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ABSTRACT

Error-bounded lossy compression is a state-of-the-art data reduc-
tion technique for HPC applications because it not only signifi-
cantly reduces storage overhead but also can retain high fidelity
for postanalysis. Because supercomputers and HPC applications
are becoming heterogeneous using accelerator-based architectures,
in particular GPUs, several development teams have recently re-
leased GPU versions of their lossy compressors. However, existing
state-of-the-art GPU-based lossy compressors suffer from either
low compression and decompression throughput or low compres-
sion quality. In this paper, we present an optimized GPU version,
cuSZ, for one of the best error-bounded lossy compressors—SZ.
To the best of our knowledge, cuSZ is the first error-bounded
lossy compressor on GPUs for scientific data. Our contributions are
fourfold. (1) We propose a dual-qantization scheme to entirely
remove the data dependency in the prediction step of SZ such that
this step can be performed very efficiently on GPUs. (2) We develop
an efficient customized Huffman coding for the SZ compressor on
GPUs. (3) We implement cuSZ using CUDA and optimize its perfor-
mance by improving the utilization of GPU memory bandwidth. (4)
We evaluate our cuSZ on five real-world HPC application datasets
from the Scientific Data Reduction Benchmarks and compare it with
other state-of-the-art methods on both CPUs and GPUs. Experi-
ments show that our cuSZ improves SZ’s compression throughput
by up to 370.1× and 13.1×, respectively, over the production ver-
sion running on single and multiple CPU cores, respectively, while
getting the same quality of reconstructed data. It also improves the
compression ratio by up to 3.48× on the tested data compared with
another state-of-the-art GPU supported lossy compressor.
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1 INTRODUCTION

Large-scale high-performance computing (HPC) applications can
generate extremely large volumes of scientific data. For instance,
the Hardware/Hybrid Accelerated Cosmology Code (HACC) [1]
can simulate 1∼10 trillion particles in one simulation and produce
up to 220 TB of data per snapshot, bringing up a total of 22 PB of
data during the simulation [2] with only one hundred timestep-
s/snapshots. Such a large volume of data is imposing an unprece-
dented burden on supercomputer storage and interconnects [3]
for both storing data to persistent storage and loading data for
postanalysis and visualization. Therefore, data reduction has at-
tracted great attention from HPC application users for reducing
the volumes of data to be moved to/from storage systems. The
common approaches are simply decimating snapshots periodically
and adopting an interpolation for data reconstruction. However,
such approaches result in a significant loss of valuable information
for postanalysis [4]. Traditional data deduplication and lossless
compression have also been used for shrinking data size but suffer
from very limited reduction ratios on HPC floating-point datasets.
Specifically, deduplication generally reduces the size of scientific
datasets by only 20% to 30% [5], and lossless compression achieves
a reduction ratio of up to about 2:1 in general [6]. This is far from
scientists’ desired compression ratios, which are around 10:1 or
higher (such as Community Earth Simulation Model (CESM) [7]).

Error-bounded lossy compression has been proposed to signifi-
cantly reduce data size while ensuring acceptable data distortion
for users [8]. SZ [8, 9] is a state-of-the-art error-bounded lossy
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compression framework for scientific data (to be detailed in §2),
which often offers higher compression qualities (or better rate dis-
tortions) than other state-of-the-art techniques [3]. However, as
illustrated in prior work [8, 9], SZ suffers from low compression
and decompression throughput, which is only tens to hundreds
of megabytes per second on a single CPU core. This throughput
is far from enough for extreme-scale applications or advanced in-
struments with extremely high data acquisition rates, which is a
major concern for corresponding users. The LCLS-II laser [10], for
instance, may produce data at a rate of 250 GB/s [11], such that
corresponding researchers require an extremely fast compression
solution that can still have relatively high compression ratios—for
example, 10:1—with preserved data accuracy. In order to match such
a high data production rate, leveraging multiple graphics process-
ing units (GPUs) is a fairly attractive solution because of its massive
single-instruction multiple-thread (SIMT) mechanism and its high
programmability as opposed to FPGAs or ASICs [12]. Moreover,
the SZ algorithm follows O(n) time complexity and employs large
amounts of read and write operations in the memory, and hence its
performance is eventually bounded bymemory bandwidth. State-of-
the-art GPUs cannot only provide high computation capability but
also provide high memory bandwidth. For example, NVIDIA V100
GPU can provide at least one higher order magnitude of memory
bandwidth than state-of-the-art CPUs can [13].

SZ, however, cannot be run on GPUs efficiently because of the
lack of parallelism in its design. The main challenges are twofold:
1 the tight dependency in the prediction-quantization step of the
SZ algorithm incurs expensive synchronizations across iterations
in a GPU implementation; and 2 during the customized Huffman
coding step of the SZ algorithm, coding and decoding each symbol
based on the constructed Huffman tree involve many different
branches (see §2 for more details). This process causes serious warp
divergence and random memory access issues, which inevitably
lead to low GPU memory bandwidth utilization and performance.

To solve these issues, this paper presents an optimized GPU
version of the SZ algorithm, called cuSZ, and proposes a series
of optimization techniques for cuSZ to achieve high compression
and decompression throughputs on GPUs. Specifically, we focus
on the main performance bottlenecks (Lorenzo prediction [14] and
customized Huffman coding [8]) and improve their performance for
GPUs. We propose a novel technique called dual-qantization
that can be applied to any prediction-based compression algorithms
to alleviate the tight dependency in its prediction step. Moreover, ac-
cording to prior work [11], a strict error-controlling scheme of lossy
compression is needed bymanyHPC applications for their scientific
explorations and postanalyses. However, the state-of-the-art GPU-
based lossy compressors such as cuZFP [15] are not error-bounded.
To the best of our knowledge, cuSZ 1 is the first strictly error-
bounded lossy compressor on GPU for scientific data. Our
contributions are summarized as follows.
• We propose a generic dual-qantization scheme to entirely
remove the data dependencies in the prediction-quantization
step of lossy compression and apply it to Lorenzo predictor in
SZ algorithm.

1The code is available at https://github.com/hipdac-lab/cuSZ.

• We develop an efficient customized Huffman coding for SZ on
GPUs with fine- and coarse-grained parallelism.
• We carefully implement cuSZ and optimize its performance
on CUDA architecture. In particular, we fine-tune the chunk
size in Huffman coding and develop an adaptive method that
selects 32-bit or 64-bit representation dynamically for Huffman
code and can significantly improve GPU memory bandwidth
utilization.
• We evaluate our proposed cuSZ on five real-world HPC ap-
plication datasets provided by a public repository, Scientific
Data Reduction Benchmarks [16], and compare it with other
state-of-the-art methods on both CPUs and GPUs. Experiments
show that the cuSZ can significantly improve both compres-
sion throughput by up to 370.1× and 13.1× over the production
version of SZ running on single CPU core and multiple CPU
cores, respectively. cuSZ has up to 3.48× higher compression
ratio than another advanced GPU supported lossy compressor
with reasonable data distortion.
The rest of the paper is organized as follows. In §2, we discuss

the SZ lossy compression in detail. In §3, we propose our novel opti-
mizations for the GPU version of SZ and implement it using CUDA.
In §4, we present the evaluation results based on five real-world
simulation datasets from the Scientific Data Reduction Benchmarks
and compare cuSZ with other state-of-the-art compressors on both
CPU and GPU. In §5, we discuss related work. In §6, we present
our conclusions and discuss our future work.

