distortion analysis are not sufficient.
- No prior work studying GPU-based lossy compression for large-scale cosmological simulations.

Why GPU?
- DoE supercomputers are moving towards GPU based architecture.
- Higher (de)compression throughput.
- Data is generated on GPU.
Introduction

Understanding GPU-Based Lossy Compression for Extreme-Scale Cosmological Simulations

What We Did

- Implement GPU-based lossy compressors into Foresight, our open-source compression benchmark and analysis framework.
- Comprehensively evaluate the practicality of using GPU-based lossy compressors with various compression configurations on two well-known cosmological simulation datasets.
- A general optimization guideline for domain scientists on how to determine the best-fit compression configurations for different GPU-based lossy compressors and cosmological simulations.

Visualization of Nyx dataset compressed with lossy compressor with different configurations

Foresight is available at: https://github.com/lanl/VizAly-Foresight
Background

Cosmological Simulation: HPC code to simulate cosmological evolution of the universe in extreme time and particle scale.

Lossy Compression: Compress data with little information loss in the reconstructed data.

<table>
<thead>
<tr>
<th>HACC</th>
<th>Nyx</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Simulates the mass evolution of the universe for all available supercomputer architecture.</td>
<td>- Model astrophysical reacting flow on HPC systems.</td>
</tr>
<tr>
<td>- Particle simulations, contains 1-D datasets.</td>
<td>- Field simulations, contains 3-D datasets.</td>
</tr>
</tbody>
</table>

Compression Modes

- Absolute Error bound (ABS).
- Power Relative Error Bound (PW_REL).
- Fixed rate.

SZ

- Prediction Based.
- Suitable for ABS, PW_REL, etc.

ZFP

- Block transfer based.
- Suitable for Fixed rate.
Foresight Design Understanding GPU-Based Lossy Compression for Extreme-Scale Cosmological Simulations

CBench
- A compressor benchmarking tool designed for scientific simulations.

PAT
- Python Analysis Toolkit, lightweight workflow submission Python package that contains a number of utilities for scheduling SLURM jobs.

Visualization
- Takes metrics from CBench and analysis by PAT to generate parallel coordinate plots using the Cinema Framework.

↑ Three components of foresight framework.

↓ A visualization that demonstrate the result from CBench
Evaluation Methodology Understanding GPU-Based Lossy Compression for Extreme-Scale Cosmological Simulations

Lossy Compressors
- SZ lossy compressor, GPU prototype.
- ZFP lossy compressor, GPU CUDA implementation.

Evaluation Datasets
- HACC dataset, particles generated with model M001 to cover a \((0.36 \text{ Gpc})^3\) volume and redshift value sets to be 0.
- Nyx dataset, single-level grid structure without adaptive mesh refinement (AMR).

Implementation Technique
- Dimension conversion for data dimension that is not yet supported with corresponding compressor.
- Logarithmic transformation for PW_REL compression mode.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Dimension</th>
<th>Size</th>
<th>Field</th>
<th>Value Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>HACC</td>
<td>1,073,726,359</td>
<td>38 GB</td>
<td>Position ((x, y, z))</td>
<td>((0, 256))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Velocity ((v_x, v_y, v_z))</td>
<td>((-10^4, 10^5))</td>
</tr>
<tr>
<td>Nyx</td>
<td>512x512x512</td>
<td>6.6 GB</td>
<td>Baryon Density</td>
<td>((0, 10^5))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dark Matter Density</td>
<td>((0, 10^4))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Temperature</td>
<td>((10^3, 10^7))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Velocity</td>
<td>((-10^6, 10^8))</td>
</tr>
</tbody>
</table>

HACC and Nyx dataset details used in the experiments
Evaluation Results

Understanding GPU-Based Lossy Compression for Extreme-Scale Cosmological Simulations

Rate-Distortion
- SZ provides lower rate-distortion than ZFP
- ABS mode has better performance than Fixed-rate mode on Nyx and HACC

Power Spectrum
- Maintain the pk ratio within ±1%.
- Overall compression ratio with cuZFP at 10.7x and GPU-SZ at 15.4x.

Halo Finder Analysis
- Similar results from original and reconstructed dataset.
- Overall compression ratio with cuZFP at 4.0x and GPU-SZ at 4.3x.

GPU-SZ provides a higher compression ratio than cuZFP
Throughput Evaluation
- High throughput with GPU-based lossy compressors.
- Overall transfer time still much lower than baseline.
- Kernel throughput increased by using a GPU with more shaders, higher pick performance and higher memory bandwidths.

cuZFP provide higher throughput than GPU-SZ
Guidelines

- Use our Foresight framework to benchmark different GPU-based lossy compressors with various configurations targeting cosmological simulation datasets.
- Identify a set of configurations to produce acceptable reconstructed data using power spectrum and halo finder analysis.
- Choose the optimal configuration with the highest compression ratio as the best-fit setting.
Conclusion & Future Work

Understanding Impact of Lossy Compression On Exa-Scale HPC Applications And Developing In Situ Capability

Conclusion
- Implemented GPU-based lossy compressors into our open-source compression benchmark and analysis tool Foresight.
- Conduct a thorough empirical evaluation for two leading GPU-based error-bounded lossy compressors on the real-world extreme-scale cosmological simulation datasets HACC and Nyx.
- Evaluated a different compression configurations and their affection on general compression quality and post-analysis quality.
- Provided general optimization guidelines for cosmology scientists on how to determine the best-fit configurations for different GPU-based lossy compressors and extreme-scale cosmological simulations.

If you have further questions, fell free to contact Dingwen Tao: dingwen.tao@ieee.org