THE UNIVERSITY OF

WASHINGTON STWTE A] ABAMA

Y

Optimizing Huffman Decoding for Error-Bounded
Lossy Compression on GPUs

Cody Rivera (cjriveral@crimson.ua.edu)
Sheng Di (sdi1@anl.gov)
Jiannan Tian (jiannan.tian@wsu.edu)

Argonne3

NATIONAL LABORATORY

Xiaodong Yu (xyu@anl.gov) IPD pS

Dingwen Tao (dingwen.tao@wsu.edu)
Franck Cappello (cappello@mcs.anl.gov)

+VIRTUAL-
May 30 - June 3, 2022

é THE UNIVERSITY OF
UASTRGTONSTTE Argonne TR ALABAMA

NATIONAL LABORATORY

£

Background: Use Cases

> HPC Application Needs

 HPC applications are generating increasingly large amounts of data

e Applications include large scale simulations, deep neural networks

* e.g., Hardware/Hybrid Accelerated Cosmology Code (HACC) (S.
Habib et. al.) [1], which generates roughly 22 petabytes per
simulation run

> In-Memory Caching

* Fast memory, especially on GPUs, is a scarce resource

e Can cache data more economically by compressing and
decompressing intermediate data

* e.g.,, Wuet. al.’s work on quantum circuit simulation [17], where
compression reduces total RAM usage from 32 exabytes to 768
terabytes

WASHINGTON STATE é THE UNIVERSITY OF
UNIVERSITY Argonne ALABAMA

NATIONAL LABORATORY

£

Background: Lossy Compression/SZ

> Lossy compression on scientific data
Offers much higher compression ratios than lossless

compression by trading a little bit of accuracy
* An example: SZ, a prediction-based lossy compression that
achieves high compression ratios [5]
e Actively developed and researched
 CPU, GPU (cuSz), and domain-specific (DeepSZ, PastriSZ)
versions
* We focus on SZ/cuSZ (over ZFP) for the following reasons:
* Less distortion/higher PSNR at a given bitrate
* Compression error can be explicitly bounded by the user

Bitrate

WASHINGTON STATE A THE UNIVERSITY OF
UNIVERSITY Argonne ALABAMA

NATIONAL LABORATORY

£

An Overview of cuSZ

X X * X X X Already processed points Real Value
(including all colors) ,
* 2™14]
A S v+ X Tobe predicted point 2*Error Bound
X First layer
X X X X X X X T
X Second layer
Third |
X—X X X % X Third layer First-phase ~ —> m
X Fourth layer Predicted Value Error
Bound

X 1-layer
XX 2-layer
XXX 3-layer 2*Error Bound 2m1]

XX XX 4layer

> Prediction > Quantization > Huffman Coding

* Predict data points using a e Determine the prediction error * Losslessly compress
data-fitting Lorenzo predictor for each point and classify it as guantization codes
(Ibarria et. al.) [7] an integer we call a

qguantization code

WASHINGTON STATE ° THE UNIVERSITY OF
UNIVERSITY Argonne ALABAMA

AAAAAAAAAAAAAAAAAA

£

Background: Huffman Coding

> Huffman Coding
e Classic lossless variable-length compression technique introduced by David Huffman in 1952

 Example: ABAACDAA (16 bits at 2 bits per character)
* Encoded Text: 1010110110011 (13 bits)
* Compression Ratio: 16/13 = 1.23

A 1

D 00

B 010
C 011

Example Huffman Tree and Codebook

THE UNIVERSITY OF

RV SN Argonne° ALABAMA

AAAAAAAAAAAAAAAAAA

£

Motivation: Why Optimize Decoding?

