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Introduction Design Evaluation Conclusion

Trend of Supercomputing Systems

The capability of compute is developed faster while those of storage and bandwidth are developed relatively

slowlyslowlyslowlyslowlyslowlyslowlyslowlyslowlyslowlyslowlyslowlyslowlyslowlyslowlyslowlyslowlyslowly. There is widening gap between compute unit and storage bandwidth (PF–SB) or main memory size and

storage bandwidth (MS–SB).

supercomputer year class PF MS SB MS/SB PF/SB

Cray Jaguar 2008 1 pflops 1.75 pflops 360 tb 240 gb/s 1.5k 7.3k

Cray Blue Waters 2012 10 pflops 13.3 pflops 1.5 pb 1.1 tb/s 1.3k 13k

Cray CORI 2017 10 pflops 30 pflops 1.4 pb 1.7 tb/s
•

0.8k 17k

IBM Summit 2018 100 pflops 200 pflops >10 pb
••

2.5 tb/s >4k 80k

PF: peak FLOPS MS: memory size SB: storage bandwidth

•
when using burst bu�er

••
counting only DDR4 Source: F. Cappello (ANL)

Table 1: Three classes of supercomputers showing their performance, MS and SB.
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supercomputer year class PF MS SB MS/SB PF/SB

Fujitsu Fugaku 2020 "ExaScale" 537 pflops
•

4.85 pb ≥1.5 tb/s•• ≥3.2k 358k

Intel Aurora future ExaScale ≥1 eflops >10 pb ≥25 tb/s ≥0.4k 40k

•
Rpeak, TOP 500 for November 2020

••
DDN Newsroom

Table 1: More classes of supercomputers showing their performance, MS and SB.
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Design Compressor for HPC (1/2)

Today’s scientific research is data-driven at a large scale (simulations or instruments). Compression matters

when I/O, communiation, memory capacity are performance limiter.

“. . . the rate of data that can be computed on the Summit supercomputer is five orders of magnitude greater

than the bandwidth of its parallel file system. The I/O bottleneck is one driver of in situ analysis. ”

—ASCR Workshop on In Situ Data Management

“Novel technologies and emerging architectures provide new opportunities to address these data reduction

requirements and also lead to new research challenges. . . new research is needed in data reduction algorithms

and so�ware stacks that can leverage their unique capabilities.”

—Data Reduction for Science: Brochure from the Advanced Scientific Computing Research Workshop
(Technical Report)
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Design Compressor for HPC (2/2)

scope of use

general-special

tradeo�

reduction

compressibility

throughput

processing capability

Under the context of huge imbalance between compute

capability and data management,

scope of use A compressor can be general-purpose or

data-dependent, generic or contextual.

Strategy: extending the current compressors.

reduction With context, i.e. knowing data feature, it is

possible to achieve higher compressibility. In our

case, Hu�man coding does not exploit repeated

pattern.

throughput In situ processing requires, for example,

1. time of compression + storeDRAM→disk

< time of direct storeDRAM→disk

2. time of loaddisk→DRAM + decompression

< time of direct loaddisk→DRAM
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Lossless::Huffman::GPU & Multibyte Symbols

I workflow:

histogram→ codebook construction→ encoding

CPU omp-CPU GPU

histogram
√ √√

codebook
√

encoding
√ √√

I extended general-purpose compressor

I Pattern-finding such as LZW is non-trivial on GPU.

I Hu�man-coding-only as a solution

I modified to enumerate all symbols

I rationale of multibyte symbols

I Rather than combining multiple (256-symbol)

singlebytes to exhaust virtually all data types, we

enumerate all symbols.

I Number of symbols is greater than 256 but far less

than big number such as INT_MAX
I Without pattern finding, encoded data can be

dominated by 1-bit codeword from 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x00 byte.

I demo: (int) 512 = 0x00000200
multibyte: one 512
singlebyte: one 0x02 and three 0x00
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parallelisms
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boundary

blockwise reduction • • • • sync block

gridwise reduction • • • • sync device

build codebook
get codeword lengths • • • • • sync grid

get codewords • • • sync grid

canonize
get numl array • • • • sync grid

get first array (raw) • • sync grid

canonization (raw) • • sync grid

get reverse codebook • sync device

Huffman enc.
reduce-merge • • • • sync block

shuffle-merge • • • sync device

get blockwise code len • • • • sync grid

coalescing copy • • • sync device

Table 2: Parallelism implemented for Hu�man coding’s subprocedures (kernels). “sequential” denotes that only 1 thread is

used due to data dependency. “coarse-grained” denotes that data is explicitly chunked. “fine-grained” denotes that there is a

data-thread mapping with little or no warp divergence.
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Parallel Construction of Codebook (1/2)

I a parallel alternative to the original O(n log n) Hu�man codebook construction

I directly generates codewords

I proposed by Ostadzadeh et al.

