
Journal of Parallel and Distributed Computing 151 (2021) 70–85

D
a

b

c

d

e

f

m
a
a
f
F
p
M
s
v
t

U

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

TSM2X: High-performance tall-and-skinnymatrix–matrix
multiplication on GPUs
Cody Rivera a,1, Jieyang Chen b,1, Nan Xiong c, Jing Zhang d, Shuaiwen Leon Song e,
ingwen Tao f,a,∗

The University of Alabama, Tuscaloosa, AL 35487, USA
Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
University of California, Riverside, Riverside, CA 92521, USA
University of Colorado Colorado Springs, CO 80918, USA
The University of Sydney, NSW 2006, Australia
Washington State University, Pullman, WA 99164, USA

a r t i c l e i n f o

Article history:
Received 28 July 2020
Received in revised form 20November 2020
Accepted 8 February 2021
Available online 17 February 2021

Keywords:
Matrix–matrix multiplication
Tall-and-skinny matrix
GPU
CUDA
Performance optimization

a b s t r a c t

Linear algebra operations have been widely used in big data analytics and scientific computations.
Many works have been done on optimizing linear algebra operations on GPUs with regular-shaped
input. However, few works focus on fully utilizing GPU resources when the input is not regular-shaped.
Current optimizations do not consider fully utilizing the memory bandwidth and computing power;
therefore, they can only achieve sub-optimal performance. In this paper, we propose two efficient
algorithms – TSM2R and TSM2L – for two classes of tall-and-skinny matrix–matrix multiplications
on GPUs. Both of them focus on optimizing linear algebra operation with at least one of the input
matrices tall-and-skinny. Specifically, TSM2R is designed for a large regular-shaped matrix multiplying
a tall-and-skinny matrix, while TSM2L is designed for a tall-and-skinny matrix multiplying a small
regular-shaped matrix. We implement our proposed algorithms and test on several modern NVIDIA
GPU micro-architectures. Experiments show that, compared to the current state-of-the-art works,
(1) TSM2R speeds up the computation by 1.6x on average and improves the memory bandwidth
utilization and computing power utilization by 18.1% and 20.5% on average, respectively, when the
regular-shaped matrix size is relatively large or medium; and (2) TSM2L speeds up the computation
by 1.9x on average and improves the memory bandwidth utilization by up to 9.3% on average when
the regular-shaped matrix size is relatively small.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Matrix–matrix multiplication (GEMM) has been one of the
ost extensively used linear algebra operations in big data an-
lytics and scientific computations. Due to many factors (such as
lgorithms, input data, etc.) the size or shape of input matrices
or GEMM usually varies when it is used in different applications.
or example, many modern highly scalable scientific simulation
ackages in the field of fluid dynamics, such as Finite Element
ethod (FEM) simulations, need to compute many GEMMs with
mall-sized input matrices. Artificial neural networks (ANN) in-
olve using GEMM with small to medium input matrices. Ma-
rix decompositions uses GEMM with large-sized input matrices

∗ Corresponding author at: Washington State University, Pullman, WA 99164,
SA.

E-mail address: dingwen.tao@wsu.edu (D. Tao).
1 Cody Rivera and Jieyang Chen have contributed equally to this work.
https://doi.org/10.1016/j.jpdc.2021.02.013
0743-7315/© 2021 Elsevier Inc. All rights reserved.
[7,22,27,28]. Thus, besides large-sized input, which has already
been extensively optimized during the past decades, GEMM with
small to medium sized input has also drawn much attention to re-
cent researchers. For instance, Dong et al. [15] proposed MAGMA-
Batched, which aims to batch small input matrices into larger
ones in order to utilize the highly optimized implementations for
large input size on GPUs. Heinecke et al. [18] proposed to speed
up GEMM with small input using architecture and instruction
level optimization on modern CPU architectures.

Although previous works have focused on optimizing GEMM
with different matrix sizes, most of them only assume that the
input matrices are regular-shaped. In other words, the size men-
tioned in their works usually refers to both dimensions of the
input matrix. For example, a small matrix means both of its width
and height are small and their magnitudes are close to each
other. When the dimensions of the input matrices have signifi-
cant difference, we consider them as irregular-shaped inputs. In
particular, many irregular-shaped inputs involve tall-and-skinny

https://doi.org/10.1016/j.jpdc.2021.02.013
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2021.02.013&domain=pdf
mailto:dingwen.tao@wsu.edu
https://doi.org/10.1016/j.jpdc.2021.02.013


C. Rivera, J. Chen, N. Xiong et al. Journal of Parallel and Distributed Computing 151 (2021) 70–85

m
t
o
b
h
a
s
t
i
t
a

s
i
t
a
t
a
s
e
G
b
i
w
a
a
i
a
m
i
(
m

G
m
o
o
o
c
o

S
b
t
c
k
n
o
m
c
b
i
s
m
s
c
c

w
s
s
d
s
S
I

2

2

i
i
t
t
2
m
c
m
i
o
t
m
f
a
m
a
s
s
c
d
c
f
a
e
a

atrices, in which their widths are significantly smaller then
heir heights. Although few works have been done to study and
ptimize GEMM with tall-and-skinny input, this input case has
een widely used in many applications [8]. For instance, recent
ighly optimized K-means implementations [14,20] use GEMM
s their core computation, and the input size is mostly tall-and-
kinny. This is because the number of centroids is usually far less
han the number of input data points. Moreover, when GEMM
s used for encoding checksums for many algorithm-based fault
olerance applications [3–6,19,21,29,30,36–38], the input involves
tall-and-skinny checksum weight matrix.
Previous efforts made for optimizing GEMM with regular-

haped input may not work for non-regular shaped input. For
nstance, Chen et al. [5] illustrate that calculating GEMM with
all-and-skinny input using the vendor’s highly optimized linear
lgebra library (e.g., cuBLAS [2]) is slower than disassembling
he tall-and-skinny input matrix into several vectors and then
pplying matrix–vector multiplications. However, it can be easily
een that even with this workaround the computation is not
fficient, since elements in input matrices are accessed by the
PU more times than necessary. Although the performance can
e optimized by grouping many tall-and-skinny input matrices
nto large ones similar to the approach proposed, there are cases
here this grouping approach is not feasible. For example, tall-
nd-skinny input matrices may be generated one at a time from
producer process in user’s workflow. Grouping several of them

nto a large matrix requires extended waiting time, which is not
pplicable for time-sensitive applications. On the other hand, the
emory space may limit the total number of matrices that can fit

nto the memory at the same time, if the input matrices are large
e.g., multiplication of regular-shaped large and tall-and-skinny
atrices).
In this work, we target on optimizing the computation of

EMM with tall-and-skinny input on the GPU platform since
any applications that use GEMM are deployed on GPUs. So, our
ptimization greatly benefits those applications. The key insight
f our work is that the computation characteristic of GEMM
n modern computing systems is not always unchanged as we
hange the shape of input matrices. For example, when the sizes
f regular-shaped matrices are large (i.e., m ≃ k ≃ n ≫ 1 for an

m× k matrix multiplying an k× n matrix), the compute-to-load
ratios of each element in the input matrices are O(m) ≈ O(n).
o, the regular-shaped GEMM operations are usually compute-
ound especially for large matrices. However, when the input is
all-and-skinny (i.e., m ≃ k ≫ n or m ≫ k ≃ n), the average
ompute-to-load ratio is reduced to around O(1). Moreover, when
is very small (i.e., m ≫ k ≃ n), each GPU thread would
ot perform enough workload to hide latency and hence low
ccupancy. Therefore, depending on the relationship between
, k, and n, and the performance characteristics of GPUs, the
omputation can be compute-bound, memory-bound, or latency-
ound. Specifically, when (1) m ≃ k ≫ n, as n gets larger,
t moves toward compute-bound; (2) m ≃ k ≫ n, as n gets
maller, it moves toward memory-bound; and (3) m ≫ k ≃ n, it
oves toward latency-bound. To optimize GEMM with tall-and-
kinny input, it is critical to design a computation algorithm that
onsiders all compute-bound, memory-bound, and latency-bound
ases.
The main contributions of this paper include:

• We study the limitation of current state-of-the-art GEMM
implementations with tall-and-skinny inputs (i.e., m ≃ k≫
n or m ≫ k ≃ n). With benchmarking, we find that the
under-utilization of GPU resources is the main reason for
performance degradation when the input is tall-and-skinny.
71
• To handle a broad spectrum of tall-and-skinny inputs for
GEMM on GPUs, we design two classes of algorithms with
optimizations focusing on different tall-and-skinny input
cases: (1) TSM2R is designed to handle a large regular-
shaped matrix multiplying a tall-and-skinny matrix (i.e., m
≃ k≫ n); (2) TSM2L is designed to handle a tall-and-skinny
matrix multiplying a small regular-shaped matrix (i.e., m≫
k ≃ n).
• We present a performance model for TSM2R and compare it

with our evaluation performance results. Moreover, we ex-
amine the inadequacies of the model for TSM2L and further
improve it based on our observations.
• We carefully implement TSM2R and TSM2L using CUDA C2

and evaluate them on four generations of NVIDIA GPUs
including Kepler, Maxwell, Pascal, and Volta. Experiments
show that our TSM2R and TSM2L can achieve 1.6x and
1.9x speedups, respectively, on average with different tall-
and-skinny inputs, compared to the state-of-the-art GEMM
library cuBLAS.

The rest of this paper is organized as follows. In Section 2,
e give a formal definition of tall-and-skinny matrix and show
ome preliminary benchmark results of the GEMM with tall-and-
kinny matrix using cuBLAS. In Section 3, we propose our detailed
esign of TSM2R and TSM2L for two different kinds of tall-and-
kinny inputs. In Section 4, we present our evaluation results. In
ection 5, we examine related works for tall-and-skinny inputs.
n Section 6, we conclude the paper.

. Background

.1. Tall-and-skinny input for GEMM

In this work we restrict our scope to handle irregular-shaped
nputs that involve tall-and-skinny matrices. The tall-and-skinny
nput size means that, for the two input matrices, at least one ma-
rix is tall-and-skinny (i.e., one dimension is significantly smaller
han the other). For example, either (i) input matrix A with size
0 480 × 20480 and matrix B with size 20480 × 2 or (ii) input
atrix A with size 20480 × 2 and matrix B with size 2 × 2 is
onsidered as tall-and-skinny input in our work. Tall-and-skinny
atrices are a typical class of matrices that can be found in

rregular-shaped inputs for GEMM. In this paper, we focus on
ptimizing GEMM with (i) one large regular input matrix and one
all-and-skinny input matrix and (ii) one tall-and-skinny input
atrix and one small regular input matrix. In this paper, for the

irst case, we let matrix A be the larger input matrix (m × k)
nd matrix B (k × n) be the tall-and-skinny input matrix, where
≃ k ≫ n; for the second case, we let matrix A be the tall-

nd-skinny input matrix (m × k) and matrix B (k × n) be the
maller input matrix, where m ≫ k ≃ n. We choose these input
izes and shapes because we believe they can expose most of the
hallenges in processing all kinds of tall-and-skinny input, so the
esign idea and optimization techniques introduced in this paper
an be easily applied to other cases with slight modification. Also,
or simplicity’s sake, we choose to let the larger matrix in (i)
nd smaller matrix in (ii) to be square-shaped in most of our
xperiments. Our optimization can work with non-square input
s well with similar effects.