> cuSZ’s current Huffman coding cuSZ Decoder Breakdown on HACC
* Encoding performance: average 25.7 GB/s in production [9], 138.3

GB/s experimentally (J. Tian et. al., IPDPS ‘21) [10]
* Decoding performance: average 32.3 GB/s

> Research Focus

* Decompression is needed for data post-analysis as well as retrieval
from in-memory caches

* Huffman decoding, however, is the primary bottleneck for cuSz, < Reverse Quantization = Huffman Decoding
taking up 83% of the time in a recent version a Scattering Outliers

A [wsmcron e prconne® A1 ABANIA
Increasing Parallelism in Decoding
Chunk Chunk Chunk Chunk Chunk Chunk

1

> Fine-Grained Parallelism

Few points per thread, many threads

Maps more effectively to the GPU’s massive
parallelism

> Coarse-Grained Parallelism

e Many points per thread, few threads
cuSZ’s current Huffman decoder

Does not map well to GPU architectures

THE UNIVERSITY OF

wisnron 57 prgonne@ 4| AEALIA

AAAAAAAAAAAAAAAAAA

£

An Insight from Information Theory

> The Self-Synchronization Property

* Tendency for Huffman codes to correct themselves if a few bits were

skipped, first written about by Ferguson and Rabinowitz [11] m

e Example: 111000010111000 A 00
e Correct decoding B 10
* (11)(20)(00)(010)(11)(10)(00) e =

« CBADCBA
* Incorrect decoding D 010
 1(11)(00)(00)(10)(11)(10)(00) E 011

« CAABCBA
* |s eventually correct

Self-Synchronizing Codebook

A5 | vremeronsmre argonne® Al ABAMA
Finding Thread Boundaries

Symbol

> Consider the message /; (1)2
* BACACCBDBAAEBBA c 11
D 010
E 011
Subsequence 0, 1 10001100(11111001

Subsequence 2, 3 01000000{11101000

THE UNIVERSITY OF

RV SN Argonne° ALABAMA

AAAAAAAAAAAAAAAAAA

£

Finding Thread Boundaries

Symbol

Legend:

A 00

> Beginning of the procedure ; - Thread Position. i o
$ - Synchronization Point & 11
v - Verified Synchronization Point D 010
Index O, Index 2 Index 3 £ 011

N

Subsequence 0, 1 IlOOOllOO 11111001
&

Subsequence 2, 3 01000000{11101000

v \/

THE UNIVERSITY OF

WRSIRGTON STATE ArgonneA ALABAMA

AAAAAAAAAAAAAAAAAA

£

Finding Thread Boundaries

Symbol

Legend: A 00
» Each thread decodes a | -Thread Position B 10
$ - Synchronization Point
subsequence - L . < 1
v - Verified Synchronization Point D 010
Index O, Index 2 Index 3 e 011
B A C A C C B
S | | s | |
Subsequence 0, 1 10001100(11111001
\/r > Vv >
D A A C B B A
- | —f | | | -
Subsequence 2, 3 01000000(11101000
v >y v > v

THE UNIVERSITY OF

WRSIRGTON STATE Argonne° ALABAMA

AAAAAAAAAAAAAAAAAA

£

Finding Thread Boundaries

Symbol

Legend:

A 00
» Synchronization points are | - Thread Position B 10
et $ - Synchronization Point
initialized . o . 2 1
v - Verified Synchronization Point D 010
Index O, Index 2 Index 3 e 011
Subsequence 0, 1 IlOOOllOO 111110})1
V V\/
Subsequence 2, 3 01000000/11101000

£

Finding Thread Boundaries

WASHINGTON STATE

UNIVERSITY

THE UNIVERSITY OF

ALABAMA

AAAAAAAAAAAAAAAAAA

Legend:

Symbol

A 00
» Each synchronization point is | - Thread Position B 10
. . $ - Synchronization Point
verified by the previous thread o o . c il
v - Verified Synchronization Point D 010
Index O, Index 2 Index 3 e 011
C C B
A | | 4
Subsequence 0, 1 10001100 1111101
v v " "
D B A A E B B A
A R I
Subsequence 2, 3 01000000(11101000

THE UNIVERSITY OF

WRSIRGTON STATE ArgonneA ALABAMA

AAAAAAAAAAAAAAAAAA

£

Finding Thread Boundaries

Symbol

Legend:

« . A 00
> Once this is done, each thread 1 - Thread Position o 0
will decode parts of the $ - Synchronization Point c »
following correctly v - Verified Synchronization Point 5 -
- BACACCBDBAAEBBA Index 0, Index 2 Index 3 e 011

Subsequence 0, 1 IlOOOllOO 111110})1
v v

v

Subsequence 2, 3 0100000}) 11101000

v

WASHINGTON STATE é THE UNIVERSITY OF
UNIVERSITY Argonne ALABAMA

AAAAAAAAAAAAAAAAAA

£

Another Approach to Fine-grained Parallelism

> Gap Arrays

* Determining synchronization points requires redundant decoding
* Yamamoto et. al. propose a solution: precompute the start points for each thread at encoding time, put themin a

gap array [13], and use them for fast decoding

Subsequence 0, 1 IlOOOllOO 111110})1
v v

v

Subsequence 2, 3 OlOOOOOI) 11101000

v

A gap array: {0, 0, -2, -1}

15

A wesmeron v argonne® A ABAMA
Implementing and Optimizing Decoders

> Adaptation

Change from single-byte input to multi-byte input

1mi H Gl::ok 0 0) || Blodk (1, 0) || Block (2,0 m?d‘—’kﬁn'/“'
> Thread-Level Optimization (for self-sync) A YTk
* With self-synchronization, adjacent threads may SRS WMM W“‘“’ e
decode very different amounts of data-divergence oy s e N w
* Program with the thread hierarchy in mind / — W M R
i

> Memory Optimization (for both)

e Use wider/vector loads and stores
Use the GPU’s shared memory to cache decoded results

CUDA C programming guide, [6]

THE UNIVERSITY OF

RV SN Argonne° ALABAMA

NATIONAL LABORATORY

£

Motivation for Memory Optimizations

> High-compression ratio data

* Often found in scientific computing/cuSZ workflows,
especially where the data has been well-predicted

* Significant performance penalties for increased
compression ratio = decreased error-bound

Decoder Performance with Different Compressibility

m Self-Synchronization ® Gap Array

100

= 80

2

< 60
> Reason B

S0 40
* With high compression ratios, each thread writes more :

= 20

data ;

* Also, there is a larger stride between threads, an even 0

1.00E-04 1.00E-03 1.00E-02 1.00E-01
worse access patte rn Relative Error Bound

THE UNIVERSITY OF

RV SN Argonneé ALABAMA

NATIONAL LABORATORY

£

Shared Memory Optimization Details

> The technique

Algorithm 1: Decoding and writing using a shared memory buffer.
* Each thread writes into the block-local shared memory « Decodelirite — decode and write using shared memory

° The Shared memory is cooperatively Written out to 1 sl_1aredBuffer[n] . > The shared memory buffer of size n
2 si <- outIndex[blockIdx.x - blockDim.x]
global memory 3 ei <- outIndex[(blockIdx.x + 1) - blockDim.x]
4 gid <- threadIdx.x + blockDim.x - threadIdx.x
5 tempEnd <- ei
6 while si < ei do
7 start <- outIndex[gid] - si, end <- outIndex[gid + 1]
H 8 if si < start and end < si + n then
> A"ocatlng SharEd memory 9 outArray[start ... end) <- DEcope(inArray, startPoint[gid])
. . . > If symbols can fit into the buffer, decode them
* Proportional to the compression ratio of the data 10 else if start < si + nand end > si + n then
. . . 11 tempEnd <- outIndex[gid]
° leferent pOI’tIOhS Of the data need d|fferent amounts > Executed by one thread if buffer is not large enough; results in another iteration
12 end if
Of Shared memory 13 outArray[si ... tempEnd) = sharedBuffer[0 ... tempEnd - si)
. - > This write i f d ively by threads in the block
* Use multiple kernel launches to efficiently decompress e sl | 0 R