2 SZ BACKGROUND

Many scientific applications require a strict error-bounded control
when using lossy compression to achieve accurate postanalysis and
visualization for scientific discovery, as well as a high compression
ratio. SZ [8, 9] is a prediction-based lossy compression framework
designed for scientific data that strictly controls the global upper
bound of compression error. Given a user-set error bound eb, SZ
guarantees | d−d• |<eb, where d and d• are the original value and
the decompressed value, respectively. SZ’s algorithm involves five
key steps: preprocessing, data prediction, linear-scaling quantiza-
tion, customized variable-length encoding, and optional lossless
compression, e.g., gzip [17] and Zstd [18].
1) Preprocessing SZ performs a preprocessing step, such as lin-

earization in version 1.0 or a logarithmic transform for the point-
wise relative error bound in version 2.0 [19].

2) Data Prediction SZ predicts the value of each data point by
a data-fitting predictor, e.g., a Lorenzo predictor [14] (abbrevi-
ated as ℓ-predictor) based on its neighboring values. In order
to guarantee that the compression error is always within the
user-set error bound, the predicted values must be exactly the
same in between the compression procedure and decompression
procedure. To this end, the neighbor values used in the predic-
tion have to be the decompressed values instead of the original
values.

3) Linear-Scaling Quantization SZ computes the difference be-
tween the predicted value and original value for each data point
and performs a linear-scaling quantization [8] to convert the
difference to an integer based on the user-set error bound.
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Figure 1: The system overview of cuSZ. The top 4 figures illustrate a dual-qant example, which has no loop-carried RAW. The bottom 4

figures correspond to the four subprocedures of our customized Huffman coding described in §3.2.

4) CustomizedVariable-LengthCoding SZ adopts a customized
Huffman coding to reduce the data size significantly, because
the integer codes generated by the linear-scaling quantization
are likely distributed unevenly, especially when the data are
mostly predicted accurately.

5) Lossless Compression The last step optionally further com-
presses the encoded data by a lossless compressor such as Zstd [18],
whichmay significantly reduce the size due to potential repeated
patterns in the bitstream.
In this work, we focus mainly on the SZ compressor, because

much prior work [3, 20, 21, 22, 23, 24, 25, 26] has verified that SZ
yields the best compression quality among all the prediction-based
compressors. However, it is nontrivial to port SZ on GPUs because
of the strict constraints in its compression design. For instance, the
data used in the prediction must be updated by decompressed val-
ues, such that the data prediction in the SZ compressor [8, 9] needs
to be performed one by one in a sequential order. This requirement
introduces a loop-carried read-after-write (RAW) dependency dur-
ing the compression (will be discussed in §3.1.2), making SZ hard
to parallelize.

We mainly focus on SZ-1.4 instead of SZ-2.0 because the 2.0
model is particularly designed for low-precision use cases with
visualization goals, in which the compression ratio can reach up to
several hundred while the reconstructed data often have large data
distortions. Recent studies [11], however, demonstrate that scien-
tists often require a relatively high precision (or low error bound)
for their sophisticated postanalysis beyond visualization purposes.
In this situation (with relatively low error bounds), SZ-2.0 has very
similar (or even slightly worse, if not for all the cases) compression
qualities to those of SZ-1.4, as demonstrated in [3]. Accordingly, our
design for the GPU-accelerated SZ lossy compression is based on
SZ-1.4 and takes advantage of both algorithmic and GPU hardware
characteristics. Moreover, the current CPU version of SZ does not
support SIMD vectorization and has no specific improvement on
the arithmetic performance. Therefore, the CPU baseline used in
our following evaluation is based on the nonvectorized single-core
and multicore implementation.

3 DESIGN METHODOLOGY OF CUSZ

In this section, we propose our novel lossy compression design,
cuSZ, for CUDA architectures based on the SZ model. A system
overview of our proposed cuSZ is shown in Figure 1. We develop
different coarse- and fine-grained parallelization techniques to each
subprocedure in compression and decompression. Specifically, we
first employ a data-chunking technique to exploit coarse-grained
data parallelism. The chunking technique is used throughout the
whole cuSZ design, including lossless (step 2 and 3) and lossy (step
1, 4, and 5) procedures in both compression and decompression. We
then deeply analyze the RAW data dependency in SZ and propose a
novel two-phase prediction-quantization approach, namely, dual-
qantization, which totally eliminates the data dependency in
the prediction-quantization (abbreviated as predict-quant) step. Fur-
thermore, we provide an in-depth breakdown analysis of Huffman
coding and develop an efficient Huffman coding on GPUs with mul-
tiple optimizations. A summary of our parallelization techniques is
shown in Table 1.
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dual-quantization •

histogram • •

build Huffman tree •

canonize codebook • • •

Huffman encode (fix-length) •

deflate (fix- to variable-length) •

decompression
inflate (Huffman decode) •

reversed dual-quantization •

Table 1: Parallelism implemented for cuSZ’s subprocedures (ker-

nels) in compression and decompression.

3.1 Parallelizing Prediction-Quantization in

Compression

In this section, we discuss our proposed optimization techniques to
parallelize SZ’s predict-quant procedure on GPU architectures. We
first chunk the original data to gain coarse-grained parallelization,
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and then we assign a thread to each data point for fine-grained
in-chunk parallel computations.

3.1.1 Chunking and Padding. Figure 2 illustrates our chunking and
padding technique. For each chunked data block, we assign a thread
to each data point (i.e., fine-grained parallelism). To avoid complex
modifications to the prediction function after chunking, we add a
padding layer to each block in the predict-quant step. We set all
the values in the padding layer to 0 such that they do not affect the
predicted values of the points neighboring to the padding layer, as
shown in Figure 2. We note that in the original SZ, the uppermost
points and leftmost points (denoted by “outer layer”, shaded in
Figure 2) are saved as unpredictable data directly. In our chunking
version, however, directly storing these points for each block would
significantly degrade the compression ratio. Therefore, we apply
ℓ-prediction to the outer layer instead, such that every point in the
block is consistently processed based on the ℓ-predictor, avoiding
thread/warp divergence. Moreover, we initialize the padding layer
with 0s; the prediction for each outer-layer point falls back to 1D 1-
order Lorenzo, as shown in Figure 2. Based on our empirical result,
we adopt 32 for 1D data, 16×16 for 2D data, and 8×8×8 for 3D data.

outer layer

original data block padded data block

0 0
0
0 0
0

0

0

0

0

0

0

0

0

0

0

?
0

0

0

?
the upperle�most point,
“predicted” from 0’s

0

? or •
0

•
other boundary points,
fallback to 1D Lorenzo

•
•

•
•

non-boundary points,
unchanged nD Lorenzo

Figure 2: Data chunking and padding in cuSZ.

3.1.2 Dual-Quantization Scheme. In the following discussion, we
use circle ◦ and bullet • to denote the compression and decompres-
sion procedure, respectively. We use star ⋆ to denote all the values
related to the data reconstruction in compression. The subscript
(·)k represents the kth iteration.

Read-After-Write in SZ. In the original SZ algorithm, all data
points need to go through predict-quant, and in situ reconstruction
iteratively, which causes intrinsic read-after-write (RAW) depen-
dencies (as illustrated in Figure 3).