2 The TSM2X code is available at https://github.com/codyjrivera/tsm2x-imp.

https://github.com/codyjrivera/tsm2x-imp


C. Rivera, J. Chen, N. Xiong et al. Journal of Parallel and Distributed Computing 151 (2021) 70–85

2

b
b
d
G
l
l
b
u
t
p

o
i
i
T
o
F
t
(
l
s
p
b
c
b
i
t

3

s
e
h
t

.2. cuBLAS

One of the most commonly used standard linear algebra li-
raries optimized for the GPU is the cuBLAS library developed
y NVIDIA. cuBLAS is the core computing library of many big
ata and scientific computing applications. For example, it is the
PU computing library for MAGMA heterogeneous linear algebra
ibrary [16,31,32], cuLA library [12], and cuDNN deep learning
ibrary [11]. With NVIDIA’s deep optimization, the cuBLAS li-
rary is able to provide state-of-the-art performance in many
se cases. For example, with large regular-shaped input matrix,
heir GEMM implementation is able to achieve near peak GPU
erformance [9].
However, we found that the GEMM subroutine is not fully

ptimized with certain input matrix sizes [6]. For example, with
nputs that involve tall-and-skinny matrices, the GEMM operation
n current best implementation (cuBLAS 9.0 running on NVIDIA
esla K40c GPU) uses less than 10% of the theoretical peak mem-
ry bandwidth on average with n = 2 (as demonstrated in
ig. 7(a)–(b)). When n = 16, the same GEMM operation uses less
han 20% of the theoretical peak memory bandwidth on average
as demonstrated in Fig. 7(g)–(h)). The resource utilization is even
ower with larger input dimensions. By comparing the two input
izes, it can be seen for input with smaller n values, the com-
utation utilizes higher memory bandwidth (close to memory
ound). On the other hand, for input with larger n values, the
omputation utilizes higher computing power (close to compute
ound). However, since we are unable to analyze the GEMM
mplementation in the closed-source cuBLAS library, it is hard to
ell its exact computational characteristics.

. Design methodologies

To handle the GEMM with two different classes of tall-and-
kinny inputs on GPUs described in Section 2.1, we design two
fficient algorithms: TSM2R and TSM2L. TSM2R is designed to
andle inputs with one large-to-medium regular-shaped ma-
rix and one tall-and-skinny matrix, while TSM2L is designed
to handle inputs with one tall-and-skinny matrix and one small
regular-shaped matrix. Note that ‘‘R’’ or ‘‘L’’ means that the tall-
and skinny matrix is multiplied on the right or left.

3.1. Design of TSM2R

In this section, we describe our proposed algorithm TSM2R for
GEMM with a large regular-shaped matrix and a tall-and-skinny
matrix.

3.1.1. Insight on tall-and-skinny input
For regular-shaped GEMM (m × k matrix multiplies k × n

matrix), the input matrices’ total size is O(mk + kn), while the
computing time complexity is O(mkn), so each element in the
input matrices is used O(m) or O(n) times within the entire
computation process. Since loading data to the GPU from the off-
chip DRAM (i.e., global memory) to GPU is expensive and to avoid
extensive data load operations, one common optimization for this
kind of problem is minimizing the number of times each element
needs to be loaded into the GPU by using fast on-chip memory
(e.g., cache, registers) to enable data reuse. As the number of
loads reduces, optimized GEMM tends to be compute-bound. For
example, current GEMM implementation in cuBLAS library can
reach near bare-metal performance on GPUs [9].

However, unlike regular-shaped GEMM, when one matrix is
tall-and-skinny (e.g., n ≪ m, k), each element in the input
matrices is used O(n) times on average:
(m× k)× n times+ (k× n)×m times

≈ O(n) times.

m× k+ k× n

72
Require: input matrix A (m× k) and B (k× n), output matrix C (m× n)
1: for i = 1 to n do
2: for j = 1 to k do
3: C[global_tid, i]+ = A[global_tid, j] × B[j, i]
4: end for
5: end for

Algorithm 1: Each thread’s workload with inner product.

Depending on the size of n and target GPU peak computing power
and memory throughput ratio, the computation can be either
compute-bound or memory-bound. When n gets smaller, the
computation tends to be memory-bound. Otherwise, the problem
tends to be compute-bound. In either case, the problem is always
near the boundary between memory bound and compute bound,
so it is critical to design an algorithm that is optimized for both
cases.

3.1.2. Algorithm design
Algorithm design plays a critical role in our proposed opti-

mizations. First, we need to consider how to fit the workload
of our TSM2R into the programming model of CUDA (i.e., thread
hierarchy). Although the workload can be easily decomposed
into many independent smaller workloads, careful consideration
of the workload distribution is still necessary, since any un-
necessary performance penalty can cause drastic GPU resource
under-utilization. Several factors are considered in our design:

1. Total number of global memory accesses;
2. Shared and global memory access efficiency;
3. Utilization of overall memory bandwidth;
4. Parallelism of overall workload;
5. On-chip memory utilization;
6. Streaming Multiprocessor (SM) utilization;
7. Optimization for compute & memory-bound cases.

To achieve good performance, there must exist enough active
threads in each SM of the GPU to ensure proper instruction and
memory access latency hiding. So, in our algorithm we divide
the workload by assigning n rows of matrix A to n different
threads. Each vector-matrix multiplication is assigned to one
thread (i.e., (A[i, :]×B)). The benefit is three-fold: (1) this ensures
high parallelism and high SM occupancy; (2) since the number of
elements of matrix A is much higher than matrix B, this kind of
distribution ensures that matrix A is accessed as little as possible;
(3) it also enables high memory access efficiency and throughput,
since all memory accesses to matrix A are naturally coalesced
(assuming matrices are stored in column-major by convention).

As for the vector-matrix multiplication assigned to each
thread, to further reduce the number of memory accesses to
matrix A, we use outer-product style computation instead of the
usual inner-product style computation. As shown in Algorithm 1,
if we use inner-product, each element of matrix A is repeatedly
referenced n times. On the other hand, if we use outer-product
as shown in Algorithm 2, each element of matrix A is referenced
only once. (Please note, as we will discuss in later sections, when
n is larger than a certain threshold, elements in matrix A still need
to be referenced more than once due to the limited resources
available for each thread, but it is still far lower than using inner-
product.) When matrix A is large, the benefit is significant, since
it greatly reduces the total number of global memory accesses
during the entire GEMM computation. Also, the outer-product
style does not bring any extra memory accesses to matrix B
compared to inner-product style. The only cost for outer-product
is extra registers holding n intermediate results. However, with
proper tuning, the benefit of fewer memory accesses outweighs
this cost.



C. Rivera, J. Chen, N. Xiong et al. Journal of Parallel and Distributed Computing 151 (2021) 70–85

R
R

3

e
t
(
l
a
g
w
b
s
a

s
a
c
1
f
t
r
S

t
p

w
s
p
m
t
o
g
w

d
m
i
b
t
a
e
m
g
m

p
d

3

l

equire: input matrix A (m× k) and B (k× n)
equire: output matrix C (m× n)
1: Reg1:n ← C[global_tid, 1 : n]
2: for i = 1 to k do
3: Reg1:n+ = A[global_tid, i] × B[i, 1 : n]
4: end for
5: C[global_tid, 1 : n] ← Reg1:n

Algorithm 2: Each thread’s workload with outer product.

.1.3. Efficient off-chip memory access
One key factor of optimizing memory intensive applications is

nsuring high off-chip memory access efficiency. Depending on
he GPU model type or runtime configurations, global memory
off-chip) accesses of threads within the same warp can be coa-
esced into 128 byte- or 32 byte-transactions [10] if their access
ddresses fall into the same 128 byte- or 32 byte-segments in
lobal memory, which enables efficient use of memory band-
idth. Otherwise, the GPU still loads memory in 128 byte- or 32
yte-transactions, but it may contain unrequested data that are
tored in neighbor addresses, which causes inefficient memory
ccesses.
Since each thread reads one row of matrix A and the matrix is

tored in column-major format by convention, memory accesses
re naturally coalesced when threads within the same warp ac-
ess elements on different rows but on the same column. So,
00% memory access efficiency is achieved on matrix A. However,
or matrix B, all threads access the same element at the same
ime, which results in a single memory transaction containing one
equested element and several unrequested neighbor elements.
o, only 8 bytes

128 bytes = 6.25% or 8 bytes
32 bytes = 25% memory access

efficiency is achieved for accessing 64-bit double floating point
elements. Although the total number of elements in matrix B
is small, given that each element needs to be accessed n times,
his inefficient access pattern can still greatly impact the overall
erformance.
To improve the efficiency of memory accesses to matrix B,

e utilize shared memory in GPU. Since it is located on-chip,
hared memory gives us the speed of L1 cache and it is fully
rogrammable. Threads within one thread block can use shared
emory to share data. So, one key advantage of shared memory is

hat it eliminates the need for the consistency between patterns
f data loading and data using pattern, which enables us to load
lobal memory in the most efficient way and keep the way that
e use data as before.
By using shared memory for accessing matrix B, we can re-

uce the total number of memory accesses and enable coalesced
emory access. As shown in Algorithm 3, for each iteration,

nstead of letting threads request elements they need individually
y themselves inefficiently, we now let a block of threads work
ogether to fetch a tile of matrix B into the shared memory in
coalesce-compatible way (Line 11). Then during computation,
ach thread references elements in matrix B through the shared
emory instead of loading each one of them individually from
lobal memory. This reduces the total number of accesses to
atrix B from global memory (from n to n/t1 per element). Also,

threads in a same thread block fetch elements of matrix B column
by column, which enables coalesced memory access and greatly
improves memory-access efficiency to 100%. Moreover, we also
introduce three parameters: t1, t2, and t3 in Algorithm 3. These
arameters are used for adjusting the performance and will be
iscussed in later sections.