I Our implementation is proof-of-concept of the theoretical complexity.

I two-phase algorithm

I GenerateCL: calculate the codeword length for each input symbol

I GenerateCW: generate the actual codeword for each input symbol

I implementation

I Both phases utilize fine-grain parallelism, one-thread-one-symbol/ value.

I Both phases are implemented as single CUDA kernels with Cooperative Groups.
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Parallel Construction of Codebook (2/2)

I GenerateCL
I input: a sorted n-symbol histogram

I output: CL, a size n array of codeword lengths for each symbol.

I O
(
H · log log n

H

)
time on PRAM, where H is the longest codeword.

I implementation: more likelyO(log n)
I source of parallelism: given a set of Hu�man subtrees, all subtrees

whose total frequencies are less than the sum of the two smallest subtree frequencies

can be combined in parallel.

I GenerateCW
I input: CL; output CW
I generally parallel-generating canonized codebook

I Codewords are generated by individual threads.

I O(H) time per thread in the PRAM model.
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Encoding (1/3): of Fine Granularity

Typically, Hu�man encoding is

I done on CPU, because of data dependency in

codeword bit-positions

I possible to enable coarse-grained parallism,

e.g. OpenMP

Encoding on GPU

I use OpenMP-procedure-like kernel

I latency-bound kernel in general

I But high memoy bandwidth on GPU really helps;

kernel throughput can exceed CPU DRAM

bandwidth.
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I Previous fine-grained GPU method

I partial-sum to determine positions prior to writing

I no compressibility awareness

I Direct writing to assigned position, however, is

ine�icient, considering that

I multiprocessor registers are mostly 32-bit, while

I the averge bitwidth is low (1 to 5 bits), the

transaction time increases, and

I variable length makes it irregular access (even

coalescing accessing shmem matters).
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I partial-sum to determine positions prior to writing

I no compressibility awareness

I Direct writing to assigned position, however, is

ine�icient, considering that

I multiprocessor registers are mostly 32-bit, while

I the averge bitwidth is low (1 to 5 bits), the

transaction time increases, and

I variable length makes it irregular access (even

coalescing accessing shmem matters).

I Our MethodOur MethodOur MethodOur MethodOur MethodOur MethodOur MethodOur MethodOur MethodOur MethodOur MethodOur MethodOur MethodOur MethodOur MethodOur MethodOur Method

I adress two issues: register underuse (more

transactions), bitwise irregular access

I iterative merge of codewords along with reduction

of bitwidths (metadata)

I Given code-length tuples (a, `)2k and (a, `)2k+1,

Merge
(
(a, `)2k, (a, `)2k+1

)
= (a2k ⊕ a2k+1, `2k + `2k+1) ,

where ⊕ represents for concatenating bits of a2k+1
right a�er bits of a2k .

I note: merge is not commutativenot commutativenot commutativenot commutativenot commutativenot commutativenot commutativenot commutativenot commutativenot commutativenot commutativenot commutativenot commutativenot commutativenot commutativenot commutativenot commutative (x ⊕ y 6= y ⊕ x).
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Encoding (2/3): reduce- and shuffle-merge

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

0 1 2 3

0 1

Figure 1: reduce-merge of 8-to-1.

Granularity-coarsening of bit operations

(reduce-merge)

I one-thread-multiple-data

I stop before the merged words saturate 32 bits

I performance degradation seen when set to 64 bits

as the saturating bitwidth

two segments

two parts of
the right

move part 1/2

move part 2/2

1 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

2 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

3 t8 t9 t10 t11 t12

t8 t9 t10 t11 t12

Figure 2: Two-step batch move of grouped and typed data.

By batch-moving the right grouped data, warp divergence is

decreased.

Concurrently align the segments (shuffle-merge)

I address irregular bitwise access

I two-step: 1) (dtype-width − ending residue) bits,

2) ending residue bits

I mostly thread masking (if... without else)
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Encoding (3/3): Compressiblity

In retrospect of our throughput-oriented

design, we find that

I The performance is impacted by the

intrinsic data feature.

I Specifically, (data-dependent)

compressiblity.

I The compressibility is instantly known

a�er either histograming or Hu�man

codebook is consructed.