We describe the loop-carried RAW dependency issue in detail
below. For any data point at the (k − 1)th iteration in SZ compres-
sion, given a predicted value pk−1, the prediction error e◦k−1 (i.e.,
dk−1−p

◦
k−1) is converted to an integer and a corresponding quanti-

zation code qk−1 based on the user set error bound eb. Then, the
reconstructed prediction error e◦⋆k−1 and the reconstructed value
d◦⋆k−1 are generated by using qk−1, eb, and p◦k−1. After that, d

◦⋆
k−1

is written back to replace dk−1. This procedure ensures that d◦⋆k−1
is equivalent to the reconstructed d•k−1 during decompression (as
shown in Figure 3); however, the kth iteration must wait until the
update completes at the end of the (k−1)th iteration, which incurs
loop-carried data dependency. Also note that d◦⋆ is written back in
the last step of the current iteration, and its written value is used at
the beginning of the next iteration, therefore, the two consecutive
iterations cannot overlap. Hence, under the original design of the
predict-quant in SZ, it is infeasible to effectively exploit fine-grained

dk−2 − p◦
k−2 = e◦k−2 99K q◦

k−2 99K e◦⋆k−2 99K d◦⋆
k−2

dk−1 − p◦
k−1 = e◦k−1 99K q◦

k−1 99K e◦⋆k−1 99K d◦⋆
k−1

dk − p◦
k = e◦k 99K q◦

k 99K e◦⋆k 99K d◦⋆
k

≡≡ ≡≡ ≡≡

q•
k 99K e•k 99K d•

k

prediction quantization reconstruction

w/loopcarriedRAW

SZCOMPRESSION

DECOMPRESSION

dk−2 99K d◦
k−2 − p◦

k−2 = δ◦k−2 ≡ q◦
k−2 ≡ δ◦⋆k−2 99K d◦⋆

k−2

dk−1 99K d◦
k−1 − p◦

k−1 = δ◦k−1 ≡ q◦
k−1 ≡ δ◦⋆k−1 99K d◦⋆

k−1

dk 99K d◦
k − p◦

k = δ◦k ≡ q◦
k ≡ δ◦⋆k 99K d◦⋆

k

≡≡

q•
k

≡≡ ≡≡

≡ δ•k 99K d•
k

PREQUANT POSTQUANT (unnecessary) CUSZCOMPRESSION

DECOMPRESSION

Figure 3: Diagram of original quantization (top) and dual-qanti-

zation (bottom) procedures. Arrow means data dependency.

parallelism and efficiently utilize SIMT on GPUs. We present the
original SZ’s predict-quant step in Algorithm 1 in detail.

Algorithm 1: Original SZ of predict-quant

1 for d ∈ D do ▷ compression
2 p◦ ← ℓ(dsr), e◦ ← p◦− d
3 if e◦/eb < cap (in-cap) then ▷ quantization
4 e◦D ← integerize(e◦/(2×eb))
5 rehearsal← p◦ + 2 · e◦D · eb
6 watchdog(rehearsal − d < eb , fallback: outlier)
7 else
8 outlier: e◦D ← 0 and record the verbatim x ← d
9 end if

10 d ← rehearsal or x accordingly ▷ incurs raw
11 end for

12 for d• ∈ D• to reconstruct cascadingly do ▷ decompression
13 p• ← ℓ(d•sr)
14 d• ← p• + 2 · e◦D · eb if in-cap else verbatim x
15 end for

Proposed Dual-Quantization Approach. To eliminate the RAW de-
pendency, we propose a dual-qantization scheme by modifying
the data representation during the predict-quant procedure. Our
dual-qantization (abbreviated as dual-qant) consists of two
steps: preqantization and postqantization.

Given a dataset D with an arbitrary dimension, we first quantize
it based on the user-set eb and convert it to a new dataset

D◦=
{
d◦ | d◦= round

〈
d/(2 × eb)

〉
, d ∈ D

}
,

where any d◦ ∈ D◦ is strictly a multiple of (2×eb). We call this step
preqantization (abbreviated as preqant). In order to avoid
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overflow, d◦ is stored in floating-point data type. We note that the
error introduced by preqant (defined as posterror) is strictly
bounded by the user-set error bound, that is, |d − 2 · d◦ · eb | < eb.

After the preqantization, we can calculate each predicted
value based on its surrounding values (denoted by d◦sr) and the
ℓ-predictor as

P◦= {p◦ | p◦= ℓ(d◦sr), d
◦ ∈ D◦}.

The second step, called postqantization (abbreviated as post-
qant), serves as the counterpart of the linear-scaling quantization
in the original SZ. postqant computes the difference between
the predicted value and the preqant-ized value. Different from
the original SZ, such difference does not cause any compression
error (will be discussed later), we use δ instead of e to denote this
difference:

∆◦= {δ◦ | δ◦= d◦− p◦, d◦ ∈ D◦, p◦ ∈ P◦}.

Then, the quantization code q◦ is generated based on δ . Note that
q◦ is quantitatively equivalent to δ◦, represented differently: δ◦ is
a floating-point number to avoid subnormal values (i.e. under/over-
flow), whileq◦ is an integer, which is used in the subsequent lossless
coding (e.g., Huffman coding). It is worth noting that, during de-
compression, d◦ can be reconstructed (as d•) based on losslessly
decoded q• ≡ q◦ (hence exactly δ◦) and predicted p◦, thus this
postqant step does not introduce any further error.

Eliminating RAW. In the following text, we explain in detail why
the dual-qant method effectively eliminates the RAW depen-
dency. Conceptually, similar to the original SZ, we can construct
δ◦⋆ and d◦⋆ during the compression, as shown in Figure 3. In fact,
for (k−1)th iteration, δ◦⋆k−1 is strictly equal to δ◦k−1, because casting
quantization code q◦k−1 to δ◦⋆k−1 is a exact reversed procedure of
casting δ◦k−1 to q

◦
k−1.

Similarly, d◦⋆k−1 and d◦k−1 are also strictly equivalent. Conse-
quently, unlike the original SZ that must write d◦⋆k−1 back to update
d◦⋆k−1 before the kth iteration, d◦⋆k−1 ≡ d◦k−1 always holds in our
proposed dual-qant approach. As illustrated in Figure 3, after
preqant, all d◦ are dependency free for postqant. By elimi-
nating the loop-carried RAW dependency (marked as arrows in
Figure 3), we can effectively parallelize the dual-qant proce-
dure by performing fine-grained (per-point) parallel computation,
which is commonly seen in image processing [27]. We illustrate
the detailed dual-qant procedure in Algorithm 2.

Lorenzo Predictor with Binomial Coefficients. According to Tao et
al. [8], the generalized ℓ-predictor is given by∑k1. . .d,0

0≤k1. . .m ≤n

〈∏m
j=1(−1)

kj+1 ( n
kj

)〉
· dx1−k1, · · · ,xd−kd ,

where
∑k1. . .d,0
0≤k1. . .m ≤n

〈∏m
j=1(−1)

kj+1 ( n
kj

)〉
= 1 and d ∈ D. For exam-

ple, 1D 1-order ℓ-predictor is p◦a = d◦a−1, and 2D 1-order ℓ-predictor
is p◦
(a,b) = ℓ

(
d◦sr

)
= d◦a−1,b + d

◦
a,b−1 − d

◦
a−1,b−1, as illustrated in

Figure 1. We note that all the coefficients in the formula of the
ℓ-predictor are integers; thus, the prediction computation consists
of mathematically integer-based operations (additions and multipli-
cations) and results in unit weight. This ensures that no division is
needed, and the data reconstruction based on dual-qant is fairly
precise and robust with respect to machine ϵ , however, the original

Algorithm 2: cuSZ of dual-qant

1 for ∀d ∈ D concurrently do ▷ compression
2 d◦← d/(2×eb) ▷ (FP representation) prequant
3 d ← d◦ ▷ barrier
4 p◦← ℓ(d◦sr), δ

◦ ← p◦− d◦

5 if δ ◦ < cap/2 (in-cap) then ▷ postquant
6 δ ◦D ← cast<float2int>(δ ◦)
7 else
8 outlier: δ ◦D ← 0 and record the verbatim x ← d◦

9 end if
10 end for

11 for d• ∈ D• to reconstruct cascadingly do ▷ decompression
12 p• ← ℓ(d•sr)
13 d• ← (p• + δ ◦D) · (2×eb) if in-cap else verbatim x
14 end for

SZ using precise floating-point operations suffers from underflow.
Note that the predicted values which are integers will be completely
corrected by the saved quantization codes in decompression, so the
final error is still bounded by eb.