.1.4. Optimizing use of shared memory
Although fast, elements in shared memory still need to be

oaded into registers before using them [26]. Its access speed can
73
Require: input matrix A (m× k) and B (k× n), output matrix C (m× n)
1: t1 ← tile_size_B, t2 ← tile_size_C , t3 ← tile_size_A
2: Register: A1, A2, ..., At3
3: Register: C1, C2, ..., Ct2
4: Shared Memory: currB with size t1 × t2
5: Threads per thread block← t1
6: Total thread blocks← m/t1
7: for p = 1 to n with step size = t2 do
8: C1:t2 ← C[global_tid, p : p+ t2 − 1]
9: for j = 0 to k with step size = t1 do

/* Load a tile of B into shared memory */
10: ThreadsSynchronization()
11: currB[global_tid, 1 : t2] ← B[j+ global_tid, p : p+ t2 − 1]
12: ThreadsSynchronization()
13: for l = j to j+ t1 with step size = t3 do

/* Load a tile of A into registers*/
14: A1:t3 ← A[global_tid, l : l+ t3 − 1]
15: C1:t2+ = A1:t3 × currB[l : l+ t3, 1 : t2]
16: end for
17: end for
18: C[global_tid, p : p+ t2 − 1] ← C1:t2
19: end for

Algorithm 3: TSM2R with shared memory.

affect the overall performance. Shared memory is divided into
several same-sized memory banks for fast parallel accesses. Dif-
ferent threads can access different memory banks simultaneously.
So, having a total of b memory banks can speedup overall shared
memory throughput by up to b times compared to the throughput
of one single memory bank. However, if x threads in the same
warp access different data from the same memory bank, an x-way
bank conflict occurs and each request is processed sequentially,
which dramatically reduces the accessing throughput by a factor
of 1/x.

In our algorithm, threads in the same thread block load data
from global memory into shared memory column by column
to enable fast coalesced global memory access. Then threads
access data from shared memory row by row during computation.
How we store elements in shared memory will affect how these
elements are accessed from memory banks, which affects the
throughput of shared memory. We have two ways of storing a
tile of matrix B in shared memory: column-major storage and
row-major storage. To choose between the two ways, we need
to analyze and compare which way brings the least overall bank
conflict. We assume the size of one tile of matrix B is t1×t2 and t1
is the multiply of total number of memory banks b for simplicity.

For column-major storage, elements (32-bit words or 64-bit
words) in the same column of one tile of matrix B are stored in
successive memory banks. So, for shared memory with b memory
banks, t1 elements of one column are stored in b different succes-
sive memory banks with each bank storing at most t1

b elements
and being accessed by at most warp size

b threads at the same time,
which may potentially cause bank conflict if warp size

b is greater
than one.

For row-major storage, elements in the same row of matrix B
are stored in successive memory banks. So, elements of the same
column are stored in b

t2
different banks, where each bank stores

t1×t2
b elements from one column. Since each bank has t2 times

more elements from one column, each bank has at most t2 times
more threads accessing it at the same time: warp size

b × t2, which
may also potentially cause bank conflict.

On modern NVIDIA GPUs, the warp size is fixed to 32 and
total number of banks is also 32 [10], so column-major storage
does not cause bank conflict, since each bank can only have
up to one thread accessing. Row-major storage can cause up to
t -way bank conflict, which decreases overall shared memory
2



C. Rivera, J. Chen, N. Xiong et al. Journal of Parallel and Distributed Computing 151 (2021) 70–85

a
e
3
c
2
t
v

t

1
1
1
1

1
1
1
1

1
2
2
2

2
2
2

2
2
2
2

p
(
b

Fig. 1. Comparing column-major (left) with row-major (right) storage for storing
64 × 2 tile of matrix B in shared memory. Blue and yellow squares represent
lements in the first and second column. When one warp of 32 threads accessing
2 elements in one column (e.g. element 0 to 31 of the first column), the
olumn-major storage brings no bank conflict and row-major storage brings
-way bank conflict, which reduces throughput by half. (For interpretation of
he references to colour in this figure legend, the reader is referred to the web
ersion of this article.)

hroughput to 1
t2

of the peak throughput. As shown in Fig. 1, we
load a 64× 2 matrix tile into shared memory using column-major
storage (left) and row-major storage (right). When using column-
major storage, threads in one warp all access different banks, so
no bank conflict occurs. But when using row-major storage, 32
elements are stored in 16 banks causing 2-way bank conflict.
When accessing elements in shared memory for computation,
threads in a warp all access the same element at the same time
in our algorithm. Although multiple threads are accessing one
bank, they are accessing the same element, so one broadcast is
initiated, which does not cause bank conflict. It is the same for
both storage styles. So, we choose column-major storage as it
brings no bank conflict and potentially brings the highest shared
memory throughput.

3.1.5. Overlapping computation and memory access latency
During execution, for each instruction issuing moment, each

warp scheduler picks an eligible warp and send it to the corre-
sponding component for execution. A warp becomes eligible only
if all operands of its next instruction are ready. However, if a warp
is loading data from global memory, it will take several hundred
cycles before it can be ready for execution. To hide this long
latency, we can either increase the number of threads residing in
each SM to ensure there always exist eligible warps [33] or put
independent instructions in between data loading and data con-
suming operations, so that warps are also eligible for execution
during memory loading time. The first approach requires us to
adjust the on-chip resource usage of each thread block. We will
save that discussion for the next section. In this section, we aim
to add independent instructions in between data loading and data
consuming operations.

A shown in Algorithm 3, Line 11 and 14 load data from global
memory and Line 15 consumes data once data is loaded. How-
ever, due to data dependency, there is no independent instruction
in between, so once each warp issues global memory access
requests, it must wait for the requested elements to be ready
before it can proceed to computation.

So, to add independent instructions, we use data prefetching
to mix data loading and consumption between neighbor itera-
tions. Specifically, instead of letting each iteration loads data that
is going to be used for current iteration, we let the data needed
for current iteration to be loaded by the previous iteration, so that
its calculation will not be blocked by data loading (since the data
are ready). When doing calculation, it also loads data that is going
to be used for the next iteration. By overlapping data loading and
computation, we can significantly improve memory bandwidth
and SM utilization. We apply data prefetching to both matrix A
and B.
74
Require: input matrix A (m× k) and B (k× n), output matrix C (m× n)
1: t1 ← tile_size_B, t2 ← tile_size_C , t3 ← tile_size_A
2: Register: currA1 , currA2 ,...,currAt3
3: Register: nextA1 , nextA2 ,...,nextAt3
4: Register: nextB1 , nextB2 ,...,nextBt2
5: Register: C1 , C2 ,...,Ct2
6: Shared Memory: currB with size t1 × t2
7: Threads per thread block ← t1
8: Total thread blocks ← m/t1
9: for p = 1 to n with step size = t2 do
10: C1:t2 ← C[global_tid, p : p+ t2 − 1]

/*load the first tile of A and B*/
1: currB[local_tid, 1 : t2] ← B[local_tid, p : p+ t2 − 1]
2: currA1:t3 ← A[global_tid, 1 : t3]
3: for j = 0 to k with step size = t1 do
4: ThreadsSynchronization()

/*prefetch the next tile of B into registers*/
5: if j+ t1 < n then
6: nextB1:t2 ← B[j+ t1 + local_tid, p : p+ t2 − 1]
7: end if
8: for l = j to j+ t1 with step size = t3 do

/*prefetch the next tile of A into registers*/
9: if l+ t3 < n then
0: nextA1:t3 ← A[global_tid, l+ t3 : l+ t3 + t3 − 1]
1: end if
2: C1:t2+ = currA1:t3 × currB[l : l+ t3, 1 : t2]

/*load the prefetched tile of A from nextA registers into currA
registers*/

3: currA1:t3 ← nextA1:t3
4: end for
5: ThreadsSynchronization()

/*load the prefetched tile of B from nextB registers to shared
memory*/

6: currB[local_tid, 1 : t2] ← nextB1:t2
7: end for
8: C[global_tid, p : p+ t2 − 1] ← C1:t2
9: end for
Algorithm 4: TSM2R with shared memory and data prefetching.

Fig. 2. Example workload of one iteration of our optimized TSM2R with data
prefetching.

As shown in Algorithm 4, we design our TSM2R with data
refetching. Note that global_tid and local_tid represent the
global) thread ID in the grid and the (local) thread ID in the
lock, respectively. In Line 2 and 3, we allocate two sets of t3

registers for storing current tile of elements of matrix A and next
tile of element of matrix A for prefetching. In Line 4 and 6, we
allocate t2 registers for data prefetching of elements in matrix B,
and allocate t1 × t2 for storing currently loaded tile of matrix B.
Note that we cannot store current tile of matrix B in registers,
because elements in matrix B need to be shared between threads
during computation.

Before the core computation iteration (Line 13–27), we pre-
load current tile of matrix A and B into registers and shared
memory (Line 11 and 12), so that computation can start imme-
diately as soon as we enter the computation loop without being
blocked by any data dependency. The main computation resides
in Line 22. To overlap computation with memory accesses, we
initiate loading for the next tile before the computation (Line 16
for matrix B and Line 20 for matrix A). We use two loops for
loading matrix A and B, because we want to have the flexibility
to adjust loading pace (tile size) differently for the two matrices.
We will discuss this in the next subsection. Figs. 2 and 3 show
one iteration of our optimized TSM2R with data prefetching. LD

C and ST C represent loading initial values from matrix C and



C. Rivera, J. Chen, N. Xiong et al. Journal of Parallel and Distributed Computing 151 (2021) 70–85

t
f
t
l
a
a

r

Fig. 3. Matrix view of tall-and-skinny matrix–matrix multiplication with data
prefetching.

storing final results back to matrix C. Each iteration we show
three sub-iterations for loading matrix B. As we can see, we
compute and pre-load the next tile of matrix B concurrently
to improve memory bandwidth utilization. A thread barrier is
inserted in the end of each iteration. For the innermost iteration,
we do the actual computation and pre-load elements from matrix
A each time. Please note that the length of each rectangle does not
accurately represent the exact execution time length and the ratio
between number of LD nextA and LD nextB is not necessarily
wo in actual computation. Also, we show one thread block with
our threads only for illustration proposes. As we will discuss in
he next subsection that different parameter values can affect the
ength of each part and the ratio between number of LD nextA
nd LD nextB. Especially on the execution time of LD nextA
nd Compute, which will affect the characteristic of computation

(i.e. memory-bound or compute-bound). Also, for simplicity, we
ignore the data movement from next tile to current tile that
occurs in each iteration.

3.1.6. Parameters definition
In Algorithms 3 and 4, we introduced three adjustable pa-

ameters: t1, t2, and t3. In this section, we first discuss how
each parameter controls the computation of our TSM2R. Then,
we introduce our performance model that estimates how certain
performance metrics change with these parameters. Finally, we
explain our strategies for choosing values for these parameters
in order to achieve high GPU resource utilization and optimize
overall performance. Please note that the following discussions
are all based on Algorithm 4.

