INTRODUCTION & MOTIVATION

Influence Maximization studies the word-of-mouth effects in the viral marketing, politics, public health, bioinformatics and sensor networks.

It is an **NP-hard** optimization problem to activate the top-k vertices that can get maximal expected influence in graph G.

HBMax Parallel Influence Maximization algorithm using Huffman coding and Bitmap coding to address the memory inflation challenge.

CONTRIBUTIONS

- **Characterize** memory footprints
- **Identify** various shapes of intermediate RRs
- **Compress** with Huffman or Bitmap coding
- **Query** partially decoded or compressed data.
- **Reduces** memory usage up to 82.1%
- **Speedups** 6.3% (in average) than Ripples.

PROFILING

- Skewness is from flat-headed (-1) to skewed(12).
- Density is from sparse (0.26%) to dense (53.3%)

IMPLEMENTATION

- **Parallelize by OpenMP**
- **Parallel Merge**
- **Consider NUMA effects**
- **Leverage** bit operations

EVALUATION

<table>
<thead>
<tr>
<th></th>
<th>DBLP</th>
<th>YouTube</th>
<th>Skitter</th>
<th>Orkut</th>
<th>Pokec</th>
<th>LiveJournal</th>
<th>Arabic</th>
<th>Twitter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ripples</td>
<td>0.4</td>
<td>3.1</td>
<td>9.8</td>
<td>46.5</td>
<td>55.7</td>
<td>163.7</td>
<td>248.6</td>
<td>1183.0</td>
</tr>
<tr>
<td>HBMax</td>
<td>0.3</td>
<td>1.7</td>
<td>5.3</td>
<td>30.1</td>
<td>10.7</td>
<td>29.3</td>
<td>81.5</td>
<td>200.3</td>
</tr>
</tbody>
</table>

SCALABILITY

- HBMax, Ripples both have strong scalability
- HBMax scales better (high-skewed graphs)
- Overall speedup is 12.98x on 64 cores

WORKFLOW

- **Warm-Up Phase**
- **Decision Making**
- **Blockwise Encoding**
- **Selection**

ACKNOWLEDGEMENT

The research is supported by the U.S. DOE Exascale Computing Project’s (ECP) (17-SC-20-SC) ExaGraph codesign center at Pacific Northwest National Laboratory (PNNL) and by the NSF awards OAC-2034169, OAC-2042084, OAC-1910213, NSF-1911922, and CCF-1815467 at Washington State University.

https://github.com/hipdac-lab/hbmax-parallel