3.2 Efficient Customized Huffman Coding

To efficiently compress the quantization codes generated by dual-
qant, we develop an efficient customized Huffman coding for
SZ on GPUs. Specifically, Huffman coding consists of the follow-
ing subprocedures: 1 calculate the statistical frequency for each
quantization bin (as a symbol); 2 build the Huffman tree based
on the frequencies and generate a base codebook along with each
code bitwidth; 3 transform the base codebook to the canonical
Huffman codebook (called canonization); 4 encode in parallel ac-
cording to the codebook, and concatenate Huffman codes into a
bitstream (called deflating). And Huffman decoding is composed of
1 retrieving the reverse codebook and 2 decoding accordingly.
Note that the fourth subprocedure of encoding can be further de-

composed into two steps for fine-grained optimization. Codebook-
based encoding is basically memory copy and can be fully paral-
lelized in a fine granularity, whereas deflating can be performed
only sequentially (except blockwise parallelization discussed in
§3.1.1) because of its atomic operations. We discuss Huffman cod-
ing on GPUs step by step as follows.

3.2.1 Histogram for Quantization Bins. The first step of Huffman
coding is to build a histogram representing the frequency of each
quantization bin from the data prediction step. The GPU histogram-
ming algorithm that we use is derived from the algorithm proposed
by Gómez-Luna et al. [28]. This algorithm minimizes conflicts in
updating the histogram bin locations by replicating the histogram
for each thread block and storing the histogram in shared mem-
ory. Where possible, conflict is further reduced by replicating the
histogram such that each block has access to multiple copies. All
threads inside a block read a specified partition of the quantization
codes and use atomic operations to update a specific replicated
histogram. As each block finishes its portion of the predicted data,
the replicated histograms are combined via a parallel reduction
into a single global histogram, which is used to construct the final
codebook in Huffman coding.
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3.2.2 Constructing Huffman Codebook. In order to build the op-
timal Huffman tree, the local symbol frequencies need to be ag-
gregated to generate the global symbol frequencies for the whole
dataset. By utilizing the aggregated frequencies, we build a code-
book according to the Huffman tree for encoding. Note that the
number of symbols—namely, the number of quantization bins—is
a limited number (generally no greater than 65,536) that is much
smaller than the data size (generally, millions of data points or
more). This leads to a much lower number of nodes in the Huffman
tree compared with the data size, such that the time complexity
of building a Huffman tree is considered low. We note that build-
ing Huffman tree sequentially on CPU benefits from high CPU-
frequency and low memory-access latency. However, it requires
CPU-to-GPU/GPU-to-CPU transfer of frequencies/codebook be-
fore/after building the tree, and communicating these two small
messages would incur non-negligible overheads. Therefore, we
adopt one GPU thread to build the Huffman tree sequentially to
avoid such overheads.

MSB LSBJ bitwidth codeword I

Figure 4: Fixed-length representation of Huffman codeword and its

bitwidth.

We propose an adaptive codeword representation to enhance
the utilization of memory bandwidth, which improves the Huffman
encoding performance in turn. We illustrate the organization of
the codebook in Figure 4. The codebook is organized by units of
unsigned integers, and each contains a variable-length Huffman
codeword from LSB (the rightmost or the least significant bits) and
its bitwidth from MSB (the leftmost or the most significant bits).
According to the pessimistic estimation of maximum bitwidth of
optimal Huffman codeword [29], one is supposed to use uint64_t
to hold each bitwidth-codeword representation. For example, the
maximum bitwidth could be 33 bits for CLDHGH field from CESM-ATM
dataset in the worst case. However, we note that using uint32_t
to represent a bitwidth-codeword tuple can significantly improve
the Huffman coding and decoding performance compared with
using 64-bit unsigned integers (i.e., uint64_t), because of higher
GPU memory bandwidth utilization. Thus, we propose to dynami-
cally select uint32_t or uint64_t representation for the Huffman
bitwidth-codeword based on the practical maximum bitwidth in-
stead of pessimistic estimation. We show the performance evalua-
tion with different representations in §4.

The theoretical time complexity is O(k logk) for building a Huff-
man tree and O(k) for a traversing tree, where k is the number of
symbols (quantization bins). Our experiments show that the real
execution time of building a Huffman tree is consistent with the
theoretical time complexity analysis (see Table 3). On the other
hand, the number of symbols is determined by the smoothness
of the dataset and the user-desired error bound (1,024 by default).
For example, with a relatively large error bound such as the value-
range-based relative error bound 2 of 10−3, we observe that most
of the symbols are concentratedly distributed near the central of
codebook. As the error bound decreases, the symbols become more

2Value-range-based relative error bound (denoted by valrel) is the error bound
relative to the value range of the dataset.

evenly distributed. Thus, determining a suitable number of quan-
tization bins is important for high performance in constructing a
codebook.

3.2.3 Canonizing Codebook. A canonical Huffman codebook [30]
holds the same bitwidth of each codeword as the original Huffman
codebook (i.e., base codebook), while its bijective mapping (between
quantization code and Huffman codeword) and variable codeword
make the memory layout organized more efficiently. The time com-
plexity of sequentially canonizing codebook from the base is O(k),
where k is the number of symbols (i.e., the number of quantization
bins) and is sufficiently small compared with the data size. By us-
ing a canonical codebook, we can (i) decode without the Huffman
tree, (ii) efficiently cache the reverse codebook for high decoding
throughput, and (iii) maintain exactly the same compression ratio
as the base Huffman codebook.

The process of canonizing codebook can be decomposed into
the following subprocedures: 1 linear scanning of the base code-
book (sequentially O(k)), which is parallelized at fine granularity
with atomic operations; 2 loosely radix-sorting of the codewords
by bitwidth (sequentially O(k)), which cannot be parallelized be-
cause of the intrinsic RAW dependency; and 3 building the reverse
codebook (sequentially O(k)), which is enabled with fine-grained
parallelism.

It is intuitive to separate the functionalities of the aforemen-
tioned subprocedures and implement them into independent CUDA
kernels with different configurations (i.e., blockDim and gridDim).
Based on our profiling results on NVIDIA V100 GPU, however,
launching a CUDA kernel usually takes about 60 microseconds (µs)
(about 200 µs for the three kernels of canonization) measured by
11 kernels launched in total. Moreover, any two consecutive sub-
procedures require an additional expensive synchronization (i.e.,
cudaDeviceSynchronize). However, our experiment indicates that
canonizing codebook is sufficiently fast ; thus, we integrate all the
three subprocedures in one single kernel.