3.1.7. Behaviors of parameters
We first list the behaviors of each parameter below:

• t1 specifies the number of rows of one tile of matrix B. To
maximize use of available active threads and to avoid any
inefficient thread execution caused by warp divergence, we
let all threads in each thread block participate in fetching
elements of matrix B. For fast coalesced global memory
access, we let each thread fetch one row, so t1 is also the
total number of threads in each thread block. Also, since we
let a total of m threads work on the computation, the total
number of thread blocks can be calculated as: m/t .
1

75
• t2 specifies the number of elements in matrix C that each
thread is working on at a time. It is used to divide the overall
workload into several smaller workloads that are processed
iteratively by each thread. A smaller workload makes each
thread’s SM resource usage smaller, which allows us to
keep higher SM occupancy. However, dividing the workload
means we need to load matrix A repeatedly for each small
workload. So, there is a trade-off. t2 also affects the ratio
between total number of memory fetches and computation
operations in core part of our algorithm, which allows us
to adjust the computation to be compute or memory-bound
(will be discussed later in detail).
• t3 specifies the number of elements in matrix A that each

thread fetches at a time. Since elements fetches are inde-
pendent to each other, they can be done without blocking
each other, so t3 can be used to adjust the memory loading
concurrency.

3.1.8. Performance metrics estimation
In this section, we introduce our parameter-based perfor-

mance model that is used to estimate three important perfor-
mance metrics: SM occupancy, memory bandwidth utilization
and computing power utilization. These estimations will be used
for optimizing the overall performance.

• Max SM occupancy estimation
With these parameters we can calculate the max occu-
pancy of each SM, which is defined as max number of
active threads per SM. (Some works also use max number
of warps, which is similar to ours. We found that using
the maximum number of threads is more consistent across
our performance models. We also choose our thread block
size to be the dividend of this value to ensure the ex-
pected number of threads are active.) This occupancy is
mainly bound by the maximum hardware allowable num-
ber of threads (HW_MAX) and on-chip memory utilization
per thread. We first calculate the total number of registers
utilized per thread. Since register utilization can potentially
be optimized by the nvcc compiler, we use the maximum
number of registers to estimate this value. First of all, there
is a relatively fix amount of registers used for CUDA ini-
tial setup, and we represent this amount as C . We get its
amount through offline profiling. Then, we need two sets of
t2 registers for storing elements of matrix B for both next
tile fetching and current tile calculation. Please note that
although the current tile of matrix B is stored in shared
memory, it still needs to be transferred to registers for cal-
culation. Next, we need t2 registers for keeping intermediate
results of matrix C. Finally, we need two sets of t3 registers
for storing elements of matrix A for both next tile fetching
and current tile calculation. So, the total number of registers
is:

Rthread = (t2 × 3+ t3 × 2)×
bytes_per_element
bytes_per_register

+ C .

As for shared memory, although it is allocated per thread
block, we calculate the average amount of shared memory
that each thread uses for consistent calculation here. Since
the size of allocated shared memory per thread block is
t1 × t2, and as we will discuss earlier that we set t1 =
threads_per_threadblock, the amount of shared memory al-
located for each thread on average is:

Sthread = t2 × bytes_per_element.

So, the max SM occupancy can be calculated as:

MaxOccupSM = min(HW_MAX,
RSM

,
SSM ).
Rthread Sthread



C. Rivera, J. Chen, N. Xiong et al. Journal of Parallel and Distributed Computing 151 (2021) 70–85

3

m
b
p
I
b
p

t
a
u
b
c
i
h
b
t

t
L
m
t
1
a
B
m
B
t
i

In the above calculation, RSM and SSM stand for the max
available registers and shared memory per SM.
• Max memory bandwidth utilization estimation

Next, we estimate the max memory bandwidth utilization
of our algorithm when the computation is memory-bound.
In this case, loading elements of matrix A dominates the
computation instead of floating point calculations in our
algorithm. So, we can estimate max memory bandwidth
utilization using the maximum number of concurrent global
memory accesses per SM. It can be calculated as:

Concurrentmem ≈ MaxOccupSM × t3.

Note that we only consider the memory accesses to matrix A
here for simplicity. Since the majority of memory accesses
are for matrix A, this only brings minor inaccuracy. Then,
similar to [33,35] we calculate the least number of con-
current memory accesses per SM needed to achieve max
memory bandwidth utilization using Little’s Law:

Throughputmax_mem =
Peak Band.

#_of _SM × core_clock
,

Concurrentmax_mem = latencymem × Throughputmax_mem.

The latencymem is the average global memory access latency,
which is considered as a constant in our model and is
obtained through offline profiling. The estimated memory
bandwidth utilization is:

Utilmem =
Concurrentmem

Concurrentmax_mem
.

• Max computing power utilization estimation
Next, we estimate the max computing power utilization of
our algorithm when the computation is compute-bound. In
this case, floating point calculation dominates the computa-
tion instead of memory accesses in our algorithm. So, we
can estimate max computing power utilization using the
maximum number of concurrent floating point operations
per SM. It can be calculated as:

Concurrentcomp = MaxOccupSM × t3 × t2.

Then, also similar to [33] we calculate the least number
of concurrent floating point operations per SM needed to
achieve max computing power utilization using Little’s Law:

Throughputmax_comp =
Peak Perf .

#_of _SM × core_clock
,

Concurrentmax_comp = latencycomp × Throughputmax_comp.

The latencycomp is the average latency of floating point oper-
ations in our calculations, which is considered as a constant
in our model and is obtained through offline profiling. So,
the estimated computing power utilization is:

Utilcomp =
Concurrentcomp

Concurrentmax_comp
.

• Determine compute-bound or memory-bound
Given parameters and GPU specification, we can determine
whether the current computation is memory or compute-
bound. This is mainly determined by the innermost loop
(Line 20–24) of Algorithm 4. The memory loading instruc-
tions (Line 21) overlap the computation (Line 23). Since
Line 24 depends on memory loading results, it serves as
an implicit synchronization point for memory loading and
computation. The time taken for the two parts will deter-
mine whether the current computation is compute-bound
76
or memory-bound. So, we first estimate the time taken for
computation and memory access as follows:

timecomp =
t3 × t2

Peak Perf .× #_of _SM × OccupancySM
,

timemem =
t3 × bytes_per_elem.

Peak Band.× #_of _SM × OccupancySM
.

Then, by comparing the two time costs, we can deter-
mine whether the current computation is compute-bound
or memory-bound.

r =
timecomp

timemem
=

t2
bytes_per_elem.

×
Peak Band.
Peak Perf .

As we can see, when r is greater than one, the computation
is compute-bound. Otherwise, the computation is memory-
bound. Also, since we divide the original workload into
several smaller workloads using t2, this ratio is determined
by t2. By adjusting t2, the actual computation can be shifted
between compute and memory-bound. The boundary be-
tween the two cases can be calculated by setting the ratio
r = 1, so we get a threshold for t2:

t threshold2 =
Peak Perf .
Peak Band.

× bytes_per_elem.

Similarly, we can also estimate the computation charac-
teristics of the original problem, in which the workload
is not divided into smaller workloads. In this case, t2 is
always fixed to k. So, by comparing k with t threshold2 we can
estimate the computation characteristics. If k is greater than
t threshold2 , the original problem is compute-bound; otherwise,
it is memory-bound. It can be easily seen, depending on
the value of t2 and k, the computation characteristics of
the current problem and original problem can be different,
which can affect the overall performance. We discuss this in
later part of this section.

.1.9. Deciding parameters
When choosing parameters, the first thing we should deter-

ine is whether we should optimize for computation or memory
andwidth. This is determined by whether the given TSM2R com-
utation on the given GPU should be compute or memory-bound.
n the last section, we proposed to estimate this characteristic
y comparing n and t threshold2 , so that we can accordingly adjust
arameters to optimize the computation.
In the case where original problem is memory-bound (n ≤

threshold
2 ), we need to keep the actual computation memory-bound
lso (let 1 ≤ t2 ≤ n) and optimize for memory bandwidth
tilization. On the other hand, if the original problem is compute-
ound (n > t threshold2 ), we first try to keep the actual computation
ompute-bound too (let t threshold2 ≤ t2 ≤ n) and optimize comput-
ng power utilization. However, in the case where t threshold2 is too
igh on the given GPU, we also try to optimize it for memory-
ound (let 1 ≤ t2 ≤ t threshold2 ) and output the result parameters
hat deliver better performance.

Algorithm 5 shows the parameter optimization procedure for
2 and t3. We first determine the computation characteristic in
ine 1. If it is memory-bound, we optimize for the total global
emory access time (Line 4). Otherwise, we optimize for either

otal computation time (Line 9) or memory access time (Line
4). Please note that we only count the total amount of memory
ccesses to matrix A for simplicity, since total accesses to matrix
is much less than matrix A, so this simplification only brings
inor inaccuracy. Also, considering the total accesses to matrix
would bring one additional parameter (t1), which can be hard

o optimize since t1 is also related to threads organization that
s hard for modeling-based estimation. The memory bandwidth



C. Rivera, J. Chen, N. Xiong et al. Journal of Parallel and Distributed Computing 151 (2021) 70–85

n
o
g
e
b
t
m

3

m
l
A
a
l
o
t

1: if n ≤ t threshold2 then
2: Total_memory ≈ m× k× n

t2
× bytes_per_elem.

3: Bandwidth = PeakBand.× Utilmem
4: Use Gradient Descent to Optimize (t2 and t3): Time = Total_memory

Bandwidth with
1 ≤ t2 ≤ n and 1 ≤ t3

5: Output: t2 and t3
6: else
7: Total_flops = m× k× n× 2
8: Compute_power = PeakPerf .× Utilcomp

9: Use Gradient Descent to Optimize (t2 and t3): Time1 = Total_flops
Compute_power with

t threshold2 ≤ t2 ≤ k and 1 ≤ t3
10: t2(time1) ← t2
11: t3(time1) ← t3
12: Total_memory ≈ n× n× k

t2
× bytes_per_elem.

13: Bandwidth = PeakBand.× Utilmem
14: Use Gradient Descent to Optimize (t2 and t3) in Time2 = Total_memory

Bandwidth with
1 ≤ t2 ≤ t threshold2 and 1 ≤ t3

15: t2(time2) ← t2
16: t3(time2) ← t3
17: if Time1 < Time2 then
18: Output: t2(time1) and t3(time1)
19: else
20: Output: t2(time2) and t3(time2)
21: end if
22: end if

Algorithm 5: Parameter optimization for TSM2R.

utilization term (Utilmem) and computing power utilization term
(Utilcomp) is calculated using the equation mentioned before. Since
we have two parameters (t2 and t3) in our optimization target, we
use Gradient Descent (GD) to do the optimization. In GD, based
on our experience, we set initial value of both t2 and t3 to be 1,
and step size to be 0.1. The stop threshold is set to be 10−4, since
we do not need very accurate precision. The final t2 and t3 are
rounded to the nearest integers.