Our method generally translates

throughput-impacting compressibility into

number of reduce iterations.
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Figure 3: Average bitwidth being a consideration to decide reduction

factor.
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Table 3: (Nyx-Quant, avg. bitwidth=1.027) Performance (in GB/s) of our

Hu�man encoding with di�erent chunk magnitudes (mag.) and reduction

factors on Longhorn and Frontera.
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Evaluation Setup: Platform and Dataset

I Evaluation Platforms (TACC)

I Longhorn, NVIDIA V100 (top-tier)

• 16 GB HBM2HBM2HBM2HBM2HBM2HBM2HBM2HBM2HBM2HBM2HBM2HBM2HBM2HBM2HBM2HBM2HBM2 at 900 GB/s; SXM2 variant

• 2×20-core IBM Power 9

I Frontera, NVIDIA RTX 5000 (PCIe 3.0)

(professional/HPC-tier)

• 16 GB GDDR6 at 448 GB/s

• 2×28-core Intel 8280

I Comparison Baseline (multibyte codebook)

CPU-SZ OMP prototype cuSZ

histogram serial multithread kernel
•

codebook serial multithread serial

encoding serial multithread kernel
◦

◦ coarse-grained • fine-grained

? We continue using histogram kernel in cuSZ.

I Test Datasets

I Singlebyte Based Datasets (at most 256 symbols)

I enwiki8 and enwiki9—XML-based English

Wikipedia dump (Large Text Compressison
Benchmark)

I nci—chemical database of structures (Silesia Corpus)

I mr—medical magnetic resonance image sample

(Silesia Corpus)

I Flan_1565—sparse matrix in Rutherford Boeing

format (SuiteSparse Matrix Collection)

I Multibyte Based Datasets (beyond 256 symbols)

I Nyx-Quant—integer-typed intermediate

error-control code of cuSZ, with e.g. 1024 symbols

I gbbct1.seq– sample DNA data from GenBank;

every k nucleotides (k-mer) forms a symbol;

k = {3, 4, 5} are tested.
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Codebook Construction (OMP vs. CPU) 2/2

#sym. serial 1 core 2 cores 4 cores 6 cores 8 cores

Nyx-Quant 1024 0.045 0.219 0.469 0.622 0.700 0.840

3-mer 2048 0.208 0.361 0.691 1.101 1.122 1.303

4-mer 4096 0.695 0.626 1.006 1.309 1.456 1.707

5-mer 8192 1.806 1.167 1.513 1.657 1.836 2.158

Synthetic 16384 3.671 1.683 1.796 1.705 2.055 2.222

Synthetic 32768 5.783 2.974 2.858 2.626 2.873 3.139

Synthetic 65536 7.641 5.221 4.850 4.411 4.952 5.713

Table 4: Performance (in milliseconds) of multi-thread codebook construc-tion with di�erent numbers of input symbols. The

length of the bar under thenumber reflects the execution time.

I sythetic data: normally distributed histograms with 16k to 65k symbols

I Serial construction excels when symbol number is small.

I OpenMP overhead is overcome beyond 32k symbols.
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Codebook Construction (2/2): GPU Old vs. New

ref. CPU tu v tu v tu v

#sym. serial gen. codebook canonize total time

Nyx-Quant 1024 0.045 3.051 3.689 0.095 0.115 3.416 3.804

3-mer 2048 0.208 8.381 9.760 0.242 0.284 8.623 10.044

4-mer 4096 0.695 20.148 24.684 0.519 0.663 20.667 25.347

5-mer 8192 1.806 61.748 59.092 1.453 1.449 63.201 60.541

#sym. serial gen. CL gen. CW total time

Nyx-Quant 1024 0.045 0.315 0.383 0.134 0.161 0.449 0.544

3-mer 2048 0.208 0.494 0.570 0.180 0.209 0.674 0.779

4-mer 4096 0.695 0.633 0.682 0.173 0.185 0.806 0.867

5-mer 8192 1.806 1.330 1.145 0.154 0.187 1.484 1.332

cu
S
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u

rs
p
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r
a
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l
e
l

Table 5: Breakdown comparison of Hu�man codebook construction time(in milliseconds) on RTX 5000 and V100 with di�erent

numbers of symbols.

I Unlike CPU, GPU parallel construction can always yield a speedup over serial construction in our tested cases.

I Ours exhibits more dramatic speedups over cuSZ’s when using more input symbols, consistent with our

theoretical analysis and performing up to 45.5× faster when creating a codebook for 8192 symbols.