We note that this single kernel must be launched with more
threads than the that is limited for a single thread block (i.e. 1024)
for two reasons. On the one hand, a high scalability is required
for the parallel reads/writes to match the problem size in subpro-
cedures 1 and 3 . On the other hand, unlike histogramming that
saves only the Θ(k) frequencies in shared memory, this kernel
requires saving both the codebook and its footprint, which may
exceed the maximum allowable capacity of shared memory in a
single thread block (e.g., 96 KB for a V100). Since shared memory is
only visible to its designated thread block, shuffling codewords in
shared memory across different thread blocks is semantically pro-
hibitive. In addition, there is few intermediate data reuse, thus, we
use global memory instead of shared memory to save the codebook.
Hence, we employ the state-of-the-art CUDA API—Cooperative
Groups [31]—to achieve in-grid operation. Specifically, we launch
the same number of threads as the codeword in the base codebook.
We select one thread to perform the RAW-restricted sequential sub-
procedure when needed (see Table 1). Note that it takes only 32 µs
on a V100 to launch this Cooperative Groups enabled kernel, which
significantly reduces the overhead compared to launching multiple
kernels. Moreover, compared to two inter-kernel barriers with more
than 2×60 µs, two in-grid barriers have relatively low overheads,
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and eventually result in, for instance, about 200 µs kernel time with
k = 1024.

3.2.4 Encoding and Deflating. We design an efficient solution to
perform the encoding by GPU threads in parallel. Encoding involves
looking up a symbol in the codebook and performing a memory
copy. After we adaptively select a 32-/64-bit unsigned integer to
represent a Huffman code with its bitwidth, the encoding step is
massively parallelized. To generate the dense bitstream of Huffman
codes within each data block, we conduct deflating in order to
concatenate the Huffman codes and remove the unnecessary zero
bits according to the saved bitwidths.

Since the deflated code is organized sequentially, we apply the
coarse-grained chunkwise parallelization technique discussed in
§3.1.1. In particular, a data chunk for compression and decompres-
sion is mapped to one GPU thread. Note that the chunk size for
deflating is not necessarily the same as the chunk size for dual-
qant, and it does not rely on the dimensionality. We optimize
the deflating chunk size by evaluating the performance with dif-
ferent sizes (will be showed in §4.2.1). We also employ memory
reuse technique to reduce the GPU memory footprint in deflating.
Specifically, we reuse the memory space of Huffman codes for the
deflated bitstream because the latter uses significantly less memory
space and does not have any conflict when writing the deflated
bitstream to the designated location.

3.3 Decompression

cuSZ’s decompression consists of two steps: Huffman decoding
(or inflating the densely concatenated Huffman bitstream) and re-
versed dual-qant. In inflating, we first use the previously built
reverse codebook to retrieve the quantization codes from the de-
flated Huffman bitstream. Then, based on the retrieved quantization
codes, we reconstruct the floating-point data values. Note that only
coarse-grained chunking can be applied to decompression, and its
chunk size is determined in compression. The reason is that the two
steps both have a RAW dependency issue. In fact, retrieving the
variable-length codes has the same pattern as loop-carried RAW
dependency. For the reversed dual-quantization procedure, each
data point cannot be decompressed until its preceding values are
fully reconstructed.

4 EXPERIMENTAL EVALUATION

In this section, we present our experimental setup (including plat-
form, baselines, and datasets) and our evaluation results.

4.1 Experimental Setup

Evaluation Platform. We conduct our experimental evaluation
using PantaRhei cluster [32]. We perform the experiments on an
NVIDIA V100 GPU [13] from the cluster and compare with lossy
compressors on two 20-core Intel Xeon Gold 6148 CPUs from the
cluster. The GPU is connected to the host via 16-lane PCIe 3.0
interconnect. We use NVIDIA CUDA 9.2 and its default profiler to
measure the kernel time.

Comparison Baselines. We compare our cuSZ with two baselines:
SZ-1.4.13.5 and cuZFP [15]. For SZ-1.4, we adopt the default setting:
16 bits for linear-scaling quantization (i.e., 1,024 quantization bins),

datasets type datum size
dimensions

#fields
example(s)

cosmology
HACC fp32 1,071.75 MB

280,953,867
6 in total
x, vx

climate
CESM-ATM fp32 24.72 MB

1,800×3,600
79 in total

CLDHGH, CLDLOW
climate
Hurricane fp32 95.37 MB

100×500×500
20 in total

CLOUDf48, Uf48
cosmology
Nyx fp32 512.00 MB

512×512×512
6 in total

baryon_density
quantum
QMCPACK fp32 601.52 MB

288×115×69×69
2 formats in total

einspline

Table 2: Real-world datasets used in evaluation.

#quant. 128 256 512 1024 2048 4096 8192
build tree 0.48 0.77 1.80 2.13 6.46 12.68 25.06
get codebook 0.20 1.14 2.36 2.69 7.09 14.43 25.65
total 0.68 2.16 4.16 4.81 13.55 27.10 50.71

Table 3: Breakdown time (inms) of constructing a codebook, includ-

ing building a Huffman tree and creating a codebook according to

the tree based on the Hurricane Isabel dataset.

best_compression mode, and best_speed mode for gzip, which
lead to a good tradeoff between compression ratio and performance.

Test Datasets. We conduct our evaluation and comparison based
on five typical real-world HPC simulation datasets of each dimen-
sionality from the Scientific Data Reduction Benchmarks suite [16]:
1 1D HACC cosmology particle simulation [1], 2 2D CESM-ATM
climate simulation [33], 3 3D Hurricane ISABEL simulation [34],
4 3D Nyx cosmology simulation [35], and 5 4D QMCPACK quantum
Monte Carlo simulation [36]. They have been widely used in prior
works [3, 11, 19, 37, 38] and are good representatives of production-
level simulation datasets. Table 2 shows all 112 fields 3 across these
datasets. The data sizes for the five datasets are 6.3 GB, 2.0 GB,
1.9 GB, 3.0 GB, and 1.2 GB, respectively. Note that our evaluated
HACC dataset is consistent with real-world scenarios that generate
petabytes of data. For example, according to [1], a typical large-
scale HACC simulation for cosmological surveys runs on 16,384
nodes each with 128 million particles and generates 5 PB over the
whole simulation. The simulation contains 100 individual snapshots
of roughly 3 GB per node. We evaluate a single snapshot for each
dataset instead of all the snapshots, because the compressibility
of most of the snapshots usually has strong similarity. Moreover,
when the field is too large to fit in a single GPU’s memory, cuSZ
divides it into blocks and then compresses them block by block.

4.2 Evaluation Results and Analysis

In this section, we evaluate the compression performance and qual-
ity of cuSZ and compare it with CPU-SZ and cuZFP.

4.2.1 Compression Performance. Wefirst evaluate the performance
of dual-qant of cuSZ. The average throughput of the dual-
qant step on each tested dataset is shown in Table 7. Compared
with the original serial CPU-SZ, the predict-quant throughput is
improved by more than 1000× via our proposed dual-qant on the
GPU. This improvement is because dual-qant entirely eliminates
the RAW dependency and leads to fine-grained (per-point) parallel
computation, which is significantly accelerated on the GPU.

We then evaluate the performance of our implemented Huffman
coding step by step. First, we conduct the experiment of Huffman

3The QMCPACK dataset includes only one field but with two representations.
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histogram computation and show its throughput performance4.
Efficiently computing a histogram on a GPU is an open challenging
problem, because of the way that multiple threads need to write
to the same memory locations simultaneously. Here, we present
a method that, while a bottleneck in the Huffman process, is a 2×
improvement from a serial implementation.

Next, we perform the experiment of constructing codebook with
different numbers of quantization bins, as shown in Table 3.We note
that the execution times of building a Huffman tree and creating
a codebook are consistent with our time complexity analyses in
§3.2.2. We use 1,024 quantization bins by default. Since the time
overhead of constructing a codebook depends only on the number
of quantization bins, it is almost fixed—for example, 4.81 ms—for the
remaining experiments. We also note that a larger data size lowers
the relative performance overhead of constructing a codebook, thus
leading to higher overall performance.