To optimize t1, we find it only controls the number of threads
in each thread block. Since the total number of threads is fixed
to m, t1 only determines how these threads are organized into
thread blocks. There is trade-off: if t1 is large, the total number
of accesses to elements of matrix B is reduced, however, a large
thread block means a large number of threads need to participate
in the same synchronization, which may have an impact on
performance. On the other hand, if t1 is small, the total number
of accesses to elements of matrix B is higher, but the smaller
thread block makes scheduling more flexible and efficient. It is
hard to determine the optimum value of t1 theoretically, so we
use offline profiling to choose the best value. Specifically, once t2
and t3 are determined, we benchmark different t1 values that can
divide MaxOccupSM as mentioned earlier, and choose the t1 for
the best performance. Although t1 seems to have direct effect on
shared memory allocation (or max SM occupancy), it actually has
limited impact on it, since we fix the amount of shared memory
per thread (Sthread = t2 × bytes_per_element).

3.2. Design of TSM2L

The algorithm proposed in the above sections – TSM2R – is
optimized for the case where a large regular-shaped matrix mul-
tiples a tall-and-skinny matrix. In this section, we first propose a
new algorithm TSM2L to handle the case where a tall-and-skinny
matrix multiplies a small regular-shaped matrix. For example, an
input matrix A of size 102400 × 4 multiples an input matrix B of
size 4 × 4, where the tall-and-skinny matrix is multiplied on the
left. We then introduce two different optimization approaches to
overcome the bottleneck that this kind of tall-and-skinny input
poses.
77
Fig. 4. Memory bandwidth usage of very small values of k with double precision
(m = 15360, n = 16).

Require: input matrix A (m× k) and B (k× n)
Require: output matrix C (m× n)
1: tcf ← thread_count_factor
2: t1 ← tile_size_B, t2 ← tile_size_C , t3 ← tile_size_A
3: Register: currA1, currA2,...,currAt3
4: Register: nextA1, nextA2,...,nextAt3
5: Register: nextB1, nextB2,...,nextBt2
6: Register: C1, C2,...,Ct2
7: Shared Memory: currB with size t1 × t2
8: Threads per thread block← t1
9: Total thread blocks← m/(t1 × tcf )
10: Total threads← m/tcf

/*loop over all the horizontal tiles of matrix A*/
11: for r = global_tid to m with step size = Total threads do
12: Perform Line 9–29 of Algorithm 4 with all occurrences of the

identifier global_tid replaced by the identifier r
13: end for

Algorithm 6: Proposed optimization-1 for TSM2L.

3.2.1. Performance bottlenecks
We start by adapting our previous algorithm TSM2R to handle

the new case without further optimization. However, applying
the algorithm to this case reveals a bottleneck. We evaluate
TSM2R on this case with matrices of 15 360×k and k×16 – where
k varies – on an NVIDIA Tesla V100 GPU. As shown in Fig. 4, as
the inner dimension k decreases, the memory bandwidth usage
also decreases.

To explain these results, we expand upon the performance
model (Algorithm 4 and 5) proposed in Section 3.1 This model as-
sumes that the maximum theoretical occupancy is always achieved
throughout the computation. However, on the one hand, since the
algorithm loops k× n

t2 times, and k is very small, each thread does
ot perform enough workload to hide the latency, resulting in low
ccupancy. On the other hand, the program issues much fewer
lobal memory reads than the case with large k, resulting in less
fficient memory usage. Therefore, TSM2R performs in a latency-
ound mode (neither compute-bound nor memory-bound) on
his input case (i.e., a tall-and-skinny matrix multiplying a small
atrix), as indicated in a prior study [33].

.2.2. Proposed optimizations

Based on these observations, we design two further opti-
izations for TSM2L. Both optimizations intend to trade warp

atency for memory-access latency by launching fewer threads.
s a result, each thread performs more computation, and the
ccumulated warp latency can be replaced by the memory-access
atency. Since we are launching fewer threads than the number
f rows of matrix A, we must divide it into several horizontal
iles. Here we introduce a new parameter tcf to represent the tile



C. Rivera, J. Chen, N. Xiong et al. Journal of Parallel and Distributed Computing 151 (2021) 70–85

n
n

t
o

t
i
A
R

t
l
r
t
t
A
v
a
i
T
e

umber of matrix A in our algorithm. We launch m
tcf threads in the

ew kernel.
The first optimization involves dividing the multiplication into

cf parts, where each part consists of multiplying a m
tcf -row tile

f matrix A by the entire matrix B. In essence, this optimization
repeats the TSM2R algorithm once for each tile of matrix A. In
this optimization, each element of matrix A is still accessed n

t2
imes, though each element of B is loaded tcf × n

t2
times, which

s tcf times more than that in TSM2R. We describe the detail in
lgorithm 6.
equire: input matrix A (m× k) and B (k× n), output matrix C (m× n)
1: tcf ← thread_count_factor
2: t1 ← tile_size_B, t2 ← tile_size_C , t3 ← tile_size_A
3: Register: currA1 , currA2 ,...,currAt3
4: Register: nextA1 , nextA2 ,...,nextAt3
5: Register: nextB1 , nextB2 ,...,nextBt2
6: Register: C1 , C2 ,...,Ct2
7: Register: nextC1 , nextC2 ,...,nextCt2
8: Shared Memory: currB with size t1 × t2
9: Threads per thread block ← t1
10: Total thread blocks ← m/(t1 × tcf )
11: Total threads ← m/tcf
12: for p = 1 to n with step size = t2 do
13: currB[local_tid, 1 : t2] ← B[local_tid, p : p+ t2 − 1]
14: currA1:t3 ← A[global_tid, 1 : t3]
15: for j = 0 to k with step size = t1 do
16: ThreadsSynchronization()

/*prefetch the next tile of B into nextB*/
17: nextB1:t2 ← B[j+ t1 + local_tid− 1, p : p+ t2 − 1]
18: C1:t2 ← C[global_tid, p : p+ t2 − 1]

/*loop over all the horizontal tiles of matrix A*/
19: for r = global_tid to m with step size = Total threads do

/*prefetch the next tile of C into registers*/
20: if r + Total threads ≤ m then
21: nextC1:t2 ← C[r+Total threads, p : p+ t2 − 1]
22: end if
23: Perform Line 18–25 of Algorithm 4, with all occurrences of the identifier

global_tid replaced by the identifier r
/*store the sum so far in C*/

24: C[r, p : p+ t2 − 1] ← C1:t2
/*load the prefetched tile C from nextC to C*/

25: C1:t2 ← nextC1:t2
26: end for
27: ThreadsSynchronization()

/*load the prefetched tile B from nextB to shared memory*/
28: currB[local_tid, 1 : t2] ← nextB1:t2
29: end for
30: end for

Algorithm 7: Proposed optimization-2 for TSM2L.
The second optimization is to interleave the computation of

the tiles, rapidly loading elements from different tiles of matrix
A and loading and storing intermediate sums in matrix C . Once a
1 × t2 tile of matrix B is loaded, the intermediate results are
oaded, computed, and stored for each tile of matrix A. The C
egister set is loaded with values from matrix C which contains
he product accumulated so far. After the computation is finished,
he values are stored to matrix C again as the next tile of matrix
is prepared for computation. To quickly switch between tiles,
alues frommatrix C are prefetched in addition to the prefetching
lready described in Algorithm 4. A new set of registers, nextC1:t2 ,
s used to store the values of C associated with the next tile of A.
he elements of A and B are accessed only n

t2
times, though each

lement of C is accessed k
t1
×

n
t2

times. However, since we do not
achieve either high occupancy or high memory bandwidth in this
case, we are not as concerned about issuing more memory read
instructions. We describe the detail in Algorithm 7.

Fig. 5 illustrates the effects of the two optimizations on both
performance and memory bandwidth usage. As fewer and fewer
threads are launched, the impact of warp latency is replaced with
that of different kinds of latency such as memory bandwidth
latency. As a result, computation time decreases and memory
access bandwidth increases in this case. Note that for this case
the number of threads launched must be reduced to at least 1 of
64

78
m before a significant decline in speedup or memory bandwidth
utilization occurs. This is because the kernel must manage so
many threads that perform little work when m = 107.

Therefore, we must choose an appropriate tcf , determining the
number of threads to launch for each kernel. If the algorithm is
launched with an insufficient number of threads, the parallelism
becomes too low and hence the performance would suffer. If the
algorithm is launched with too many threads, the performance
would be impacted by warp latency just as it does in the naive
adaptation of TSM2R. We thus must determine an appropriate tcf
for each target system with offline profiling.

3.3. Design summary

We summarize the design of TSM2R and TSM2L, including our
performance model, in Table 1.

4. Experimental evaluation

4.1. Experiments setup

We implement our TSM2R and TSM2L using CUDA C for single
and double precision floating-point input. We disable compiler
auto unrolling in favor of explicit loop unrolling for better control
on register allocation. Note that since our proposed algorithms
mainly target traditional scientific computing applications rather
than machine learning applications, we omit an evaluation on
half-precision input. We evaluate our optimized implementa-
tions on two heterogeneous testbed clusters, which are Dar-
win [13] at Los Alamos National Laboratory and PantaRhei [25]
at the University of Alabama. We run each test on a single
GPU node with single GPU. We conduct our tests on four dif-
ferent commonly used modern NVIDIA GPUs with four different
micro-architectures: Kepler, Maxwell, Pascal, and Volta. For Ke-
pler GPU, we use Tesla K40c, which has 1430 GFLOPS peak double
floating-point performance and 288 GB/s memory bandwidth.
For Maxwell GPU, we use Tesla M40, which has 213 GFLOPS
peak double floating-point performance and 288 GB/s memory
bandwidth. For Pascal GPU, we use Tesla P100, which has 4600
GFLOPS peak double floating-point performance and 720 GB/s
memory bandwidth. For Volta GPU, we use Tesla V100, which
as 7500 GFLOPS peak double floating-point performance and 900
GB/s memory bandwidth. We provide more information about
our experimental clusters and GPUs in Table 2.

