
Optimizing Huffman Decoding for Error-Bounded 
Lossy Compression on GPUs

Cody Rivera (cjrivera1@crimson.ua.edu)
Sheng Di (sdi1@anl.gov)
Jiannan Tian (jiannan.tian@wsu.edu)
Xiaodong Yu (xyu@anl.gov)
Dingwen Tao (dingwen.tao@wsu.edu)
Franck Cappello (cappello@mcs.anl.gov)



2

Background: Use Cases
Ø HPC Application Needs
• HPC applications are generating increasingly large amounts of data
• Applications include large scale simulations, deep neural networks
• e.g., Hardware/Hybrid Accelerated Cosmology Code (HACC) (S. 

Habib et. al.) [1], which generates roughly 22 petabytes per 
simulation run

Ø In-Memory Caching
• Fast memory, especially on GPUs, is a scarce resource
• Can cache data more economically by compressing and 

decompressing intermediate data
• e.g., Wu et. al.’s work on quantum circuit simulation [17], where 

compression reduces total RAM usage from 32 exabytes to 768 
terabytes



3

Background: Lossy Compression/SZ 

Ø Lossy compression on scientific data
• Offers much higher compression ratios than lossless 

compression by trading a little bit of accuracy
• An example: SZ, a prediction-based lossy compression that 

achieves high compression ratios [5]
• Actively developed and researched
• CPU, GPU (cuSZ), and domain-specific (DeepSZ, PastriSZ) 

versions
• We focus on SZ/cuSZ (over ZFP) for the following reasons:

• Less distortion/higher PSNR at a given bitrate
• Compression error can be explicitly bounded by the user



4

An Overview of cuSZ

Ø Quantization
• Determine the prediction error 

for each point and classify it as 
an integer we call a 
quantization code

Ø Prediction
• Predict data points using a 

data-fitting Lorenzo predictor 
(Ibarria et. al.) [7]

Ø Huffman Coding
• Losslessly compress

quantization codes



5

Background: Huffman Coding

Ø Huffman Coding
• Classic lossless variable-length compression technique introduced by David Huffman in 1952
• Example: ABAACDAA (16 bits at 2 bits per character)

• Encoded Text: 1010110110011 (13 bits)
• Compression Ratio: 16/13 ≈ 1.23

Example Huffman Tree and Codebook 

Symbol Codeword

A 1

D 00

B 010

C 011



6

Motivation: Why Optimize Decoding?

Ø cuSZ’s current Huffman coding
• Encoding performance: average 25.7 GB/s in production [9], 138.3 

GB/s experimentally (J. Tian et. al., IPDPS ‘21) [10]
• Decoding performance: average 32.3 GB/s

Ø Research Focus
• Decompression is needed for data post-analysis as well as retrieval 

from in-memory caches
• Huffman decoding, however, is the primary bottleneck for cuSZ, 

taking up 83% of the time in a recent version



7

Increasing Parallelism in Decoding

Ø Fine-Grained Parallelism
• Few points per thread, many threads
• Maps more effectively to the GPU’s massive 

parallelism

Ø Coarse-Grained Parallelism
• Many points per thread, few threads
• cuSZ’s current Huffman decoder
• Does not map well to GPU architectures

Chunk Chunk Chunk Chunk Chunk Chunk



8

An Insight from Information Theory 

Ø The Self-Synchronization Property 
• Tendency for Huffman codes to correct themselves if a few bits were 

skipped, first written about by Ferguson and Rabinowitz [11]
• Example: 111000010111000

• Correct decoding
• (11)(10)(00)(010)(11)(10)(00)
• CBADCBA

• Incorrect decoding
• 1(11)(00)(00)(10)(11)(10)(00)
• CAABCBA 
• Is eventually correct

Self-Synchronizing Codebook



9

Finding Thread Boundaries
Symbol Codeword

A 00

B 10

C 11

D 010

E 011

Ø Consider the message
• BACACCBDBAAEBBA

1 0 0 0 1 1 0 0 1 1 1 1 1 0 0 1

0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0Subsequence 2, 3

Subsequence 0, 1



10

Finding Thread Boundaries
Symbol Codeword

A 00

B 10

C 11

D 010

E 011

1 0 0 0 1 1 0 0 1 1 1 1 1 0 0 1

0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0Subsequence 2, 3

Subsequence 0, 1

Ø Beginning of the procedure
Legend:

- Thread Position
- Synchronization Point
- Verified Synchronization Point

Index 0, Index 1, Index 2, Index 3



11

Finding Thread Boundaries
Symbol Codeword

A 00

B 10

C 11

D 010

E 011

Ø Each thread decodes a 
subsequence

1 0 0 0 1 1 0 0 1 1 1 1 1 0 0 1

0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0Subsequence 2, 3

Subsequence 0, 1

B A C A C C B

D A A C B B A

Legend:
- Thread Position
- Synchronization Point
- Verified Synchronization Point

Index 0, Index 1, Index 2, Index 3



12

Finding Thread Boundaries
Symbol Codeword

A 00

B 10

C 11

D 010

E 011

Ø Synchronization points are 
initialized

Legend:
- Thread Position
- Synchronization Point
- Verified Synchronization Point