1071 MB
hacc

25 MB
cesm-atm

95 MB
hurricane

512 MB
nyx

602 MB
qmcpack

enc.64 µs 4,274.3 97.1 385.8 2,044.7 2,401.4
GB/s 250.9 255.1 251.7 251.1 251.1

enc.32 µs 2,839.3 64.1 255.8 1,358.6 1,595.6
GB/s 377.7 386.6 379.6 377.9 377.9

Table 4: Performance of encoding and deflating based on the con-

structed codebook (averaged based on all fields for each set).

We also evaluate the performance of encoding and decoding
based on the canonical codebook. To increase the memory band-
width utilization, we adapt online selection of Huffman codeword
representation between a uint32_t and a uint64_t. Table 4 illus-
trates that our encoding achieves about 250 GB/s for uint64_t
and about 380 GB/s 5 for uint32_t, based on the test with all 111
fields under the error bound of 1e-4. Hence, we conclude that using
a uint32_t enables significantly higher performance than using a
uint64_t. Because of the coarse-grained chunk-wise parallelization,
the performance of deflating is about 60 GB/s, which is lower than
the encoding throughput of 380 GB/s. Consequently, the Huffman
coding performance is bounded mainly by the deflating throughput.

To improve the deflating and inflating performance, we further
evaluate different chunk sizes and identify the appropriate sizes
for both deflating and inflating on the tested datasets, as shown
in Table 6. Specifically, we evaluate chunk sizes ranging from 26
to 216, due to different field sizes. We observe that using a total of
around 2e4 concurrent threads consistently achieves the optimal
throughput. Note that inflating must follow exactly the same data
chunking strategy as deflating; thus we need to select the same
chunk size. Even under this constraint, our selected chunk sizes still
achieve throughputs close to the peak ones, as illustrated in Table 6.
Therefore, we conclude that the overall optimal performance can be
achieved by setting up a total of 2e4 concurrent threads in practice.

Next, we evaluate the overall compression and decompression
performance of cuSZ, as shown in Table 7. We compare cuSZ
with cuZFP in terms of the kernel performance and the overall
performance that includes the GPU-to-CPU communication cost.
Note that the performance of cuZFP is highly related to its user-
set fixed bitrate according to the previous study [39], whereas the
4All throughputs shown are measured based on the original data size and time.
5NVIDIA V100 GPU has a theoretical peak memory bandwidth of 900 GB/s.

bitrate CR PSNR bitrate CR PSNR
cesm-atm 3.08 bits 10.4 85.3 dB 12 bits 2.7 88.7 dB
hurricane 3.45 bits 9.3 87.0 dB 12 bits 2.7 81.9 dB

nyx 2.49 bits 12.8 86.0 dB 6 bits 5.3 85.1 dB
qmcpack 3.38 bits 9.5 85.0 dB 8 bits 4.0 84.0 dB

cuSZ cuZFP
Table 5: Bitrate comparison at PSNR of about 85 dB (cuSZ’s PSNRs

are no lower than cuZFP’s). CR stands for compression ratio.
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Figure 5: Compression (top) and decompression (bottom) through-

put of cuSZ and CPU-SZ on tested datasets.

performance of cuSZ is hardly affected by the user-set error bound.
Therefore, we choose the acceptable fixed bitrate for cuZFP, which
generates data distortion (i.e., PSNR of about 85 dB) similar to that
of cuSZ, as shown in Table 5. Also, note that we exclude cuZFP for
HACC in Table 7, because cuZFP generates fairly low compression
quality on 1D HACC. In particular, even when the bitrate is as high
as 16, the PSNR is only about 20 dB, which is not usable. The
throughput in Table 7 is calculated based on the original data size
rather than the size of the data transferred between the GPU and
CPU. Table 7 shows that cuZFP has a higher kernel throughput but
lower GPU-to-CPU throughput than does cuSZ. The reason is that
cuSZ provides a much higher compression ratio than does cuZFP
with the same data distortion.

We note that the overall throughputs of cuSZ and cuZFP are
close to each other with respect to the CPU-GPU interconnect (16-
lane PCIe 3.0) bandwidth in our evaluation. Generally speaking,
many applications in GPU-based HPC systems generate the data
on GPUs, so the compression needs to be directly performed on the
data in the GPU memory, and the compressed data currently must
be transferred from GPUs to disks through CPUs. Current state-of-
the-art CPU-GPU interconnect technologies such as NVLink [40]
can typically provide a theoretical transfer rate of 50 GB/s over two
links, while our cuSZ’s compression kernel can provide comparable
throughput of about 40 GB/s. Although cuZFP’s compression kernel
achieves about 70 GB/s, its overall throughput is limited by the CPU-
GPU bandwidth of 50 GB/s. So, the data transfer between CPU
and GPU is still the bottleneck for high-throughput compression
kernels (e.g., not higher than 50 GB/s). Moreover, the decompression
throughput of cuSZ is lower than its compression throughput
and that of cuZFP. This is because only coarse-grained chunking
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chunk
size

26

27

28

29

210

211

212

213

214

215

216

hacc
1071.8 mb 280,953,867 f32
#thread deflate inflate

. . .

. . .

. . .

. . .

. . .
1.4e5 4.6 2.8
6.9e4 5.1 5.1
3.4e4 13.6 12.1
1.7e4 63.1 35.0
8.6e3 65.8 28.1
4.3e3 45.9 14.3

cesm
24.7 mb 6,480,000 f32
#thread deflate inflate

1.0e5 11.3 25.0
5.1e4 15.5 37.8
2.5e4 67.1 41.6
1.3e4 55.6 30.7
6.3e3 48.2 19.6

. . .

. . .

. . .

. . .

. . .

. . .

hurricane
95.4 mb 25,000,000 f32
#thread deflate inflate

. . .

. . .
9.8e4 5.1 11.0
4.9e4 10.2 9.4
2.4e4 64.6 34.2
1.2e4 57.3 27.7
6.1e3 50.7 17.8

. . .

. . .

. . .

. . .

nyx
512 mb 134,217,728 f32
#thread deflate inflate

. . .

. . .

. . .

. . .
1.3e5 4.7 5.9
6.6e4 5.7 6.3
3.3e4 25.1 16.1
1.6e4 69.7 52.4
8.2e3 72.4 42.6
4.1e3 50.0 23.1

. . .

qmcpack
601.5 mb 157,684,320 f32
#thread deflate inflate

. . .

. . .

. . .

. . .
1.5e5 4.7 5.1
7.7e4 5.2 6.2
3.8e4 12.9 11.1
1.9e4 72.7 40.3
9.6e3 75.9 29.0
4.8e3 56.0 16.1

. . .