For comparison, we compare our TSM2R and TSM2L with
GEMM in the current latest cuBLAS library [2] and latest BLASX
library [34]. Also, we try to compare our work with KBLAS [1],
however since its GEMM kernel is based on cuBLAS, its perfor-
mance is identical to cuBLAS, so we omitted its results. Each
test is repeated multiple times to reduce noise and timed using
CUDA Events API. We measure performance by calculating the
performance of FAMD instructions. We also measure the global
memory throughput using nvprof on the command line with
--metrics gld_throughput option. In addition, we use --
metrics gld_efficiency option to verify if 100% global mem-
ory access efficiency is achieved in our optimization.

Our input matrices are initialized with random floating-point
numbers between 0 and 1. We test the multiplication of a large
squared matrix and a tall-and-skinny matrix for TSM2R and the
multiplication of a tall-and-skinny matrix and a small squared
matrix for TSM2L. Specifically, for TSM2R, the size of
the large regular-shaped matrix is from 10240 × 10240 to
30720× 30720, and the size of the tall-and-skinny matrix ranges
from 10 240 × n to 30 730 × n with n equals 2, 4, 8, and 16.
For TSM2L, the size of the tall-and-skinny matrix ranges from
104
× k to 107

× k with k equals 8 or 16, and the size of the

small regular-shaped matrix is 8 or 16.



C. Rivera, J. Chen, N. Xiong et al. Journal of Parallel and Distributed Computing 151 (2021) 70–85
Fig. 5. Performance comparison with single and double precision using different tcf (m = 107 , k = n = 16).
Table 1
Summary of TSM2R and TSM2L design.
TSM2R Large square or rectangular matrix by tall-and-skinny matrix
TSM2L Tall-and-skinny matrix by small square matrix

TSM2R optimizations Compute and memory-bound cases
Algorithm 1 Inner product only
Algorithm 2 Outer product: saves global memory accesses
Algorithm 3 Shared memory: more efficient global accesses to matrix B
Algorithm 4 Data prefetch: overlap compute and memory operations

TSM2L optimizations Latency bound cases
Algorithm 6 Divide matrix A into horizontal tiles: compute each tile sequentially
Algorithm 7 Divide matrix A into horizontal tiles: interleave the computation of each tile

Performance model
Parameter t1 Number of rows of a tile of Matrix B
Parameter t2 Number of elements of C each thread computes at a time
Parameter t3 Number of elements of A each thread fetches at a time
Utilcomp Computing power utilization term
Utilmem GPU memory bandwidth utilization term

t threshold2 =
Peak Perf .
Peak Band. × bytes_per_elem.

Determines whether a computation is compute-bound or memory-bound
Table 2
Experimental platforms with detailed GPU information.

Darwin PantaRhei

CPU Intel Xeon E5-2650v2 Intel Xeon Gold 6148
Memory 251 GB 384 GB
GPU Tesla K40c Tesla M40 Tesla P100 Tesla V100
Architecture Kepler Maxwell Pascal Volta
GPU memory 12 GB 12 GB 16 GB 16 GB
Peak performance (single) 5046 GFLOPS 6844 GFLOPS 10600 GFLOPS 15000 GFLOPS
Peak performance (double) 1430 GFLOPS 213 GFLOPS 4600 GFLOPS 7500 GFLOPS
Memory bandwidth 288 GB/s 288 GB/s 720 GB/s 900 GB/s
4.2. Evaluation of TSM2R

In this section, we first evaluate the performance of TSM2R
with different input sizes and compare it with state-of-the-art
libraries on K40c, M40, P100, and V100.
79
4.2.1. Tests with different optimization combinations
We use the GEMM in cuBLAS as our comparison baseline.

We apply different combinations of optimization in TSM2R and
compare themwith GEMM in cuBLAS and BLASX. We have in total
four versions of TSM2R:



C. Rivera, J. Chen, N. Xiong et al. Journal of Parallel and Distributed Computing 151 (2021) 70–85
Fig. 6. Speedup comparison with single and double precision on K40c (n = 2,
4, 8, 16).

• V0: the most straightforward inner product version as de-
scribed in Algorithm 1;
• V1: the outer version as in Algorithm 2. This version reduces

the total number of global memory accesses from algorithm
level;
• V2: based on outer production version as in Algorithm 2,

we add the use of shared memory, leading to more efficient
global memory access to matrix B;
• V3: based on the outer production version as in Algorithm

2 and the use of shared memory, we add data prefetch. This
is the best version of our optimized implementation, which
is described in Algorithm 4.

We provide detailed performance breakdowns on K40c and
V100, but our optimization behaves similarly on other GPUs.
To evaluate our optimization, we need to determine by which
resource our program is bounded. Since, t threshold2(k40c) ≈ 40, the
computation is always memory bound for the given n values. The
optimized parameters are: t = n, t = 4, and t = 128. The
2 3 1

80
Fig. 7. Memory bandwidth utilization comparison on K40c (n = 2, 4, 8, 16).

parameters are only applied to the last two versions of TSM2R.
Fig. 6 shows the speedup of different versions in single and
double precision. From the results, we can see that the TSM2R-V0
suffers from poor performance due to the requirement of much
higher number of global memory accesses in the inner product
version. TSM2R-V1, on the other hand, significantly improves the
performance compared to TSM2R-V0 (2.2x∼4.7x faster), since it
requires much lower number of global memory accesses. TSM2R-
V2 further improves the efficiency of global memory access to
matrix B, which plays a vital role in the overall performance. In
addition, the shared memory shares tiles of matrix B between
threads within a thread block, which also reduces the total num-
ber of memory accesses to matrix B. This leads to additional 1.1x
to 2.1x speedup. Finally, the data prefetch introduced in TSM2R-
V3 further mitigates the memory access bottleneck, which brings
additional 1.3x∼3.5x speedup (1.9x on average).

4.2.2. Memory throughput analysis
Fig. 7 shows the memory throughput of TSM2R-V3, cuBLAS

and BLASX in both single and double precision on K40c GPU.



C. Rivera, J. Chen, N. Xiong et al. Journal of Parallel and Distributed Computing 151 (2021) 70–85

4
m
T
w
i

m
f
4
t
f
r
t
t
m
g
s

Fig. 8. Speedup and computing power utilization comparison with double
precision on M40 (n = 16).

Fig. 9. Speedup and memory bandwidth utilization comparison with double
precision on P100 (n = 16).

Result shows that TSM2R brings 12.5%∼26.6% (17.6% on aver-
age) improvement on memory bandwidth utilization compared
with cuBLAS and 20.1%∼38.8% (24.3% on average) improvement
compared with BLASX.

4.2.3. Tests on different micro-architectures
In addition to Kepler micro-architecture, we also conduct tests

on newer Maxwell, Pascal, and Volta GPUs. Similar to the Kepler
GPU, we get t threshold2(m40) ≈ 6 and t threshold2(p100) ≈ 50. Tesla M40 has lower
computing power, so the computation with input with n = 16
is compute bound. Our parameter optimization procedure also
output parameters in favor of computing optimization: t2 = 8,
t3 = 4, and t1 = 256. As shown in Fig. 8, our optimized
implementation achieves 1.1x–1.9x (1.47x on average) speedup
on Tesla M40 with 7% to 37.3% (20.5% on average) computing
power usage improvement compared to the GEMM function in
cuBLAS 9.0. P100 has much stronger computing power, as we
can see the computation with input with n = 16 is mem-
ory bound. Our parameter optimization procedure also output
parameters in favor of memory optimization: t2 = 4, t3 =
, and t1 = 128. As shown in Fig. 9, our optimized imple-
entation achieves 1.1x∼3.0x (2.15x on average) speedup on
esla P100 with 17% to 47.6% (34.7% on average) memory band-
idth utilization improvement compared to the GEMM function

n cuBLAS.
We also test TSM2R on the NVIDIA Tesla V100 GPU with Volta

icro-architecture. Due to larger memory space on V100, we
urther increase the size of regular-shaped matrix to 40960 ×
0960. As t threshold2(v100) ≈ 70, the computation is memory-bound for
he given values. To ensure maximum performance and account
or the Volta’s architectural improvements, we optimize the pa-
ameters via brute-force. The optimized parameters are t1 = 128,
2 = n, and t3 = 32 for single precision. For double precision,
he optimized parameters are t1 = 128, t2 = n, and t3 = 16 if

< 10 240, or t3 = 12 otherwise. As shown in Fig. 10, we exhibit
radually improving performance from TSM2R-V0 to TSM2R-V2,
imilar to K40c. For TSM2R-V3, our best version, speedups of
81
Fig. 10. Speedup comparison with single and double precision on V100 (n = 2,
4, 8, 16).

up to 1.35x (0.91x on average) are achieved on single precision,
while speedups of up to 3.2x (1.5x on average) are achieved
on double precision. Note that the speedup for n = 16 on
single precision is slower than cuBLAS. This is due to cuBLAS’s
single-precision GEMM being optimized for 32 × 32 matrices;
thus we no longer target this case. Finally, we note that the
kernels achieve higher memory bandwidth utilization on V100
than on other GPUs, as shown in Fig. 11. This is partly attributed
to the improvements of Volta over previous micro-architectures.
More specifically, V100 with improved HBM2 memory allows
more workloads to obtain up to 19% more memory bandwidth
utilization than Pascal GPUs, according to its whitepaper [24]. We
provide experimental metrics for our TSM2R kernels in Table 3.

Due to our performance modeling, we can predict TSM2R’s
performance on the Nvidia Tesla A100, with Ampere architec-
ture. Its peak double-precision floating point performance is 9.7



C. Rivera, J. Chen, N. Xiong et al. Journal of Parallel and Distributed Computing 151 (2021) 70–85

V

T
w
c
t
m
T
t
A

Table 3
Details of TSM2R kernel. Note that the number of registers is experimental data collected from NVCC and depends on n
(n = 16).
GPU Precision t1 t2 t3 Threads/Block Shared memory (bytes) # Registers

K40c Single 128 n 4 128 512× (n× 4) 64
K40c Double 128 n 4 128 1024× (n× 8) 128
M40 Single 256 8 4 256 8192 40
M40 Double 256 8 4 256 16384 70
P100 Single 128 4 4 128 2048 32
P100 Double 128 4 4 128 4096 56
V100 Single 128 n 32 128 512× (n× 4) 144
V100 Double 128 n 16 128 1024× (n× 8) 180
V100 Double 128 n 12 128 1024× (n× 8) 168
k
f
p
s
m
s
k

4

i
a
v
1
p
i
o
b

r
s
T
p
T
s
o
I
b

Fig. 11. Memory bandwidth utilization with single and double precision on
100 (n = 2, 4, 8, 16).