I Note that ours is no faster than the CPU serial construction when the number of symbols is below 8192.
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Performance Evaluation: GPU vs. OpenMP

cores 1 2 4 8 16 32 56 64

hist. (GB/s) 2.24 4.42 8.83 17.61 34.97 63.59 61.47 63.14

par. e�iciency 1.00 0.99 0.98 0.98 0.97 0.89 0.49 0.44

codebook (ms) 0.22

enc. (GB/s) 1.22 2.43 4.83 9.64 19.16 37.85 55.7155.7155.7155.7155.7155.7155.7155.7155.7155.7155.7155.7155.7155.7155.7155.7155.71 29.33

par. e�iciency 1.00 0.99 0.99 0.99 0.98 0.97 0.81 0.37

hist+enc (GB/s) 0.79 1.57 3.12 6.23 12.38 23.73 29.2229.2229.2229.2229.2229.2229.2229.2229.2229.2229.2229.2229.2229.2229.2229.2229.22 20.03

tu v

74.80 197.60

0.45 0.54

145.20 314.60314.60314.60314.60314.60314.60314.60314.60314.60314.60314.60314.60314.60314.60314.60314.60314.60

45.35 96.0196.0196.0196.0196.0196.0196.0196.0196.0196.0196.0196.0196.0196.0196.0196.0196.01

Table 6: Performance of multi-thread Hu�man encoder on Nyx-Quant.

I encoding: 32-core throughput at 56 GB/s while GPU achieves 314.6 GB/s on V100 (5.6×)

I overall: 32-core throughput at 29.22 GB/s vs. GPU’s at 96.01 GB/s (3.3×)
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Performance Evaluation

tu v tu v tu v tu v

avg. bits #reduce breaking hist. gb/s codebook ms encode gb/s hist+enc gb/s

cuSZ enwik8 95 mb 5.1639 - - 102.5 252.4 1.375 1.635 10.1 12.2 8.2 9.8

enwik9 954 mb 5.2124 - - 108.2 259.6 1.382 1.640 7.2 11.3 6.8 10.8

mr 9.5 mb 4.0165 - - 36.2 86.5 1.565 1.831 9.6 15.2 3.5 3.8

nci 32 mb 2.7307 - - 66.1 150.6 0.706 1.027 8.6 14.9 6.6 9.6

Flan_1565 1.4 gb 4.1428 - - 104.2 256.6 0.758 0.950 8.5 10.7 7.8 10.2

Nyx-Quant 256 mb 1.0272 - - 74.8 197.7 3.416 3.804 17.7 29.7 12.1 18.9

Ours enwik8 95 mb 5.1639 2 (4×) 0.034915% 102.8 252.0 0.594 0.707 42.2 94.0 25.4 46.1

enwik9 954 mb 5.2124 2 (4×) 0.021747% 108.1 276.1 0.626 0.666 49.7 94.6 34.0 70.6

mr 9.5 mb 4.0165 2 (4×) 0.000174% 36.2 99.0 0.300 0.312 42.0 76.8 12.3 18.4

nci 32 mb 2.73072.73072.73072.73072.73072.73072.73072.73072.73072.73072.73072.73072.73072.73072.73072.73072.7307 3 (8×) 0.152880% 56.4 169.1 0.507 0.514 63.7 154.8154.8154.8154.8154.8154.8154.8154.8154.8154.8154.8154.8154.8154.8154.8154.8154.8 20.6 36.1

Flan_1565 1.4 gb 4.1428 2 (4×) nearly 0% 103.5 274.7 0.314 0.327 50.0 94.9 33.5 69.5

Nyx-Quant 256 mb 1.02721.02721.02721.02721.02721.02721.02721.02721.02721.02721.02721.02721.02721.02721.02721.02721.0272 3 (8×) 0.003277% 74.8 197.6 0.449 0.544 145.2 314.6314.6314.6314.6314.6314.6314.6314.6314.6314.6314.6314.6314.6314.6314.6314.6314.6 45.4 96.0

Table 7: reakdown comparison of Hu�man performance on tested datasets. Gathering time is excluded.

I mostly 4-plus bits (vs. uncompressed 8 bits), leading to a relatively low compression ratio.

I nci and Nyx-Quant can use r = 3→ over 100 GB/s. Small nci is di�icult to saturate memory bandwidth.

Higher-compression-ratio Nyx-Quant (2.66×) has less writing e�ort, reaches 314.6 GB/s.

I Comparing to coarse-grained encoder, there is 3.1× to 5.0× on RTX 5000, and 3.8× to 6.8× on V100.
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Conclusion

In this work,

I We propose and implement an e�icient Hu�man encoder for NVIDIA GPU architectures, including

I an e�icient parallel codebook construction and a novel reduction based encoding scheme,

I and we implemented a multithread Hu�man encoder for a fair comparison.

I Our solution can improve the parallel encoding performance up to 5.0× on RTX 5000, 6.8×on V100, and 3.3×
on CPUs.

Future work,

I tune the performance for low-compression-ratio data

I explore more e�icient gathering methods

I explore how intrinsic data feature a�ects the compression ratio and the throughput
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THANK YOU
any question?

github.com/szcompressor/huffre (to be updated)

contact us Jiannan Tian jiannan.tian@wsu.edu
Dingwen Tao dingwen.tao@wsu.edu

github.com/szcompressor/huffre
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