Table 6: Throughputs (in GB/s) versus different numbers of threads launched on V100. The optimal thread number in terms of inflating and

deflating throughput is shown in bold.

predict. (p)
+ quant. (q)

huffman kernel
compression

gpu-to-cpu
valrel@10-4

overall
compression

mb/s mb/s mb/s
CPU-SZ hacc 137.7 328.6 - - 94.1

cesm-atm 105.0 459.1 - - 85.5
hurricane 93.8 504.0 - - 78.5

nyx 98.5 648.7 - - 84.7
qmcpack 97.5 396.2 - - 80.8

histogram codebook coding
gb/s gb/s ms gb/s gb/s gb/s gb/s

cuSZ hacc 207.7 602.8 5.16 54.1 40.0 53.2 22.8
cesm-atm 252.1 345.3 4.33 57.2 41.1 81.9 27.4
hurricane 175.8 418.0 4.81 55.2 38.2 40.8 19.7

nyx 200.2 427.6 3.84 58.8 41.1 134.1 31.6
qmcpack 189.6 346.1 4.09 61.0 40.7 99.2 28.9

cuZFP hacc - - - - - - -
cesm-atm - - - - 47.6 27.7 17.5
hurricane - - - - 83.7 27.7 20.8

nyx - - - - 71.3 56.3 31.7
qmcpack - - - - 72.6 42.5 26.8

huffman
decoding

reversed
(p+q)

kernel
decompression

mb/s mb/s mb/s
196.0 659.3 151.1
502.2 451.9 237.9
524.5 306.8 185.0
670.4 300.5 201.8
660.3 313.4 211.1

canonical
dec. gb/s gb/s gb/s

35.0 16.8 11.4
41.6 58.5 24.3
34.2 43.9 19.2
52.4 29.7 19.0
40.3 22.4 14.4

- - -
- - 113.1
- - 102.2
- - 103.1
- - 115.5

Table 7: Breakdown comparison of kernel performance among CPU-SZ, cuSZ, and cuZFP. Here “-” represents for n/a.

can be applied to decompression, as mentioned in §3.3. Here we
argue that the compression throughput is more important than the
decompression throughput, because users use the CPU-SZ mainly
to decompress the data for postanalysis and visualization instead
of the GPU after the compressed data is transferred and stored to
parallel file systems [11, 39].

We note that cuSZ on the CESM-ATM dataset exhibits much lower
performance than on other datasets. This is due to the fact that
each field of the CESM-ATM dataset is fairly small (∼25 MB), such
that the codebook construction cost turns out to be relatively high
compared with other steps for this dataset. In fact, the codebook
construction would not be a bottleneck for a relatively large dataset
(such as hundreds of MBs per field), which is more common in
practice (e.g., HACC, Nyx, QMCPACK).

We also compare the performance of cuSZ with that of the
production version of SZ running on a single CPU core and multi-
ple CPU cores. The parallelization of OpenMP-SZ is achieved by
simply chunking the whole data without any further algorithmic
optimization (such as our proposed dual-qant). In particular,
each thread is assigned with a fixed-size block and runs the original
sequential CPU-SZ code. The points on the border are handled sim-
ilar to cuSZ (as shown in Figure 2). The main differences between
OpenMP-SZ and cuSZ are fourfold: 1 In the proposed dual-qant,

each point in cuSZ is assigned to a GPU thread, whereas OpenMP-
SZ uses a CPU thread to handle a block of data points. 2 After
postqant, the data are transformed into integers (units of error
bound), and all the following arithmetic operations are performed
on these integers. Hence cuSZ does not need to handle the errors
that are introduced by floating-point operations (e.g., underflow).
3 OpenMP-SZ does not fully parallelize Huffman coding, whereas
cuSZ provides an efficient parallel implementation of Huffman
coding on GPU. 4 OpenMP-SZ supports only 3D datasets, so in
our comparison we use 3D Hurricane Isabel and Nyx and mark
n/a for non-3D datasets in Figure 5. It illustrate the compression
and decompression throughput of cuSZ (considering the CPU-GPU
communication overhead) and CPU-SZ. Compared with the serial
SZ, the overall compression performance can improved by 242.9×
to 370.1×. cuSZ also improves the overall performance by 11.0× to
13.1× over SZ running with OpenMP on 32 cores.

4.2.2 CompressionQuality. We then present the compression
quality of cuSZ compared with another advanced GPU-supported
lossy compressor—cuZFP—based on the compression ratios and
data distortions on the tested datasets. We use the peak signal-to-
noise ratio (PSNR) 6 to evaluate the quality of the reconstructed data.

6PSNR is calculated as PSNR = 20 · log10
[
(dmax − dmin)/RMSE

]
, where N is the

number of data points and dmax/ dmin is the maximal/minimal value. Root mean
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The larger the PSNR, the lower reconstructed distortion, hence the
more accurate postanalysis.

We compare cuSZ and cuZFP only on two 3D datasets—Hurricane
Isabel and Nyx—because the compression quality of cuZFP on the
1D/2D datasets is much lower than that on the 3D datasets . For a
fair comparison, we plot the rate-distortion curves for both cuSZ
and cuZFP on all the fields of the two datasets and compare their
compression quality in PSNR at the same compression ratio.

2 4 6 8 10 12 14 16

50

100

150

Bitrate

PS
N
R

baryon.cuZFP dark.cuZFP temp.cuZFP vx.cuZFP

vy.cuZFP vz.cuZFP baryon.cuSZ dark.cuSZ
temp.cuSZ vx.cuSZ vy.cuSZ vz.cuSZ

Figure 6: Comparison of rate-distortion between cuSZ (fixed valrel)
and cuZFP (fixed rate) on Nyx dataset.

Figure 6 shows the rate-distortion curves of cuSZ and cuZFP
on the Nyx dataset. We observe that cuSZ generally has a higher
PSNR than does cuZFP with the same compression ratio on the Nyx
dataset. In other words, cuSZ provides a much higher compression
ratio compared with cuZFP given the same compression quality.
The main reason is twofold: 1 ZFP has better compression qual-
ity with the absolute error bound (fix-accuracy) mode than with
the fixed-rate mode (as indicated by the ZFP developer [41]); and
2 the ℓ-predictor of cuSZ has a higher decorrelation efficiency
than does the block transform of cuZFP, especially on the field
with a large value range and concentrated distribution, such as
baryon_density.

Similar results for cuSZ and cuZFP are observed on the Hurricane
Isabel dataset, as shown in Figure 7.We note that the rate-distortion
curves for cuSZ—namely, QCLOUD, QICE, CLOUD—notably increase
when the compression ratio decreases. This is because there are
areas full of zeros, causing the compression ratio to change very
slowly when the error bound is smaller than a certain value. In
other words, most of the nonzeros are unpredictable, and the zeros
are always predictable.

We also illustrate the overall rate-distortion curves of cuSZ and
cuZFP on the Hurricane and Nyx dataset, as shown in Figure 8.
For example, cuSZ provides a 2.41× (2.49 vs. 6) lower bitrate over
cuZFP on the Nyx dataset and a 3.48× (3.45 vs. 12) lower bitrate over
cuZFP on the Hurricane Isabel dataset, with reasonable PSNRs,
as shown in Table 5.

The reason is that, according to §3.1.1, cuSZ sets all the values
in the padding layer to 0 and uses these zeros to predict the top-left
data points, resulting in better prediction on the tested datasets,

squared error (RMSE) is obtained by sqrt
[ 1
N

∑N
i=1

(
di − d•i

)2] , where di and d•i refer
to the original and decompressed values, respectively.
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QGRAUP.log10 QICE QICE.log10 QRAIN
QRAIN.log10 QSNOW QSNOW.log10 QVAPOR
TC U V W
CLOUD CLOUD.log10 P PRECIP
PRECIP.log10 QCLOUD QCLOUD.log10 QGRAUP
QGRAUP.log10 QICE QICE.log10 QRAIN
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TC U V W
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cuZFP

Figure 7: Comparison of rate-distortion between cuSZ (fixed valrel)
and cuZFP (fixed rate) on Hurricane Isabel dataset.
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Figure 8: Comparison of overall rate distortion between cuSZ (fixed

valrel) and cuZFP (fixed rate) on Hurricane and Nyx datasets (aver-

aged based on all fields).