FLOPS, 1.3× that of the V100, and its global memory band-
idth is 1555 GB/s, 1.73× that of the V100. Since all the cases
onsidered in this paper are memory-bounded on the A100 (as
threshold
2(a100) ≈ 50) and our implementation has already achieved
ore than 90% efficiency in memory bandwidth, we expect
SM2R can achieve a speedup of about 1.7× on the A100 over
he V100. Since we do not currently have access to a Nvidia Tesla
100 GPU, our estimates are based on the available whitepaper
 e

82
Fig. 12. Performance comparison with double-precision rectangular input on
V100 (m = 15360, n = 16).

and do not take into account any other architectural improve-
ments [23].

4.2.4. Tests on non-squared input
We also evaluate TSM2R with rectangular input matrices (m×

) on V100, where k is smaller than m by certain small integer
actors. Evaluating this case reveals very little performance im-
act, as demonstrated in Fig. 12. Although smaller than m, k is
till large enough to ensure the kernel to follow our performance
odel. The memory bandwidth utilization of the kernel remains
imilar to the case where m = k, and the performance of the
ernel scales linearly with the matrix size.

.3. Evaluation of TSM2L

We next evaluate the performance of TSM2L and compare
t with cuBLAS on V100. For TSM2L, we must choose the vari-
ble tcf for each matrix input combination. We obtain these
alues through experiments that vary tcf . As a result, for m =
04, 105, 106, 107, we select tcf values as 1, 1, 2, and 8 for single
recision and values 1, 1, 1, and 4 for double precision. Consider-
ng two proposed optimizations for TSM2L, we have two versions
f TSM2L: TSM2L-Opt1, based on Algorithm 6, and TSM2L-Opt2,
ased on Algorithm 7.
As shown in Fig. 13, TSM2L can obtain speedups over cuBLAS

anging from 1.1x∼3.5x (2.5x on average) in single precision and
peedups from 1.0x∼1.7x (1.3x on average) in double precision.
SM2L-Opt1 generally performs better on single precision in-
ut than TSM2L-Opt2, while TSM2L-Opt2 performs better than
SM2L-Opt1 in several double precision cases. In addition, as
hown in Fig. 14, TSM2L achieves memory bandwidth utilization
f up to 55% peak global memory bandwidth (40% on average).
n single precision, TSM2L utilizes significantly more memory
andwidth than cuBLAS, up to 40% more (25% on average). How-

ver, in double precision, TSM2L uses only slightly more memory



C. Rivera, J. Chen, N. Xiong et al. Journal of Parallel and Distributed Computing 151 (2021) 70–85

=

V

b

Table 4
Details of TSM2L kernel on V100. Note that the number of registers is experimental data collected from NVCC and depends
on n (n = 16).
Optimization Precision t1 t2 t3 Threads/Block Shared memory (bytes) # Registers

TSM2L-Opt1 Single 128 n 32 128 512× (n× 4) 144
TSM2L-Opt1 Double 128 n 16 128 1024× (n× 8) 180
TSM2L-Opt1 Double 128 n 12 128 1024× (n× 8) 168
TSM2L-Opt2 Single 128 n 32 128 512× (n× 4) 251
TSM2L-Opt2 Double 128 n 16 128 1024× (n× 8) 254
TSM2L-Opt2 Double 128 n 12 128 1024× (n× 8) 252
Fig. 13. Speedup comparison with single and double precision on V100 (k = n
8, 16).

Fig. 14. Memory bandwidth utilization with single and double precision on
100 (k = n = 8, 16).

andwidth in the case that k = n = 8, and in the case that
k = n = 16, cuBLAS uses more memory bandwidth. However,
since TSM2L still outperforms cuBLAS, this can be explained by
inefficient memory use patterns in the GEMM kernel. We provide
experimental metrics for our TSM2L kernels in Table 4.
83
5. Related works

A preliminary version of this work was published in [8].
It introduces our TSM2R algorithm and evaluates it on Kepler,
Maxwell, and Pascal GPUs respectively. In this paper, we expand
the evaluation by adding experiments on the Volta GPU V100.
Moreover, we also broaden the applicability of this work through
our new TSM2L algorithm to handle a new input case.

Ernst et al.’s work also focuses on optimizing tall-and-skinny
GEMM [17]. It proposes two algorithms for tall-and-skinny input:
TSMTTSM, where a tall-and-skinny matrix is multiplied by trans-
posed tall-and-skinny matrix, and TSMM, where a tall-and-skinny
matrix is multiplied by a small square matrix. It evaluates these
algorithms on the Volta GPU V100 with double-precision real and
complex floating-point numbers. Although TSMTTSM’s input case
is not considered by our work, TSMM’s input case is the same
as TSM2L’s. However, TSMM and TSM2L approach this input case
differently. Specifically, TSMM takes matrices in row-major format
as input, so its optimizations focus on avoiding partially-written
cache lines while storing columns of matrix C. TSMM launches
multiple threads per row of matrix C, with each thread storing
several columns of matrix C. Unlike TSMM, the design of our
TSM2L takes into account the latency of launching many threads
that perform little work, and its optimizations’ focus on managing
both warp and memory bandwidth latency. Moreover, note that
our TSM2L achieves superior performance. TSMM only achieves
speedups over cuBLAS where the small dimension, k = n, is less
than 8, whereas our TSM2L achieves speedups with the small
dimension up to 16.

6. Conclusion

In this work, we first analyze the performance bottleneck
of current GEMM in the latest cuBLAS library. We identify that
current implementations lack of full utilization of computing
power or memory bandwidth when the input shape is tall-and-
skinny. Then, we discovered the potential challenges of optimiz-
ing tall-and-skinny GEMM since its workload can vary between
compute bound, memory bound, and latency bound. Next, we
propose two high-performance GEMM algorithms – TSM2R and
TSM2L – on GPUs for tall-and-tinny input with several opti-
mization techniques focusing on GPU resource utilization. Finally,
experiment results show that our optimized implementations can
achieve speedups tall-and-skinny matrix–matrix multiplication
with diverse input sizes on modern GPUs.

CRediT authorship contribution statement

Cody Rivera: Conceptualization, Methodology, Software, Writ-
ing - original draft. Jieyang Chen: Conceptualization, Methodol-
ogy, Software, Writing - original draft. Nan Xiong: Software, Val-
idation. Jing Zhang: Writing - review & editing. Shuaiwen Leon
Song: Writing - review & editing. Dingwen Tao: Supervision,
Writing - review & editing.



C. Rivera, J. Chen, N. Xiong et al. Journal of Parallel and Distributed Computing 151 (2021) 70–85

D

c
t

A

U
l
s
v
A
r

R

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This research is supported by the National Science Foundation,
SA under Grants OAC-2034169 and OAC-2003624. We would
ike to thank the University of Alabama for providing the startup
upport in this work. The authors acknowledge the Texas Ad-
anced Computing Center (TACC) at The University of Texas at
ustin for providing HPC resources that have contributed to the
esearch results reported within this paper.

eferences

[1] A. Abdelfattah, D. Keyes, H. Ltaief, Kblas: An optimized library for dense
matrix-vector multiplication on gpu accelerators, ACM Trans. Math. Softw.
(TOMS) 42 (3) (2016) 18.

[2] Basic Linear Algebra on NVIDIA GPUs, https://developer.nvidia.com/cublas.
[3] J. Chen, Fault Tolerant and Energy Efficient One-Sided Matrix Decompo-

sitions on Heterogeneous Systems with GPUs (Ph.D. thesis), UC Riverside,
2019.

[4] J. Chen, S. Li, Z. Chen, GPU-ABFT: Optimizing algorithm-based fault tol-
erance for heterogeneous systems with GPUs, in: 2016 IEEE International
Conference on Networking, Architecture and Storage (NAS).

[5] J. Chen, H. Li, S. Li, X. Liang, P. Wu, D. Tao, K. Ouyang, Y. Liu, K.
Zhao, Q. Guan, et al., Fault tolerant one-sided matrix decompositions on
heterogeneous systems with GPUs, in: SC18: International Conference for
High Performance Computing, Networking, Storage, and Analysis, IEEE
Press, 2018, p. 68.

[6] J. Chen, X. Liang, Z. Chen, Online algorithm-based fault tolerance for
cholesky decomposition on heterogeneous systems with GPUs, in: 2016
IEEE International Parallel and Distributed Processing Symposium (IPDPS),
2016.

[7] J. Chen, L. Tan, P. Wu, D. Tao, H. Li, X. Liang, S. Li, R. Ge, L. Bhuyan,
Z. Chen, GreenLA: green linear algebra software for GPU-accelerated
heterogeneous computing, in: SC16: International Conference for High
Performance Computing, Networking, Storage and Analysis, IEEE, 2016, pp.
667–677.

[8] J. Chen, N. Xiong, X. Liang, D. Tao, S. Li, K. Ouyang, K. Zhao, N.
DeBardeleben, Q. Guan, Z. Chen, TSM2: optimizing tall-and-skinny matrix-
matrix multiplication on GPUs, in: Proceedings of the ACM International
Conference on Supercomputing (ICS), 2019, pp. 106–116.

[9] cuBLAS Benchmark, http://developer.download.nvidia.com/compute/cuda/
compute-docs/cuda-performance-report.pdf.

[10] CUDA Programming Guide, http://docs.nvidia.com/cuda/cuda-c-programmi
ng-guide/index.html#multiprocessor-level.

[11] cuDNN, https://developer.nvidia.com/cudnn.
[12] CULA, www.culatools.com.
[13] Darwin cluster, https://www.osti.gov/biblio/1441285-darwin-cluster.
[14] I.S. Dhillon, Y. Guan, B. Kulis, Kernel k-means: spectral clustering and

normalized cuts, in: Proceedings of the Tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2004, pp. 551–556.

[15] T. Dong, A. Haidar, P. Luszczek, S. Tomov, A. Abdelfattah, J. Dongarra,
MAGMA Batched: A Batched BLAS Approach for Small Matrix Factorizations
and Applications on GPUs, Tech. rep., Technical report, 2016.

[16] J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, I.
Yamazaki, Accelerating numerical dense linear algebra calculations with
GPUs, in: Numerical Computations with GPUs, Springer, 2014.

[17] D. Ernst, G. Hager, J. Thies, G. Wellein, Performance engineering for real
and complex tall & skinny matrix multiplication kernels on GPUs, Int. J.
High Perform. Comput. Appl. (2020) 1094342020965661.

[18] A. Heinecke, G. Henry, M. Hutchinson, H. Pabst, Libxsmm: accelerating
small matrix multiplications by runtime code generation, in: SC16: Inter-
national Conference for High Performance Computing, Networking, Storage
and Analysis, 2016.

[19] K.-H. Huang, J. Abraham, et al., Algorithm-based fault tolerance for matrix
operations, Comput. IEEE Trans. (1984).