Index 0, Index 1, Index 2, Index 3

1 0 0 0 1 1 0 0 1 1 1 1 1 0 0 1

0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0Subsequence 2, 3

Subsequence 0, 1



13

Finding Thread Boundaries
Symbol Codeword

A 00

B 10

C 11

D 010

E 011

Ø Each synchronization point is 
verified by the previous thread

Legend:
- Thread Position
- Synchronization Point
- Verified Synchronization Point

Index 0, Index 1, Index 2, Index 3

1 0 0 0 1 1 0 0 1 1 1 1 1 0 0 1

0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0Subsequence 2, 3

Subsequence 0, 1

C C B

D B A A E B B A



14

Finding Thread Boundaries
Symbol Codeword

A 00

B 10

C 11

D 010

E 011

Legend:
- Thread Position
- Synchronization Point
- Verified Synchronization Point

Index 0, Index 1, Index 2, Index 3

1 0 0 0 1 1 0 0 1 1 1 1 1 0 0 1

0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0Subsequence 2, 3

Subsequence 0, 1

Ø Once this is done, each thread 
will decode parts of the 
following correctly

• BACACCBDBAAEBBA



15

Another Approach to Fine-grained Parallelism

Ø Gap Arrays
• Determining synchronization points requires redundant decoding
• Yamamoto et. al. propose a solution: precompute the start points for each thread at encoding time, put them in a 

gap array [13], and use them for fast decoding

1 0 0 0 1 1 0 0 1 1 1 1 1 0 0 1

0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0Subsequence 2, 3

Subsequence 0, 1

A gap array: {0, 0, -2, -1}



16

Implementing and Optimizing Decoders

Ø Thread-Level Optimization (for self-sync)
• With self-synchronization, adjacent threads may 

decode very different amounts of data-divergence
• Program with the thread hierarchy in mind

Ø Adaptation
• Change from single-byte input to multi-byte input

Ø Memory Optimization (for both)
• Use wider/vector loads and stores
• Use the GPU’s shared memory to cache decoded results

CUDA C programming guide, [6]



17

Motivation for Memory Optimizations

Ø Reason
• With high compression ratios, each thread writes more 

data
• Also, there is a larger stride between threads, an even 

worse access pattern

Ø High-compression ratio data
• Often found in scientific computing/cuSZ workflows, 

especially where the data has been well-predicted
• Significant performance penalties for increased 

compression ratio ≈ decreased error-bound



18

Shared Memory Optimization Details

Ø Allocating shared memory
• Proportional to the compression ratio of the data
• Different portions of the data need different amounts 

of shared memory
• Use multiple kernel launches to efficiently decompress 

different portions of the data

Ø The technique
• Each thread writes into the block-local shared memory
• The shared memory is cooperatively written out to 

global memory



19

Evaluation
Ø Experimental Setup
• Datasets: Multidimentional data from a variety of scientific domains; data sources include the Scientific 

Data Reduction Benchmark [15], in addition to some other sources
• Platform: 2 Xeon Gold 6428 “Cascade Lake” CPUs, 20 cores; 8 Nvidia Tesla V100-32GB SXM2 GPUs (only 

1 GPU was used for evaluation)

Our tested datasets Bridges2 cluster at Pittsburg Supercomputing Center [14]



20

Evaluation
Ø Evaluation on Decoding Alone
• Outperforms coarse-grained cuSZ decoder

• Average 2.74x for self-synchronization
• Average 3.64x for gap arrays

• Predictably, gap arrays are faster than self-synchronization

0

20

40

60

80

100

120

140

HACC EXAALT CESM-ATM Nyx Hurr. QMC. RTM GAMESS

T
hr

ou
gh

pu
t (

G
B

/s
)

Performance of Optimized Huffman Decoding

cuSZ baseline Opt. Self Sync Opt. Gap Array



21

Evaluation
Ø Evaluation on cuSZ’s decompression, overall
• Considering decoding took up 83% of cuSZ’s time, not surprising to see a speedup
• Average 2.08x for self-synchronization
• Average 2.43x for gap arrays

0

20

40

60

80

100

120

140

HACC EXAALT CESM-ATM Nyx Hurr. QMC. RTM GAMESS

T
hr

ou
gh

pu
t (

G
B

/s
)

Performance of Optimized Decoders in cuSZ Decompression

cuSZ baseline Opt. Self Sync Opt. Gap Array



22

Discussion & Conclusion
Ø Discussion
• Self-Synchronization

• Benefits: Huffman encoder and decoder are decoupled
• Drawbacks: Redundant computations

• Gap Arrays
• Benefits: Higher performance in decoding
• Drawbacks: Encoder and decoder must be coupled; higher overhead on encoder

Ø Conclusion
• Apply two algorithms for finer-grained parallel Huffman decoding to significantly speed up cuSZ’s

decompression
• Optimize these algorithms to more effectively take advantage of GPU architectures
• Future work to be done

• Incorporate optimizations into a Huffman coding library
• Extend work to other applications of Huffman decoding



23

Thank you! 
All the questions and ideas are welcomed 

Dingwen Tao: dingwen.tao@wsu.edu
Cody Rivera: cjrivera1@crimson.ua.edu

Contact:

mailto:dingwen.tao@wsu.edu
mailto:cjrivera1@crimson.ua.edu