field SZ-1.4 cuSZ field SZ-1.4 cuSZ

CLOUDf48 84.99 94.18 QSNOWf48 84.31 93.36
CLOUDf48.log10 84.51 87.17 QSNOWf48.log10 84.87 84.93
Pf48 84.79 84.79 QVAPORf48 84.79 84.80
PRECIPf48 85.35 92.86 TCf48 84.79 84.79
PRECIPf48.log10 84.82 84.77 Uf48 84.79 84.79
QCLOUDf48 85.03 98.91 Vf48 84.79 84.79
QCLOUDf48.log10 85.22 95.21 Wf48 84.79 84.79
QGRAUPf48 88.21 97.02 baryon_density 89.71 98.25
QGRAUPf48.log10 84.90 84.82 dark_matter_density 86.57 87.77
QICEf48 84.61 95.51 temperature 84.77 84.77
QICEf48.log10 85.56 85.77 velocity_x 84.77 84.77
QRAINf48 85.36 97.37 velocity_y 84.77 84.77
QRAINf48.log10 84.93 84.56 velocity_z 84.77 84.77

Hurricane avg. 85.01 86.96 Nyx avg. 85.58 85.98

Table 8: Comparison of PSNRbetween cuSZ and SZ-1.4 on Hurricane
(first 20) and Nyx (last 6) under valrel = 10−4.

especially for the fields with large value ranges and a large ma-
jority of values close to zero (such as CLOUDf48, QSNOWf48, and
baryon_density as shown in Table 9). However, SZ-1.4’s predic-
tion highly depends on the first data point’s value, so it may cause
low prediction accuracy when the first data point deviates largely
from most of the other points. Therefore, cuSZ and SZ-1.4 have
similar PSNRs on the datasets represented by the logarithmic scale.
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CLOUDf48
min 1% 25% 50% 75% 99% max range
0.00e+0 0.00e+0 0.00e+0 0.00e+0 0.00e+0 2.53e-4 2.05e-3 2.05e-3

eb =2.05e-7 89.20% in [−eb, eb], and 89.20% in [min, min + eb]
1
10 eb =2.05e-8 88.50% in [− 1

10 eb,
1
10 eb], and 88.50% in [min, min + 1

10 eb]

QSNOWf48
min 1% 25% 50% 75% 99% max range
0.00e+0 0.00e+0 1.11e-10 1.96e-9 6.34e-9 6.01e-5 8.56e-4 8.56e-4

eb =8.56e-8 88.90% in [−eb, eb], and 88.90% in [min, min + eb]
1
10 eb =8.56e-9 80.90% in [− 1

10 eb,
1
10 eb], and 80.90% in [min, min + eb]

baryon density
min 1% 25% 50% 75% 99% max range
5.80e-2 1.37e-1 3.22e-1 5.06e-1 8.75e-1 7.42e+0 1.16e+5 1.16e+5

eb =1.16e+1 99.50% in [−eb, eb], and 99.50% in [min, min + eb]
1
10 eb =1.16e+0 83.30% in [− 1

10 eb,
1
10 eb], and 84.40% in [min, min + 1

10 eb]

Table 9: Statistical information (percentile) of example fields having

high PSNR under valrel = 10−4. The range of eb or even
1
10 eb at 0 or

min value cover a majority of data in the fields.

5 RELATEDWORK

5.1 GPU-Accelerated Scientific Compression

Scientific data compression has been studied for many years for
reducing storage and I/O overhead. It includes two main categories:
lossless compression and lossy compression. Lossless compressors
for scientific datasets such as FPC [42] and FPZIP [43] ensure that
the decompressed data is unchanged, but they provide only a limited
compression ratio because of the significant randomness of the
ending mantissa bit of HPC floating-point data. According to a
recent study [6], the compression ratio of lossless compressors for
scientific datasets is generally up to 2:1, which is much lower than
the user-desired ratio for HPC applications.

Error-bounded lossy compression significantly reduces the size
of scientific data while maintaining desired data characteristics.
Traditional lossy compressors (such as JPEG [44]) are designed for
image and visualization purposes; however, they are difficult to
be applied to scientific datasets because of scientists’ specific data
fidelity requirement. Recently, error-bounded lossy compressors
(such as SZ [8] and ZFP [45]) have been developed for scientific
datasets. Such compressors provide strict error controls according
to user requirements. Both SZ and ZFP, for example, provide an
absolute error bound in their CPU version.

Different from SZ’s prediction-based compression algorithm,
ZFP’s algorithm is based on a block transform. It first splits the
whole dataset into many small blocks. It then compresses the data in
each block separately in four main steps: exponent alignment, cus-
tomized near-orthogonal transform, fixed-point integer conversion,
and bit-plane-based embedded coding. A truncation is performed
based on the user-set bitrate. Recently, the ZFP team released their
CUDA version, called cuZFP [15]. cuZFP provides much higher
throughputs for compression and decompression compared with
the CPU version [39]. However, the current cuZFP only supports
fixed-rate mode, which significantly limit its adoption in practice.

5.2 Huffman Coding on GPU

During the Huffman coding process, a specific method is used to
determine the bit representation for each symbol, which results
in variable length prefix codes. The set of these prefix codes make
up the codebook, with each prefix code based on the symbols fre-
quency in the data. This codebook is then used to replace each

input symbol with its corresponding prefix code. Previous stud-
ies have shown that Huffman coding achieves better performance
in parallel on a GPU than in serial on a CPU. In general, parallel
Huffman coding obtains each codeword from a lookup table (gener-
ated by a Huffman tree) and concatenates codewords together with
other codewords. However, a severe performance issue arises when
different threads write codewords with different lengths, which re-
sults in warp divergence on GPU [46]. The most deviation between
methods occurs in concatenating codewords.

Fuentes-Alventosa et al. [47] proposed a GPU implementation
of Huffman coding using CUDA with a given table of variable-
length codes, which improves the performance by more than 20×
compared with a serial CPU implementation. Rahmani et al. [48]
proposed a CUDA implementation of Huffman coding based on
serially constructing the Huffman codeword tree and parallel gen-
erating the byte stream, which can achieve up to 22× speedups
compared with a serial CPU implementation without any constraint
on the maximum codeword length or data entropy. Lal et al. [49]
proposed a Huffman-coding-based memory compression for GPUs
(called E2MC) based on a probability estimation of symbols. It uses
an intermediate buffer to reduce the required memory bandwidth.
In order to place the codeword into the correct memory location,
E2MC extends the codeword to the size of the buffer length and
uses a barrel shifter to write the codeword to the correct location.
Once shifted, the codeword is bitwise ORed with the intermediate
buffer, and the write location is increased by the codeword length.

6 CONCLUSION AND FUTUREWORK

In this work, we propose cuSZ, a high-performance GPU-based
lossy compressor for NVIDIA GPU architectures that effectively im-
proves the compression throughput for SZ compared with the pro-
duction version onCPUs.We propose a dual-quantization scheme to
completely remove the strong data dependency in SZ’s prediction-
quantization step and implement an efficient customized Huffman
coding. We also propose a series of techniques to optimize the per-
formance of cuSZ, including fine-tuning the chunk size, adaptively
selecting Huffman code representation, and reusing memory. Exper-
iments on five real-world HPC simulation datasets show that our
proposed cuSZ improves the compression throughput by 242.9×
to 370.1× over the serial CPU version and 11.0× to 13.1× over
the parallel CPU version. Compared with another state-of-the-art
GPU-supported lossy compressor, cuSZ improves the compres-
sion ratio by 2.41× to 3.48× with reasonable data distortion on the
tested datasets. We plan to further optimize the performance of
decompression, implement other data prediction methods such as
linear-regression-based predictor, and evaluate the performance
improvements of parallel I/O with cuSZ.
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