[20] K-means by NVIDIA, https://github.com/NVIDIA/kmeans.
[21] X. Liang, J. Chen, D. Tao, S. Li, P. Wu, H. Li, K. Ouyang, Y. Liu, F. Song,

Z. Chen, Correcting soft errors online in fast fourier transform, in: SC17:
International Conference for High Performance Computing, Networking,
Storage and Analysis, ACM, 2017, p. 30.
84
[22] MAGMA: Matrix Algebra on GPU and Multicore Architectures, http://icl.cs.
utk.edu/magma/.

[23] Nvidia A100 Tensor Core GPU Architecture, https://www.nvidia.com/
content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-
whitepaper.pdf.

[24] Nvidia Tesla V100 GPU Architecture, https://images.nvidia.com/content/
volta-architecture/pdf/volta-architecture-whitepaper.pdf.

[25] PantaRhei cluster, https://www.dingwentao.com/experimental-system.
[26] PTX Programming Guide, http://docs.nvidia.com/cuda/parallel-thread-

execution/index.html#data-movement-and-conversion-instructions-ld.
[27] L. Tan, S. Kothapalli, L. Chen, O. Hussaini, R. Bissiri, Z. Chen, A survey

of power and energy efficient techniques for high performance numerical
linear algebra operations, Parallel Comput. 40 (10) (2014) 559–573.

[28] L. Tan, S.L. Song, P. Wu, Z. Chen, R. Ge, D.J. Kerbyson, Investigating the
interplay between energy efficiency and resilience in high performance
computing, in: 2015 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), IEEE, 2015, pp. 786–796.

[29] D. Tao, S. Di, X. Liang, Z. Chen, F. Cappello, Improving performance of
iterative methods by lossy checkponting, in: Proceedings of the 27th
International Symposium on High-Performance Parallel and Distributed
Computing (HPDC), 2018, pp. 52–65.

[30] D. Tao, S.L. Song, S. Krishnamoorthy, P. Wu, X. Liang, E.Z. Zhang, D. Ker-
byson, Z. Chen, New-Sum: A novel online abft scheme for general iterative
methods, in: Proceedings of the 25th ACM International Symposium on
High-Performance Parallel and Distributed Computing (HPDC), 2016.

[31] S. Tomov, J. Dongarra, M. Baboulin, Towards dense linear algebra for hybrid
GPU accelerated manycore systems, in: Parallel Matrix Algorithms and
Applications, Parallel Comput. (2010).

[32] S. Tomov, R. Nath, H. Ltaief, J. Dongarra, Dense linear algebra solvers for
multicore with GPU accelerators, in: 2010 IEEE International Symposium
on Parallel & Distributed Processing, Workshops and PhD Forum (IPDPSW),
IEEE, 2010, pp. 1–8.

[33] V. Volkov, Understanding Latency Hiding on GPUs (Ph.D. thesis), University
of California, Berkeley, 2016.

[34] L. Wang, W. Wu, Z. Xu, J. Xiao, Y. Yang, Blasx: A high performance level-3
blas library for heterogeneous multi-gpu computing, in: Proceedings of the
2016 International Conference on Supercomputing (ICS), ACM, 2016, p. 20.

[35] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, A. Moshovos,
Demystifying GPU microarchitecture through microbenchmarking, in: Per-
formance Analysis of Systems & Software (ISPASS), 2010 IEEE International
Symposium on, 2010.

[36] P. Wu, N. DeBardeleben, Q. Guan, S. Blanchard, J. Chen, D. Tao, X. Liang,
K. Ouyang, Z. Chen, Silent data corruption resilient two-sided matrix
factorizations, in: Proceedings of the 22nd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), 2017.

[37] P. Wu, C. Ding, L. Chen, F. Gao, T. Davies, C. Karlsson, Z. Chen, Fault tolerant
matrix-matrix multiplication: correcting soft errors on-line, in: Proceedings
of the Second Workshop on Scalable Algorithms for Large-Scale Systems,
ACM, 2011, pp. 25–28.

[38] P. Wu, Q. Guan, N. DeBardeleben, S. Blanchard, D. Tao, X. Liang, J. Chen, Z.
Chen, Towards practical algorithm based fault tolerance in dense linear
algebra, in: Proceedings of the 25th ACM International Symposium on
High-Performance Parallel and Distributed Computing (HPDC), 2016.

Cody Rivera is an undergraduate student studying
Computer Science and Mathematics at the University
of Alabama from Fall 2018. He is also in the Randall
Research Scholars Program, an honors interdisciplinary
undergraduate research program. His research inter-
ests include computer science theory, algorithms, and
high-performance computing.

Jieyang Chen is a postdoctoral researcher in the Com-
puter Science and Mathematics Division at Oak Ridge
National Laboratory (ORNL). He received his master’s
and Ph.D. degrees in Computer Science from University
of California, Riverside in 2014 and 2019. He received a
bachelor’s degree in Computer Science and Engineering
from Beijing University of Technology in 2012. Before
joining ORNL, he interned at Pacific Northwest National
Laboratory and Los Alamos National Laboratory. His re-
search interests include high-performance computing,
parallel and distributed systems, and big data analytics.

He has published over 20 peer-reviewed high-quality papers in prestigious HPC
and Big Data conferences and journals, such as ICS, HPDC, PPoPP, SC, BigData,
IPDPS, TPDS.

http://refhub.elsevier.com/S0743-7315(21)00034-4/sb1
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb1
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb1
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb1
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb1
https://developer.nvidia.com/cublas
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb3
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb3
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb3
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb3
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb3
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb5
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb5
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb5
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb5
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb5
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb5
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb5
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb5
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb5
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb6
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb6
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb6
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb6
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb6
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb6
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb6
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb7
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb7
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb7
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb7
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb7
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb7
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb7
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb7
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb7
http://developer.download.nvidia.com/compute/cuda/compute-docs/cuda-performance-report.pdf
http://developer.download.nvidia.com/compute/cuda/compute-docs/cuda-performance-report.pdf
http://developer.download.nvidia.com/compute/cuda/compute-docs/cuda-performance-report.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
https://developer.nvidia.com/cudnn
http://www.culatools.com
https://www.osti.gov/biblio/1441285-darwin-cluster
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb15
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb15
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb15
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb15
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb15
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb16
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb16
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb16
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb16
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb16
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb17
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb17
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb17
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb17
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb17
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb18
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb18
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb18
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb18
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb18
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb18
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb18
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb19
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb19
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb19
https://github.com/NVIDIA/kmeans
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb21
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb21
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb21
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb21
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb21
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb21
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb21
http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/magma/
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://www.dingwentao.com/experimental-system
http://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-ld
http://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-ld
http://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-ld
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb27
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb27
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb27
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb27
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb27
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb28
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb28
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb28
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb28
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb28
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb28
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb28
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb31
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb31
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb31
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb31
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb31
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb32
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb32
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb32
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb32
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb32
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb32
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb32
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb33
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb33
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb33
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb34
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb34
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb34
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb34
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb34
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb35
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb35
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb35
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb35
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb35
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb35
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb35
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb37
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb37
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb37
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb37
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb37
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb37
http://refhub.elsevier.com/S0743-7315(21)00034-4/sb37


C. Rivera, J. Chen, N. Xiong et al. Journal of Parallel and Distributed Computing 151 (2021) 70–85
Nan Xiong graduated with a master’s degree in Com-
puter Science from University of California, Riverside
in 2018. She also received a master’s degree in Civil
Engineering from University of Southern California in
2014 and a bachelor’s degree in Civil Engineering from
Tianjin University in 2012. She is interested in HPC,
heterogeneous computing with GPU accelerators, and
high-performance big data analytics.

Jing Zhang obtained her master’s degree in Business
Administration and Management from University of
Colorado in 2015. She has been selected for member-
ship in Beta Gamma Sigma, the international honor
society for collegiate schools of business. She was Inter-
national Development Advisor in FDI Strategies. She is
currently an independent researcher in undergraduate
college of Wuhan University, focusing on business data
analysis and information system design.

Shuaiwen Leon Song is currently a senior lecturer
(tenured associate professor) at the school of computer
science of University of Sydney and the director of
Future System Architecture Lab. He is affiliated with
USYD nanoscience hub and Sydney Quantum Academy.
He is also an affiliated professor with University of
Washington. Prior to his appointment at University
of Sydney, he worked for U.S. Department of En-
ergy as a senior research scientist and technical lead.
His research interests include holistic system design,
system architecture and high performance computing.
85
His most recent works target future accelerator-driven system design for AI
and planet-scale virtual reality. He is a Lawrence scholar, Paul E. Torgersen
scholar, a recipient of IEEE TCHPC early career award and DOE pathway to
excellence research award. He widely published in the major HPC and computer
architecture conferences, including ISCA, HPCA, MICRO, ASPLOS and SC. His past
work received a 2017 HiPEAC paper award, two SC best paper runner-ups, and
2018 IISWC best paper finalist. During his tenure at PNNL, he led two LDRD
projects on AI driven future HPC system design and large-scale data analytics
acceleration.

Dingwen Tao is an assistant professor in the School of
Electrical Engineering and Computer Science at Wash-
ington State University. Prior to that, he worked as an
assistant professor at the University of Alabama, and
interned at Brookhaven National Laboratory, Argonne
National Laboratory, and Pacific Northwest National
Laboratory. He received his Ph.D. in Computer Science
from University of California, Riverside in 2018 and
B.S. in Mathematics from University of Science and
Technology of China in 2013. He currently works at
the intersection of HPC and big data analytics, fo-

cusing on scientific data management, HPC storage and I/O systems, fault
tolerance at extreme scale, and distributed machine learning. He has pub-
lished in major HPC and big data analytics conferences and journals, such
as SC, PPoPP, HPDC, ICS, PACT, IPDPS, Cluster, ICPP, BigData, and TPDS. He
is the receipt of the IEEE CS TCHPC Early Career Researchers Award for
Excellence in High Performance Computing, NSF CISE Research Initiation Ini-
tiative (CRII) Award in 2020, and UCR Dissertation Year Program Award in
2017.


	TSM2X: High-performance tall-and-skinny matrix–matrix multiplication on GPUs
	Introduction
	Background
	Tall-and-skinny input for GEMM
	cuBLAS

	Design methodologies
	Design of TSM2R 
	Insight on tall-and-skinny input
	Algorithm design
	Efficient off-chip memory access
	Optimizing use of shared memory
	Overlapping computation and memory access latency
	Parameters definition
	Behaviors of parameters
	Performance metrics estimation
	Deciding parameters

	Design of TSM2L
	Performance bottlenecks
	Proposed optimizations

	Design summary

	Experimental evaluation
	Experiments setup
	Evaluation of TSM2R
	Tests with different optimization combinations
	Memory throughput analysis
	Tests on different micro-architectures
	Tests on non-squared input

	Evaluation of TSM2L

	Related works
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