15 end while

different portions of the data

THE UNIVERSITY OF

RV SN Argonne° ALABAMA

NATIONAL LABORATORY

£

Evaluation

> Experimental Setup

* Datasets: Multidimentional data from a variety of scientific domains; data sources include the Scientific
Data Reduction Benchmark [15], in addition to some other sources
* Platform: 2 Xeon Gold 6428 “Cascade Lake” CPUs, 20 cores; 8 Nvidia Tesla V100-32GB SXM2 GPUs (only

1 GPU was used for evaluation)

datum size #fields

datasets dimensions examples(s)
cosmology 1,071.75 MB 6 in total
HACC 280,953,867 XX, VX
molecular dynamics 951.73 MB 6 in total
EXAALT 2338x106711 dataset2.x
climate 642.70 MB 33 in total
CESM-ATM 26 x1800x 3,600 CLDICE, RELHUM
cosmology 512 MB 6 in total
Nyx 512x512x512 baryon density
climate 381.47 MB 13 in total
Hurricane 4x100x500x500 CLDICE, QRAIN
quantum circuits 601.52 MB 2 in total

MCPack 115X69x69x 288 einspline, einspline.pre
yetroleum exploration 180.73 MB 1 in total (3600 snapshots)

T™M 449x449x 235 snapshot-1000
uantum chemistry 306.19 MB 3 in total
GAMESS 80,265,168 dddd, fidd, fiff

Our tested datasets Bridges2 cluster at Pittsburg Supercomputing Center [14]

THE UNIVERSITY OF

WRSTUNGTON STATE Argonne° ALABAMA

NATIONAL LABORATORY

£

Evaluation

> Evaluation on Decoding Alone
e OQutperforms coarse-grained cuSZ decoder
* Average 2.74x for self-synchronization
e Average 3.64x for gap arrays
* Predictably, gap arrays are faster than self-synchronization

Performance of Optimized Huffman Decoding

B cuSZ baseline mOpt. Self Sync mOpt. Gap Array

Throughput (GB/s)
i [
S (=) =) [— [
< < [—} < [—}

[*]
=

<

HACC EXAALT CESM-ATM Nyx Hurr. QMC. RTM GAMESS

THE UNIVERSITY OF

WRSTUNGTON STATE Argonne° ALABAMA

NATIONAL LABORATORY

£

Evaluation

> Evaluation on cuSZ’s decompression, overall

* Considering decoding took up 83% of cuSZ’s time, not surprising to see a speedup
e Average 2.08x for self-synchronization

e Average 2.43x for gap arrays

Performance of Optimized Decoders in cuSZ Decompression

B cuSZ baseline mOpt. Self Sync mOpt. Gap Array

140

120

Throughput (GB/s)
e [=2) =] ;
[—] [—] [—) [

(o]
<

=

HACC EXAALT CESM-ATM Nyx Hurr. QMC. RTM GAMESS

THE UNIVERSITY OF

RV SN Argonne‘) ALABAMA

AAAAAAAAAAAAAAAAAA

£

Discussion & Conclusion

> Discussion

e Self-Synchronization
* Benefits: Huffman encoder and decoder are decoupled
* Drawbacks: Redundant computations
* Gap Arrays
* Benefits: Higher performance in decoding
* Drawbacks: Encoder and decoder must be coupled; higher overhead on encoder

> Conclusion

* Apply two algorithms for finer-grained parallel Huffman decoding to significantly speed up cuSZ’s
decompression
* Optimize these algorithms to more effectively take advantage of GPU architectures
e Future work to be done
* Incorporate optimizations into a Huffman coding library
* Extend work to other applications of Huffman decoding

IPOPS Thank you!

*VIRTUAL- All the questions and ideas are welcomed
May 30 - June 3, 2022

Dingwen Tao: dingwen.tao@wsu.edu
Cody Rivera: cjriveral@crimson.ua.edu

THE UNIVERSITY OF @
ALABAMA WASHINGTON STATE

UNIVERSITY

Contact:

‘—i\
Argonne° =t (|

NATIONAL LABORATORY
EXASCALE COMPUTING PROJECT

mailto:dingwen.tao@wsu.edu
mailto:cjrivera1@crimson.ua.edu

